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(A,o’)-INVARIANT DISTRIBUTIONS AND DISTURBANCE
DECOUPLING OF NONLINEAR SYSTEMS*

R. M. HIRSCHORNt

Abstract. The concept of (A, B)-invariant subspaces has resulted in a unified approach to many of the
basic structural properties of time-invariant linear systems (W. M. Wonham, Lecture Notes in Economics and
Mathematical Systems, vol. 101, Springer-Verlag, New York, 1974). The purpose of this paper is to introduce
the more general notion of (A, g3)-invariant distributions on differentiable manifolds and to use this idea to
study the disturbance decoupling problem for a class of nonlinear systems which evolve on real analytic
manifolds.

1. Introduction. We consider systems of the form

/c(t)=A(x(t))+ ui(t)Bi(x(t)), x EM,
i=1

(1)
y(t)=C(x(t)),

with state space M a connected real analytic manifold and A, B1, , B, V(M), the
real vector space of real analytic vector fields on M. The input functions u 1,...,
belong to U, the class of admissible controls. The elements of U are piecewise real
analytic functions on [0, ) with values in a path-connected subset D, of R which
contains a neighborhood of the origin. We assume that U contains all piecewise
constant functions with valueS in D, (this assumption is needed to take advantage of the
standard accessibility results; cf. [3]). The output map C is a real analytic mapping ofM
into R t.

If u (u, , u,) is an admissible control vector, then we denote by x(t, Xo, u) the
trajectory corresponding to u and the initial condition x(0)= Xo. Similarly y(t, x0, u)
denotes the output C(x(t, Xo, u)).

The disturbance decoupling problem for (1) arises when a disturbance represented
by v,..., /Jr U affects the evolution of the state"

k=A(x)+ IgiBi(x)-+- viDi(x),
i=1 i=1

y C(x).

This system is said to be disturbance decoupled with respect to v and y if y (., x0, u, v)
y (’, x0, u, tT) for all admissible u, v, tT, and for all x0 M. That is, the output is unaffected
by the disturbance. The disturbance decoupling problem is to find a feedback law
Ui Ui -t- ki(x) such that the resulting system is disturbance decoupled with respect to v
and y. For time-invariant linear systems with Di(x) constant vector fields and ki(x)
linear, Wonham l-5] defines a unique subspace 7/’ of ker C called the supremal
(A, B)- invariant subspace of ker C, and shows that the disturbance decoupling problem
is solvable if and only if D,..., Dr 7/’*c. The purpose of this paper is to generalize
these ideas to study disturbance decoupling in the nonlinear case.

In 2 the notion of (A, 3)-invariant distributions on manifolds is introduced and
some of the basic properties of these distributions are examined. In 3 the relationship
between (A, 3)-invariant distributions and disturbance decoupling in nonlinear
systems is studied. Our main result is Theorem 3.1, which shows that the local
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disturbance decoupling problem is solvable with a nonlinear feedback law if and only if
D1, ’, Dr @, the maximal (A, Y3)-invariant distribution with XC 0 for all X
belonging to the distribution. Section 4 contains some examples.

We conclude this section with some definitions. Let X V(M) be a real analytic
vector field. If (//’, x 1," , xn) is a coordinate system on M, then locally

Xl, . ai(x)
o

i=1

where {ai} are real analytic functions on M. We let --> X, Xo denote the integral curve
for X passing through Xo when 0. Thus (d/dt)Xt Xo X(Xt Xo) and Xo" x0 x0.

If X, Y V(M) then the vector field adxY or IX, Y] XY- YX is called the Lie
Bracket of X and E If on X i=1 ai O/Oxi and Y i=1 b O/Ox, then

Obi 0 Oa
i,]= OXi OX] i,]= OXi

It follows that for L g CW (M), the ring of real analytic functions on M, [fX, gY]
fg[X, Y]-g(Yf)X+f(Xg)Y, where locally Xg= ai Og/Oxg (el. [4]). In particular X
defines a linear mapping from Cw(M) into Cw(M), and it is easy to see that for any
f C (M), Xf(x dfX(x) for all x M, where df: T(M) T()(R is the differential
of L a linear mapping of tangent spaces. If f (fl," , fo) is a vector valued real analytic
function on M we let Xf (X[,..., Xf).
A distribution onM is a choice of a subspace of the tangent space Tx (M) for each

x M. is k-dimensional if dim (x)= k for all x M. is real analytic if for each
Xo 6 M there exist a neighborhood o of Xo and vector fields X1, , X, VM) such
that (x) span {X(x),. , Xo(x)} for all x o. We say that a vector field Xbelongs
to , X D, if X(x) D(x) for all x M. A real analytic distribution is involutive if
for all X, Y , IX, Y] . If X V(M) then we set adx (x) {adx Y(x)IY}, a
real analytic distribution on M. If a, 2 are real analytic distributions then 1 2 if
for all vector fields X , X 2; and (1+ 2)(x) span {(x) 2(x)} is the
distribution generated by1 and2. The involutive distribu6on generated by1 and2 is
the smallest involutive distribution containing (a +2). Finally, if is a real
analytic distribution onM and x M, I(, x) will denote the maximal integral manifold
of through xthe largest connected submanifold N of M with x N and T(N)=

(y) for all y N.

2. Invariant distributions. For time-invariant linear systems the notion of (A, B)-
invariant subspaces due to Wonham and others (of., [5], [6]) is a central concept in
the geometric approach to disturbance isolation, output decoupling, etc. In studying
similar structural properties for nonlinear systems of the form (1) it is natural to look
for some invariant which generalizes the notion of (A, B)-invariant subspaces and
exposes some of the internal structure of nonlinear systems.

Consider the time-invariant linear system

i(t) Ax(t) + Bu(t), x
(2)

y(t) Cx(t),

where y R I. A subspace W of the state space R" is said to be (A, B)-invariant if

AWW+
where is the range space of the matrix B (i.e., the linear operator obtained by
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restricting A to 7/" has its range space contained in the subspace F+ ). Wonham has
shown that this subspace plays a key role in understanding some of the deeper structural
properties of time-invariant linear systems, properties which are not determined by the
standard controllability and observability Gramians (cf. [1]). Since differential
geometry provides a natural framework for studying nonlinear systems, a restatement
of the above definition in the language of differential geometry is the obvious first step in
creating an analogous construction for nonlinear systems. The state equation in (2) can
be rewritten as

2(t) Ax(t) + , ui(t)bi X R n,
i=1

where bl, ’, b, are the columns of the matrix B, and we consider x -Ax and x- bi
to be real analytic vector fields on the manifold R n. The subspace F can be considered
as a submanifold of R n, but then the condition AF 7/’+ becomes confusing: F
plays the role of a submanifold so that for each x V, A(x) Ax Tx(R), but in V+
we have 7/" being considered as a subspace of the tangent space Tx (R ).

To resolve this difficulty, we let 7/’ define a real analytic distribution on M R ". In
fact 7/" defines a "flat" real analytic distribution @2 on M R" if we let

@v(x) 7/"
_

Tx(R’),

for all x R ", where the standard identification of Tx(R ) with R is made. Similarly
can be interpreted as the ("flat") distribution

3(x)=
_

Tx(R").

The (A, B)-invariance of the subspace V requires that for each x V, Ax V+, or, if
{v l, , Vk} is a basis for V, that

Avi tf-b73 for 1,..., k.

To state this result in the language of distributions, we let {Xi(x)= viii--- 1, 2,..., k}
denote k constant vector fields on R with the property that

@v(x) span {Xl (x), Xk (x)}.
Thus

adAXi(x (dXi)xAx (dA)xXi 0- Avi @v+ ,
k

and ifX is any real analytic vector field belonging tov then X(x) Yi= ai (x)Xi (x) for
some ai C (R") and

adA X(X)= [A, aiXi] (x)
i=1

k k, (Aai)(x)Xi(x)+ Y, ai(x)(adAXi(x)).
i=1 i=1

Since Xi(x) vi @ and ada Xi E or + 3, we have

adAX + for all X v.
This can conveniently be written as adA @v

___
v+. Thus saying F is an (A, B)-

invariant subspace is equivalent to saying that the "fiat" distribution v satisfies
adAv ----- + .
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This suggests a natural way to generalize the idea of (A, B)-invariant subspaces to
nonlinear systems of the form (1). Consider the system

i(t)=A(x(t))+ , ui(t)Bi(x(t)), x M,
i=1

where A, B1, ", Br V(M). Let be the real analytic distribution on M defined by

(x) span {Bl(X),’’’, B, (x)}.

DEFINIa’ON. An involutive real analytic distribution @ onM is (A, l)-invariant if
there exists an open dense submanifold M0 of M such that adA @_ @+ and
ads,@_@ on Mo for 1, 2,. , m.

Remark 1. For nonlinear systems the dimension of an (A, )-invariant dis-
tribution @ need not be constant (see Example 1).

Remark 2. The distribution 9 on R which arises in the linear case satisfies the
above definition. We have shown that adA9

_
9+. To verify that ads,@

___
@

we note that for all X , X Y’.j=I ajX., where ai C (R), X.(x)= v., and hence
with Bi(x)= bi,

adb, X(x) [(biai)X + a adb, X.].
j=l

Since adbj X. 0 and X. @, we have adb, @ 9. It is clear that if X, Y @ then
IX, Y] @; hence @ is involutive, and we are setting M0 M R n.

We conclude this section by establishing some of the basic properties of (A, )-
invariant distributions.

LEMMA 2.1. Suppose that and @2 are (A, )-invariant distributions on M. Let9
be the involutive distribution on Mgenerated by 91 and @2. Then @ is (A, Y3)-invariant
and 91, 2 .

Proof. Let X X1 + X2 be a real analytic vector field belonging to 91 + 92, where
X16 @1 and X2 92. Let M1 and M2 be open and dense submanifolds of M such that
adsjg_gi andada_+ onM fori=l,2 andj=l,...,m It follows that

ads, X ads, X1 + adB, X2 --2 on M1 fq M2
for 1,..., m, and that

adA X adA X1 + adA X2 (1 +) + (92 +) on M1 M2.

Thus adA (91 / 92)
_
(1 / 2) + and ads, (91 + 92)

_
(91 + @2) for 1, , m on

M0--MI ME, an open and dense submanifold of M.
If 91 + 92 is not involutive, we construct a larger distribution 912 which includes

the Lie brackets of the form [X1, X2] where X1 e @1 and X2 e @. A straightforward
computation shows that adA 12 912 - and adB, 12 12 on M0o Repeating this
procedure a finite number of times results in the required (A, )-invariant distribution
@, and this completes the proof.

The next result plays a key role in relating (A, )-invariant distributions to the
disturbance decoupling problem considered in 3.

LEMMA 2.2. Let be an involutive real analytic distribution on M. Then 9 is
(A, )-invariant if and only if there exists an open dense submanifold Mo of Msuch that
ads,

_
on Mo for 1, , m, andfor all Xo Mo there exists an open neighborhood

Uo of Xo in Mo and functions k 1, , k, C Uo), such that on Uo

ad(A+ZT’= k,S,) -- "
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Proof. Sufficiency. Fix Xo Mo. Suppose there exist kl, ", k,, C (q/o) such that

ad(A+E"__l k,B,)
,

where Xo q/o c__ Mo are defined as above. Choose X @. Then

ad(A+YT__l k,B,)X adA X + Y (ki adB, X-(Xki)Bi)
i=1

is a vector field on q/o, and since adB,
___

on Mo, we see that adA X(x) (x) + i3 (x)
for all x e q/o. This implies that adA @

___
@ + on Mo and hence @ is (A, )-invariant.

Necessity. Suppose @ is (A, )-invariant. Then there exists an open dense
submanifold N1 of M, and on N1 we have adA@_@+ and adB,_@ for
i=l,...,m. Let a=max{dim(x)lxeNx}, and set N2={xNldimension
N (x) a }. Similarly we let / max {dim (N (x) + (x))lx e N2} and pick a minimal
subset {Bh,...,BIq} of {B1,’",Bm} such that the dimension of (x)+
span {nil(x)," BI,(X)} is / for some x e N2. We now let Mo
{xeN21dimension (@(x)+span{Bl(X),...,Bl,(X)})=}. It follows from the real
analyticity of that Mo is an open and dense submanifold of N and hence of M.
Fix xoMo. Now choose an" open neighborhood q/o of Xo in Mo and a
coordinate map &(x)=(xl(x),.", xn(x)): q/oR" such that &(Xo)= (0, 0) and
{O/OX1, ", O/OXa} span @ on q/0.

That such a coordinate system exists is a consequence of the local version of
Frobenius’ Theorem (cf. [4]). Since adA@

_
+, and Xi =O/Oxi @ on q/o for

1, 2,. ., a, it follows that

q

(3) adAXi h/.+ y,.
/---1 1=1

where h and gi are unique functions in C (o) for 1,..., a. To complete the proof
we must find k 1,. ., km C (//o) with the property that on q/o,

ad(A+El kai)
,

or equivalently, for 1, 2,. , a,

ad(A+E’__ kiBi) Xi .
Computing this Lie bracket we have the condition

adA Xi + E ki ads, Xi E (Xk)Bi .
]=1 ]=1

BWe know from (3) that on q/o, adAXi--’]=lgj lj
, and since adtjXi this

condition becomes

q

Y (Xki)Bi- Y gi.B, e for 1, 2, , a.
j=l j=l

Letting certain of the ki’s be identically zero, the proof comes down to finding
kl, k, C (q/o) such that

q

Y (Xik, gi) @ fori=l,...
=1
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Since BI1, Blq : it suffices to find kli’S such that

Xikt gl. forj=l,...,qandi=l,...,a,

and the existence of the kit’s depends on the following fact.
CLAIM.

(4) Xrg=Xsg for l <-j<-_q and l <-_r,s<-a.

To verify this we apply adxr to both sides of (3). Since adxr Xs 0 and adB, Xr @, we
find that

q q

adx adA Xs , (Xrh)X + (Xrgi)Bti + , gj adxB
j= /=1 i=1

q

j=l i=1

for some p C (go). Similarly,

adxs adA Xr tXi + E (Xsg)Bl,,
i=1

for some t C (//o). Using the Jacobi identity, we have

adx, adA X,. EEX, A], X,. + [A, [X,, Xr]]

[Xr, [A, Xs ]] adx adA Xs,

and thus (4) is established.
We conclude this proof by constructing kl CW(qlo), with the property that

Xk gj for 1,..., a and/" 1,..., q. For convenience we consider the case
where ] 1 and let f kg. Using our chart (ago, b) we can consider Xo to be the origin 0
in R , and shrinking a//o if necessary we can treat ago as an open ball in R centered at
the origin. Thus we must find f such that

Xlf= 3f
3X1

g{’

X2f =_3f 2

OX2
gl,

Xf g on o.OX

The obvious candidate is
f(0,. 0, X/l,. xn) =0 and

obtained by integration, and

1

xn) dtf(Xl,""", Xa, Xa+l,’’", Xn)-- g(t, 0, 0, Xa+l,

x2

t, 0," 0, Xa+l-}- g21(Xl, "’, ,... x, dt

we set

x
(x x t,’’’ x.)dt.+ gl 1, -1,
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Using (4) and the fundamental theorem of calculus it is easy to verify that Of/Oxi gx for
/" 1,..., a, which completes the proof.

For linear systems (2) Wonham has introduced the notion of the supremal
(A, B)-invariant subspace of a given subspace 6e of R n. If C" R R is the output map
of the linear system (2), then V:, the suprernal (A, B)-invariant subspace of ker C, is the
subspace of R which is relevant to the solution of the disturbance decoupling problem
[5]. We now present a generalization of this notion for nonlinear systems, and use these
ideas to study the nonlinear disturbance decoupling problem in 3.

Consider the nonlinear system (1) with state space M, and let @ be a real analytic
involutive distribution on M. An (A, )-invariant distribution @*

_
@ is called maxi-

mal if for all (A, )-invariant distributions
_
@ we have @

_
9*.

THEOREM 2.3. Let@ be a real analytic involutive distribution on M. Then there exists
a unique maximal (A, )-invariant distribution @* on Msuch that @*

_
@.

Proof. Let * denote the subset of V(M) consisting of those vector fields
X V(M) which belongs to an (A, )-invariant distribution contained in 9. That is,
X 7/’* if and only if there exists an (A, )-invariant distribution @x @ with X @x.
Since is involutive, Lemma 2.1 implies that V* is a subspace of V(M). Consider the
distribution @*’x 7/’*(x) on M. By construction @* contains every (A, )-invariant
distribution on M and is a real analytic distribution. To complete the proof we must
show that @* is involutive and (A, )-invariant. Choose X, Y 9*. Then locally

i=10i(x)Xi and Y i [Ji(X) r/, where Xi, Yi 7/’* by the definition of @*, and
the functions ai,/i are defined locally. Since X1, , X, are each members of (A, )-
invariant distributions on M, Lemma 2.1 implies that X belongs to an (A, )-invariant
distribution @x on/14, and the same results holds for Y. Invoking Lemma 2.1 again, we
see that [X, Y] @Ix. Yl, an (A, )-invariant distribution on M, hence 9" is involutive.
Finally, if X9* we know that X@x_@*, where adAX_@x+ and
ads,Xx on an open dense submanifold M0 of M; thus ads, X@*,
adAX * + on M0, which implies that 9" is (A, )-invariant. This completes the
proof.

We conclude this section by presenting the nonlinear system generalization of the
supremal (A, B)-invariant subspace of ker C which is at the heart of a number of linear
systems results on disturbance decoupling.

Let C"M R denote the real analytic output map for the nonlinear system (1).
Set Vc {X ?/’(M)IXC 0}. Clearly c is a Lie subalgebra of V(M), and thus the
distribution

i’s real analytic and involutive. Using Theorem 2.3 there exists a unique maximal
(A, N)-invariant distribution @ contained in c.

Thus @: is the unique maximal (A, )-invariant distribution @ with the property
that XC 0 for all X 9. For linear systems the "flat" distribution @:" x - 7#: has the
property that for all X @-, X(x) v 7/’, and XC CX(x) Cv 0 as v ker C.
Thus

in the linear case.

3. Disturbance decoupling. The disturbance decoupling problem for linear
systems involves changing the system dynamics by linear feedback so that a disturbance
which drives the system has no effect on the output. In the nonlinear case we consider
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the system

(5)

2(t)=A(x(t))+ Y’. ui(t)Bi(x(t))+ vi(t)Di(x(t)),
i=1 i=1

y(t)=C(x(t)),

xm,

where M is a real analytic manifold, C"M R is real analytic, A, Bi, Dj e V(M), and
ui, vj are admissible controls in U. Here u (ul,’", urn) is an input vector, and
v (Vl," ’, Vr) represents the effect of a disturbance. The definition for (A, )-
invariance for (5) is unchanged from the definition given in 2.

DEFINITION. The system (5) is said to be disturbance decoupled with respect to v and
y if

y(’, Xo, u, v)= y(., Xo, u, ),

for all Xo M and all admissible u, v, and
DEFINITION. Given the system (5), the Global Disturbance Decoupling Problem

(GDDP) is to find a nonlinear feedback law ui ui+ ki(x), where ki CW(M) for
1,.. , m, such that

2=(A(x)+ E ki(x)Bi(x))+ E uiBi(x)+ viDi(x),
i--1 i=1 i=1

y=C(x),

is disturbance decoupled with respect to v and y.
The Local Disturbance Decoupling Problem (LDDP) is to find an open ,dense

submanifold Mo of M with the property that for all xoeMo there exists an open
neighborhood o of Xo in Mo and kl,’", k CW(o), such that

.i (A(x)+ 2 ki(x)Bi(x))+ E uiBi(x)+ viDi(x), x e o,
i=1 i=1 i=1

y C(x);

is disturbance decoupled with respect to v and y.
For time-invariant linear systems (2) Wonham [5], [6] considers the Global

Disturbance Decoupling Problem where Y= viDi(x)= Dv for a constant n r matrix
D and where k(x),..., k,,(x) are restricted to the class of linear mappings from
into R. He shows that this disturbance decoupling problem can be solved if and only if
the range space of D is contained in the supremal (A, B)-invariant subspace *c of the
kernel of the linear output map C. This result can be stated as follows: the above
disturbance decoupling problem can be solved if and only if the constant vector fields
D1, D:, Dr described by the columns of D belong to the "fiat" distribution x -> 7/’,
denoted by t:. The obvious generalization to the nonlinear case is to assert that the
GDDP can be solved if and only if Da,... ,DrG*c, where , is the maximal
distribution described in the previous section. Example 1 shows that this obvious
generalization is not valid globally, but is valid locally. This is in contrast to the linear
case, where for ka, ., k,, linear the GDDP and LDDP are equivalent. The following
theorem shows that the role played by *c in the LDDP is analogous to the role played
by in studying disturbance decoupling in the linear case.

THeOReM 3.1. For the nonlinear system (5) let denote the unique maximal
(A, 3)-invariant distribution on M with XC 0 ]’or all X . Then the LDDP is
solvable if and only if D1, Dr *C



(A, )-INVARIANT DISTRIBUTIONS 9

We delay the proof of Theorem 3.1 to establish the following technical lemma.
LEMMA 3.2. Suppose thatD1, , Dr V(M), kl, , km C (’l[), where ll is an

open subsetofM, (x) A(x) + i=1 ki(x)ni(x), and C"M-n is the outputmapforthe
system (5). Let ou denote the ada and adB1, , adB.-invariant involutive distribution
on 71 generated by D1, , Dr, and suppose thatXC 0 on all for allX u. Then there
exists an (A, 3)-invariant distribution @ onMwith the property thatD1, , Dr and
for all X @, XC 0 on M.

Proof (Lemma 3.2.). Suppose a//_M and kl,..., k,, C () satisfy the hypo-
theses of this lemma. Then Lemma 2.2 implies that @z is an (A, )-invariant
distribution on q/. Suppose we can construct an (A, B)-invariant distribution @ on M
which extends @ ou to all of M and with D1, , Dr @. Then the restriction of
is 0, which meansXC 0 on a//forX e , and by real analyticity XC 0 on M, which
will complete the proof.

Before constructing the extension @ of@ we construct two special distributions.
Shrinking o// if necessary and relabeling B1,’",B,, we can assume that
{Bl(x),". ,Bq(x)} are linearly independent on 0-// and span{Bl(X),... ,B,(x)}=
(x) span {Bl(x),’’’, Bq(x)} for all x e q/. Shrinking q/ again if necessary, we can
choose E1,"’,E,eV(M) such that (dC)Ei=EiC=O for i=l,...,p;
{B, , Bq, E, , Ep} are linearly independent on 07/; and

span {Bl(x), ", B,(x), El(X), ", Ep(x)} (x) + ker dCx

for all x 0//. Let Mo {x 6 M[{BI(x),. Bq(x), El(X), Ep(x)} are linearly
independent}. Then Mo is an open and dense submanifold ofM as a consequence of the
real analyticity of the vector fields. Using the fact that any real analytic manifold can be
embedded in R for same s > 0 (cf. [2]) we can give M (and Mo) the structure of a real
analytic Riemmanian manifold by using the standard inner product (.,.) on R to
induce a Riemannian structure on M (thus (.,.)x (.,.) is an inner product on T (M)
for all x M). Now S(x)= {ker dC + (x)} is a distribution on M, and on Mo

5e(x) span {Bl(x),..., B,(x), El(x),.’., Ep(x)}

is a (q +p)-dimensional real analytic distribution. We define the (n-p-q)-dimen-
sional distribution 5e- on Mo by

+/-(x) {v r,(M)l(v, w) 0 for all w (x)}.

We now begin our construction of a globally defined (A, )-invariant distribution
which extends @0u. By definition @0u is the adA and adB,-invariant involutive

distribution generated by D, , D, We have shrunk q/and relabeled Ba, ., B,, if
necessary, so that on q/, span {B1,’’’, B,,} =span {B1,’’’, Bq}; thus we can assume
that fi, A + Y’i=l klB1, and generate an adA and adB1, adq-invariant distribution
@0u. We will generate @ in stages.

Let 1 denote the adn, , adn,-invariant involutive distribution generated from
Vx," Dr. Set @x[ou. Clearly @ extends to a distribution on M, but in general
@ will not be adA-invariant, so we let@ denote the distribution on q/spanned bythe
vector fields

{X, ada XIX 1}.

Since 1 extends @,@
_
@1, and at this stage our problem is to extend @2 to



10 R. M. HIRSCHORN

@z --- @1 where adA x 2 4- , and @2 is defined on M. Pick X . By definition,

adx X A + kB, adaX + 2 (k ad,X (Xk)B) ,
i=1 i=1

and since ad,X , we have

q

2=adAX- 2 (Xki)Bi .
i=1

Since N N and ZC 0 on for all Z , dC(adA X(x)-= (Xki)Bi(x)) 0
for all x e , and so adA X(x) ker dC + N(x) (x) for all x . This means that for
all Z , (ada X, Z)= 0 on , and hence by real analyticity, on Mo. In particular,
adaX(x) (x) for all x e Mo. From the definition of it follows that a1,’",, , q+p C (Mo), such that

q p

(6) adA X aiBi + aq+iEi on Mo.
i=1 i=1

We note that il Xki for 1,. ., q. In vector notation, adA X(x) Na(x), where
a =(al,’’ ’, ao+q) and Nx is a matrix whose columns are B,... ,Bq, Ea,...,E.
Using the pseudo-inverse for Nx, we have

a(x) (N’N)- *Nx adA X(X),

where N* is the transpose of N. Writing (N*N) as (1/det (N*N)x) adj (N*N), and
letting g(x)= det (N*N)x, we have

g(x)a(x) adj (N*N)xN adA X(x) on Mo.
The right-hand side of this equality is defined for all x e M, so that g(x)a (x) is defined on
all of M. Note that g(x)= 0 if and only if xMo, by the definition of Mo. Going back to
(6), we see that

q p

g(x) adA X(x)- E g(x)ai(x)Bi(x)= E g(x)aq+i(x)Ei(x)
i=1 i=1

ekerdCx.

SetX g(adA X-E= aBi)e V(M). By construction X} g e, and since g 0
on the distribution N2 on M spanned by the vector fields {X, X[X e N} has the
property that N2[ N and for X e x, adA X e N2 + on Mo (where g 0). Now in
general 2 is not adn,-invariant. Let 3 denote the adn, , adn,-invariant involutive
distribution on M generated by 2, and let N N3[. In general N will not be
adA-invariant, so we repeat the above procedure. Shrinking if necessary, we can
terminate the above process so that for some integer b > 0. Then adA N
o+N on Mo, an open dense submanifold of M, and adn, NoN0 on Mo by
construction. Setting No completes the proof.

Proof (Theorem 3.1). Sufficiency. Suppose D1,. , D e. Since is (A, )-
invariant, Lemma 2.2 shows that there exists an open dense submanifold Mo ofM such
that

adn,onMo fori=l,...,m,

and for all Xo e Mo there exists an open neighborhood o of Xo in Mo and kl, , km e
C (o) such that on o

C"
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Set (x):A(x)+i= ki(x)Bi(x). Thus @: is ad and adB,-invariant (i= 1,..., m)
on o, and hence D1, , Dr generate an adg and adB1, , adm-invariant, involu-
tive, and real analytic distribution @. In particular for all X @, XC 0 on a//o,
since YC 0 for all Y s @*c. We now show that

2 =A(x)+ 2 uiBi(x)+ IAiDi(x), x o,
i=1 i=1

y C(x),

is disturbance decoupled with respect to v and y. Since Xo can be any point in Mo, this
will complete the proof.

Let $ V//o be any initial state, let u be any control, and v any disturbance vector.
We must show that y (., $, u, v) is independent of our choice of v. For sufficiently small,
u and v are real analytic, and differentiating with respect to we have

d--Y(t)=Y(1)(t)=C(x(t)) + 2 uiBiC(x(t))+ viDiC(x(t)).
i=l i=l

Since Di , we have DiC --0 on o, and

d
dt2Y(t) y(2)(t)

2C(x(t)) + uiBiC(x(t)) + fiBiC(x(t))
i=1 i=1

+ 2 uiaBiC(x(t))+ i 2 uiviDiBiC(x(t)).
i=1 i=1 i=l

We note that adaDi , and thus (BgDi-DiBg)C =0. Since DiC =0, we see that

DiBiC =0. Thus both y()(O) and y(2)(O) are independent of v. A straightforward
ma IoBvC equal 0induction argument shows that terms of the form DiAqBi

because Di 6 , an ad and adn,-invariant distribution with XC 0 for all X . A
second induction shows that y(3)(0), y(4)(0),""" are all independent of v. Since y(0)
c(Y) we have shown that the Taylor coefficients for y(t, , u, v) are independent of v.
This completes one half of our proof.

Necessity. Suppose that the LDDP is solvable. To show that Da,.. , D 6, we
will show that {D1,""", D} is contained in an (A, )-invariant distribution with
XC 0 for all X . Since this implies that , the maximal such (A, )-invariant
distribution, the proof will be complete.

Using Lemma 3.2 we can reduce the problem to finding an open neighborhood
M and kl,’", km CW(M) such that the ada and adn,-invariant involutive

distribution 0 on generated by D1, Dr has the property thatXC 0 on for all

x0 (here (x)=A(x)+i=aki(x)Bi(x)). Since XC=YC=O implies that
[X, Y]C 0, it is only necessary to check that

lp mp(7) ad adB,, ad adn,o DiC 0 on

forliim;la, ml,... ,Ip, mpO;p=O, 1, 2,... ;and] 1,..., r. It is clear that (7)
is satisfied if we can verify that

lp(8) ad, adx,o DiC 0 on

forf=l,...,r; l,...,lp=>0; p=0,1,2,...; and Xq=+mi=xciBi, where ci--
(c,. ., c?) is contained in a neighborhood of the origin in R for 1,..., p.
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We are assuming that the LDDP is solvable. Thus there exists an open dense
submanifold Mo of M such that for any Y Mo there is an open neighborhood
y c__ Mo and ki C (), such that if (x) A (x) + Y.km= ki(x)Bi(x) then the system

2 =A](x)+ E uiBi(x)+ viDe(x), xall,
i=1 i=1

y =C(x)

is disturbance decoupled with respect to v (Vl, ’, vr) and y. Thus

(9) y(’, Xo, u, v)= y(’, Xo, u, 5)

for all xo e R and for all admissible inputs u and disturbances v, 5. To complete our
proof it suffices to show that condition (8) holds on

Pick xoe o//. If we set u u,, 0, the reachable set for the system 2
(x)+= vD(x);x(O)=xo at time is 5(Xo), which has a nonempty interior in
I(o, A Xo), the maximal integral manifold for the distribution generated by o, the
smallest Lie subalgebra of V(M) containing {Di, adA D, ad D,...} (this well-known
result is due to Sussmann and Jurdevic [3]). Thus we can choose an admissible control vo
and time to> 0 such that x x(to, xo, O, vo) is in the interior of Yto(Xo), and so there
exists 6 > 0 such that for Is < and j 1, , r,

(Dj)s X,o ,o(Xo).
This means that for each s (-6, 6) there exists a control vs such that

(10) X(to, Xo, O, v) (Dj) X,o.

From (9) we know that C(x(to, Xo, O, v)) C(x(to, Xo, O, Vo)) for Isl < e, or equivalently
that

C((Di) X,o) C(x,o) for Is[ < e.

Let Cl, c2, , cp e 1" be vectors in R" of length less than or equal to e, and let

0 if 0 _-< _-< to,

Ca if to < =< ta,
u(t)

cp if t,_a < N v,

Vo(t) if 0_-< t_-< to,
v(t)=

0 if to<t,

vs(t) ifO<-t_-<to,
5(t) [0 if to < t,

for some partition 0 < to < ta <" < t. Thus u, v, e are admissible controls and for
to and tl sufficiently small it follows from (9) that

(11) C(x(t, Xo, U,V))=C(x(t, Xo, U,g)) for 0<- t_-< t.
Using (10) and the fact that u is a piecewise constant control, we see that

x(t, xo, u, v) X; x,C x; X,o

and

x(t,, Xo, u, 5)=Xc" ,
t,, Xt (Di) Xto,
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where Xc + -’,i=1 c}Bi E V(M). In particular,

x(tp, Xo, u, ) X X (Di)s XC4, XC4p X; Xt,Cl Xto
CpX;; X, (Di), X_,I X_,, x(t, Xo, u, v),

and (11) implies that

(12) C(x(t,Xo, u, v)) C(X,C2 X (Di) c,X_, X_, x(t, xou, v)).

If we vary x0 in , we may find that the curves x (., Xo, u, v) or x (., Xo, u, g) leave when
[0, tv ]. To avoid this we choose tv and e sufficiently small and choose a subset

so that for all Xoe,x(t, XoU, V) and x(t, Xo, U,g) for t[0, tv]. Let
{x(tv, Xo, u, v)lx }. We now choose ea >0 so that the intersection of all
with Id- tl < e is a nonempty open set . It follows from (12) that for all x e , an open
subset of M,

C(x) C(X]; X] (Di) cp

X-d x) for Idg- ti[ < e

We differentiate both sides of this expression and set s 0 to obtain

dXaaDi(X_al c0 dCx (dXS; X-d,’X)) forx.

Taking a Taylor series expansion we have

Cl C1 (-dl)/’ 1, D(z)dXdlDl(X_dl z) adx,
11=0 11

and repeating this p times, we obtain

0 dC, 2 2 2
(-da)q (-dp) Iv

adx adx,Di(x)l’
.=0 ,_,=0 ,=o l!. l!

for all x and for all ]d- ti[ < e . Varying the di’s we conclude that

dC, ad,.., ad Di(x)= 0 on ,
or

ad,...adDiC=0 one,
for l, , lp 0; ] 1, , r; and c, , cp sufficiently near to 0 e R (in an e-ball
centered at 0). The above equality on implies that (8) holds on by real analyticity
for our fixed choice of p. Varying p and repeating the above argument establishes (8)
and 6ompletes the proof.

Remark. It is natural to compare Theorem 3.1 with Wonham’s results [5] for the
time-invariant system Ax +Bu + Dv y Cx, or equivalently
Ax +i=l uiBi +il viDi; Y Cx, where B, D are the columns of B and D. In [5] it is
shown that there exists a linear feedback law which solves the GDDP if and only if
D,..., Dr , the supremal (A, B)-invariant subspace of ker C, or equivalently
DI,’’" ,Dr belong to the "flat" distribution . where .(x)= . Of course this
means that if DI,"" ,Dr@, then the LDDP is solvable; hence . as a
consequence of Theorem 3.1. Conversely, if D1, , Dr , then Theorem 3.1
implies that the LDDP is solvable. It is natural to conjecture that if a constant vector
field De then De., and hence there exists a globally defined and linear
feedback law which solves the GDDP. The following theorem shows that this is the
case.
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THEOREM 3.3. Let @*c denote the maximal (A, 3)-invariant distribution associated
with the time-&variant linear system

2 Ax + Bu, x R ,
y Cx,

and let. denote the "fiat" distribution generated by the subspace. Then. @*o In
particular, if the LDDP is solvable for the time-invariant linear system

2 Ax + Bu + Dr, x R ,
y Cx,

where B is an n x m matrix andD an n x r matrix, then there exists a linearfeedback law
which solves the GDDP.

Proof. Clearly @, c @*c, so it suffices to show that if X @: is a real analytic vector
field, then X(x) @,(x)= F*c for all x M. As a consequence of real analyticity, it
suffices to show that X(x) 7/’ for all x in some open neighborhood in M. Using
Lemma 2.2, we choose a neighborhood U

_
M and k,. ., km C(U), such that on

u,
ad(A+27’=1 kibi) C :gC

Here bl,’" ,bin are the m columns of the matrix B. Set (x)=Ax+Yi=l ki(x)bi,
so that adz @*c c_ @*o Since X@, we see that on U, ad.X=
adAX-Y.i=l (Xki)bi+2i: ki adb, Xe@*c, and (A, 3)-invariance implies that
adb, X e. Thus

(13) adAX= Y alibi+Dx,
i=1

where ali(X)=-(Xki)(x)e Cw(u) and D1 e @-. Applying adz to adA X, we obtain

adz adAX A + kibi, adA ad X- Y. (adA Xki)bi + , ki[bi, adA X],
i=1 i=1 i=1

and from (13) we see that

adA adA X ad,i alibi q- ad,i D1
i=1

=ada Y axibi- (alibiki)bi+ ki bi, axibi +ad,4Dx
i=l ]=1 i=1 i=1

i=IE (Aa li)bi +
i=1

y" a li adA bi . i=lY" (a libiki) bi

+ 2 ki[bi, adAX]-E ki[bi, Dx]+adADx.
i=l i=l

We now use the fact that [bi, D1]*c and adADx, and set D2
-i=1 ki[&, D1]+ ad. D1 e @*o Equating the above expressions for ada adA X we see
that

adX Y. adA Xki + Aail 4- Y. a libiki bi + all adA bi + D2,
/=1
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or

(14) ad,X= a2ibi+ aliadAbi+D:z,
i=1 i=1

where a:i ada Xki +Aai+= a(bki). This process can be repeated by applying
ad to both sides of (14), and in this way one gets a sequence of equalities of the form

ada X a ibi + D,
i=1

(15)

adX a:zibi + all ad, bi at- D.,
i=1 i=1

adX alibi t- {al-l,i at- Aal-2,i -t--. -t- AI-2ali}bi
i=1 i=1

-t- {al_2,i+Aal_3,i-t-’’ .+Al-3ali} ad, bg+...+ all ad-1 bi-t-Dl,
i=1 i=1

where D1, D2, @:. Since ZC 0 for all Z e @:, it follows that ada XC

-’ ira__ alibiC+D1C m a ibiC, and thus (AX XA)C _." a ibiC. We note thati=l i=l

XC =-- 0 as X @*c, so that

XACq- alibiC=O on U.
i=1

Similarly adA XC (A2X-2AXA +XA2)C -2A(XAC) +XA2C, and using (15),
the above expression for XAC, and adAbi=-Abi, we find that XA:C+

i=1 (2Aali- a2i)biC +m aliAbiC 0 If BI(X) --,rni= all (x)bi and Be(x)i=1

i% (2Aali(x)- a:zi(x))bi, then

XAC(x) + CB(x) CAX(x) + CB(x) O,

and CAX(x) + CABs(x) + CB:Z(x) 0 on U. It is then straightforward to show that
there exist vector fields B3, B4, Bs, B such that for 1, 2, ,

CAIX(x)+CA-IB(x)+...+CBl(x)=O on U.

Our task is to show that for each x U, X(x) 7/’. In [5] and [6] it is shown that
c c//.(r), where r =dim ker C and o//.0)=ker C, 7/’(i)= [/’(i-)l’lA-(l3 t- c//,(i-1)). In
other words

7/’ {v]Cv 0, CAr + CBI 0, CAv + CAB + CB:z 0,

, CA rv + CAr-B +. + CBr 0

for some B, , Br in the span of {b, , b,}};

hence X(x)e 7/’ for all x e U and the proof is complete

4. Examples
Example 1. This example shows that the dimension of an (A, )-invariant

distribution need not be constant. We find @, point out an obstruction to obtaining
a global real analytic feedback law to solve the GDDP, and find a local feedback
law to solve the LDDP.
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Consider the system

2=A(x)+uB(x), x R3,
y C(x),

where A(x)= A(Xl, x2, x3)= (x2, 0, 0), B(x)= (Xl, 0, 0), and C(x)= xl. Here ker C
{0} R 2. The distribution

ker C if xl 0,
@(x)=

{(0, 0)} R if x 0,

is clearly real analytic (@(x) span {X(x), Y(x)} for X(x) (0, 0, 1), Y(x) (0, xl, 0))
and involutive.

CLAIM. @ is (A, t)-invariant.
To show this we must find an open dense submanifold Mo of R 3 such that

adA
_

+ and adB @ c_ @ on Mo. Set Mo R 3 {X IX 0}. Thus R {(0, 0)}
on Mo and (@+)(x)=R3; hence adA@___@+ on Mo. Now @=
span {X, Y}, adB X(x) 0, and adn Y(x) (0, Xl, 0) e @(x), so that adn @

_
@ on Mo,

which shows that @ is (A, N)-invariant.
We remark that dim @(x) is 2 if x Mo and 1 if x Mo. Since any real analytic

involutive distribution with adA @
_
@ + and adn @

_
@ on some open dense sub-

manifold is (A, )-invariant, it follows that x - ker C {0} x R 2 is an (A, )-invariant
distribution, and thus @*c(X) ker C. From Theorem 3.1 we know that for the system

2 A(x) + uB(x)+ vD(x),

y C(x),

where A, B, C are as above, the LDDP is solvable if and only if D s @,. In particular, if
D(x) (0, 1, 0) the LDDP is solvable. To show that the GDDP cannot be solved we
must show that there exists no k C (R 3) such that

2 [A(x)+ k(x)B(x)]+ uB(x)+ vD(x),
(*)

y =C(x)

has the property that y (., Xo, u, v) y (., Xo, u, g) for all admissible u, v, g U and for
all xoR 3. Let (x)=A(x)+k(x)B(x)=(x2+k(X)Xl, 0,0), and let o be the Lie
algebra of vector fields generated by {D, adA D,...}. Then x o(X) defines a real
analytic involutive distribution on R 3, and from the controllability results of Sussmann
and Jurdjevic [3] we know that the subset ,(xo) {x(t, Xo, O, v)lv U} has a nonempty
interior in the integral manifold I(o, t" Xo). Suppose there exists k C (R 3) such
that y(t, Xo, 0, v)= y(t, Xo, 0, 0) for all v e U or C(x(t,Xo, O, v))= C(At" Xo). Then

(t(Xo)) C(At
and hence

Thus if X e o,
C(I(.O, At" XO))’-C(At Xo).

C(Xs At" Xo) C(At Xo) for all s,

and differentiating with respect to s and setting s 0, we find that

XC(At Xo) O.
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Since Xo is arbitrary, XC 0 for all X o. In particular, adA DC 0 on M. Now

ad,i D (x dDx(x d*xD(x
ok ok ok

lo o -oxax I:l0 0 0 0 0 0
0 0 0 0 0 0

1
ok

X
Ox2
0

0

and so

adA DC(x) dC ado. D(x) [1 0 O]

The condition ad,i DC 0 comes down to

1
ok

Ox2
0
0

ok
-1

OX2

1

OX2 Xl

or k(x)=-(x2/xl)+a for some constant a. Since k is not defined for all x R3 (in
particular, when X 0, x2 # 0) there can be no solution to the GDDP. On the other
hand, if we take Mo- R 3 "{XlXl 0} then k(x)= -XE/Xl is defined on Mo, and it is now
easy to show that on Mo the system

2=[A(x)+k(x)B(x)]+uB(x)+vD(x), xsMo,

y =C(x)

is disturbance decoupled with respect to v and y. Here A(x)+k(x)B(x)=
(x2, 0, 0) + (-XE/Xl)(Xl, 0, 0) (0, 0, 0), and the state equation is 2 (UXl, v, 0). If Xo
(AI, A2, Aa) eMo, then AI#0 and Xa(t)-A3, XE(t)-Iv(r)dr/A2, x-
A exp ( u(’) dr), and y(t, Xo, u, v)= Xl(t)=A1 exp (I u(r) dr), which is independent
of v as required.

Example 2. In this example a system for which the LDDP is not solvable is
exhibited. Consider the system

2=A(x)+uB(x)+u2B2(x), xM,

y C(x),

where M={(xI, x2, x3)R3[xIO}, A(x)=(O,xx2, x2), BI(X)-(O, xI, 0), B2(x)
(xxe x2, 0, --x3eX2), and C(x) (x2, XlX2X3), a map from M into R 2. We now show that

@*c is the trivial distribution x - {0} c_ T (M); hence by Theorem 3.1 no disturbance can
be locally decoupled from the output.

Suppose X N:. Our task is to show that X must be the zero vector field. By
definition XC 0 and adAX e N*c + on an open dense submanifold Mo of M. In
particular,

adaX Y+Z,
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where YC =0 (Y @:, hence YC =0) and Z Y3. Suppose we write X as X(x)=
(e(x), f(x), g(x)). Then XC 0 becomes

F
dC,,X(x) I

LX2X3 XlX3 x
[_g(x

X2x3e(x)+XlX3f(X)+XIX2g(x)

so that f(x)=0 and x3e(x)=-xlg(x) if x20. Thus restricting X to M1
{x M[xz 0}, we know that X(x) (e(x), O, -(x3/xl)e(x)) for some e C (MI), and
thus

0e 0eOe (x) + x2 (x), -x2e(x) --X3X2 (X)adAX(X)= xlx2
Ox2 Ox3 Ox2

X2 X3X2 0e
e(x) (x)

Xl Xl OX3

Now adAX Y +Z on M1, where YC 0 and Z Y3. Thus Z(x)
a(x)Bl(x)+13(x)Bz(x) for some a, B CW(M1), and Y(x)= (h(x), O,-(x3/x)h(x)) for
some h C (M1) from the calculations completed above. In vector notation, adA X
Z + Y becomes

0e x2

-x3x20x2 x

Oe
XlX2 -[" X2

OX2
-xze(x)

---e(x)

Oe

Ox3

X3X2 0e

Xl OX3

[_-(x)x3eX2j -(x3/xl)h(x

We note that the vector field on the right-hand side has the property that (X3) X the first
component (-xl) x the third component, and thus adA X has this property. In parti-
cular,

Oe Oe Oe Oe
X3XlX2 nt- X3X2 XlX2X3 -[- x2e(x) + X2X3

0X3OX2 OX3 OX2

and so on M1, xze (x) 0, which implies that e (x) 0 on M1, and by real analyticity e 0
on M. Thus

X(x) (0, 0, 0), as required.

Acknowledgment. The author wishes to thank the anonymous referee for his
contributions to the proof of Theorem 3.3.
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DETECTABILITY AND STABILIZABILITY OF TIME-VARYING
DISCRETE-TIME LINEAR SYSTEMS*

B. D. O. ANDERSONt AND J. B. MOOREt

Abstract. The concepts of detectability and stabilizability are explored for time-varying systems. We
study duality, invariance under feedback, an extended version of the lemma of Lyapunov, existence of
stabilizing feedback laws, linear quadratic filtering and control, and the existence of approximate canonical
forms.

1. Introduction. The dual concepts of observability and reachability for linear
finite-dimensional time-invariant systems have found application in a variety of filtering
and control problems. For example, signal model observability is a sufficient condition
for an optimal minimum variance filter (Kalman filter) to exist, and signal model
controllability ensures its asymptotic stabilitymat least in the case of linear time-
invariant continuous time, finite dimensional signal models. See [ll for a leisurely
exposition. Dual results hold for the linear-quadratic optimal control problem.
Moreover, there have been at least two significant generalizations of these results. First,
retaining the time-invariance assumption, the reachability and observability hypoth-
eses have been weakened to stabilizability and detectability, and the results are still
valid, [2-1, [3]. Second, time-variable problems have been considered, and with the
imposition of a uniformity constraint in the now time-varying reachability and observ-
ability hypotheses, the r,esults extend to the time-varying situation [4]. For time-
varying systems one is tempted to avoid the weaker conditions of detectability and
stabilizability since the technical issues raised involve nontrivial generalizations of the
time-invariant results and on first glance appear formidable. However, the desirability
of extending known control and filtering results to important classes of time-varying
filtering and control problems is clear.

A lead has been taken in [5] with the introduction of definitions of detectability and
stabilizability for discrete-time, time-varying linear systems and some applications to
control and filtering problems. However an exploration of equivalent definitions and
properties such as duality and invariance under feedback is not attempted in [5-1.

In this paper, motivated by the lead given in [5-1, we explore a generalization of the
dual concepts of observability and controllability to linear, time-varying, discrete-time,
finite-dimensional systems.

Following definitions of the concepts of detectability and stabilizability in 2, we
indicate their formal duality, and establish two simple consequences. In 3, we show
the invariance of the properties under appropriate feedback, and in 4, we prove a
significant generalization of the lemma of Lyapunov, which is useful for studying the
stability of linear systems using quadratic Lyapunov functions. Section 5 considers
linear quadratic problems, and we prove one of the main results of the paper"
detectability and stabilizability are the key properties required to guarantee an
exponentially stable Kalman filter. We also show the equivalence of the definitions of
2 with the existence of stabilizing feedback laws of an appropriate form. Section 6

contains the concuding remarks.
Two general points can be noted. First, almost all the results are stated just for

detectable pairs, rather than detectable and stabilizable pairs. Given the duality

* Received by the editors August 24, 1979, and in revised form April 16, 1980. This work was supported
by the Australian Research Grants Committee.

-t Department of Electrical Engineering, University of Newcastle, New South Wales, 2308, Australia.
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established in the paper, there is no loss of generality. Second, the results are all stated
for discrete-time systems. We elected to work with discrete-time systems rather than
continuous-time systems because we were aware that, as illustrated by ideas in [6]-[9],
it is often harder to get the discrete-time result than the continuous-time result.
Particularly is this so when the discrete-time transition matrix can be singular. Of
course, for the continuous-time case, regularity conditions must be imposed and
techniques as in, for example, [12] exploited. In some cases, the continuous-time proofs
are likely to be harder.

2. Detectability definitions and some implications. Consider the linear finite-
dimensional state space system in discrete time

(2.1 a) xk / Fkx + Gu,

(2. lb) y =Hkx,

where Xk is the n-vector state, Uk is an input m-vector, Yk is an output p-vector, and Fg,
Gg, Hk are matrices of appropriate dimension. The state transition matrix is denoted
bk,l for k _->l where bg+l,g Fg and bg, qbk,k-aOg-,l.

The detectability definition we work with is a specialization of one in [5] for
finite-dimensional systems.

DEFINITION 2.1. The pair [Fg, Hk is uniformly detectable if there exist integers s,
->_ 0 and constants d, b with 0 <_- d < 1, 0 < b < c, such that whenever

(2.2)

for some : and k, then

(2.3) ’Mg+s,k >---- b’,
where

k/s

(2.4) Mk+s,k E [kHiHqi,k.
i=k

Remarks. 1. For time invariant systems, detectability definitions have been given
(see [3]) which require that the unstable modes of a system be observable. The above
definition is a time-varying version of this notion. In fact, the definition says roughly that
when a state trajectory is not fast decaying, i.e., (2.2) is satisfied, then that trajectory
must be observable, i.e., (2.3) holds. Conversely, trajectories which are not observed
with much output energy, i.e., those for which (2.3) fails, must be trajectories which
decay, i.e., (2.2) fails. Further justification of this remark is provided by Lemma 2.2.

2. Recall (see, e.g., [4]), that if [Fk, H is uniform with respect to observability, the
observability Gramian Mk/s.g satisfies (for some integer s, and constants/31,/32)

0 </1I <=Mk+s,k

This is clearly a sufficient condition for detectability as above. Notice, however that
there are no upper bounds in the detectability definition. It is not surprising therefore
that in most of the results to follow we impose upper bounds in Fk and Hk.

3. Without loss of generality, s => can be assumed in the above definition, since if
s < t, s can be replaced by t. Henceforth, we shall assume that s _-> t.

The second definition we give is that of uniform stabilizability. As argued following
the definition, the definition is related to that of detectability via a certain duality.
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DEFINITION 2.2. The pair [/k, (k is uniformly stabilizable if there exist integers s,
_-> 0 and constants d, b with 0 _-< d < 1, 0 < b < oo, such that whenever

(2.5) 114;+l,k+l-dll--> dllll
for some sx, k, then

(2.6) :’ I),_s:>- b":,
where , is the transition matrix associated with/ and

k

(2.7) Y,-= Z +I,+IGG+,+I.
i=k-s

Without loss of generality, s can be assumed.
Remark. In the time-invariant case, stabilizability is equivalent to the requirement

that any uncontrollable mode be asymptotically stable (see [3]). But as the name
suggests, stabilizability is also equivalent (but this must be proved) to the property that
there exists a stabilizing state feedback law. The first idea is reflected in the definition
above. The second will be taken up later.

The duality between detectability and stabilizability is taken up in the following

LEMMA 2.1. Make the definitions

(2.8)

Then

(a)
(b)
(c)

AtFk =F-k, H d_.

l)i,k ( -k+l,-i+l and Mk+s,k Y-,-k-s"
[1, Jk is uniformly stabilizable ifand only if [F, Hk is uniformly detectable.
x+l Fx is exponentially stable if and only if 2k+a 2 is exponentially
stable.

Proof is via direct calculation. Notice that use of a dual relationship of the form
Fk (/,)-1 is not suitable, requiring as it does the existence of the inverse. Use of this
second, rather unsatisfactory dual, appears to be behind many ideas of [8], [9].

We conclude the section by noting two simple consequences of the detectability
definitions. The first confirms the first remark following the definition. The second will
be used in a later section.

LEMMA 2.2. With [Fg, H] detectable and F bounded above, then for the system
(2.1) with a zero input,

H’kxk0 as k -cc=),llx[[O as k ee.

Proof (by contradiction). Assume there exists an Xo with H’x -. 0 as k oe, but
with Ilx]]- 0 as k - oe. Now if for all k_>-k for some k, ]]&+t,kx]] < dl]x]], then IIxll- 0
as k - oe. Thus there exists a sequence ki-oe with I]& ,+t.k,x,l[ >- dllx,ll defining the ki.
We can further assume that II/k,[[- 0, for if IIxi[[ - 0, as k ee, then as we now show,
[Ix[I- 0 as k - m which is a contradiction.

Let k e(ki, kg+l) but be otherwise arbitrary, and set k =kg+ta +fl, with a, fl
integers with fl < t. Then

Xk ( k,ki+to( ki+to,ki+t(o-l) (D ki+2t,k,+tX ki+t"

The first matrix in the product has bounded norm because F is bounded and
k (ki + ta) is bounded.
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From the definition then of the ki,

3"1d ll]xki+ tll
3"l 2d-llIxkil[

with 3"2 existing because of the bound on Fk. It readily follows that [[xk,[[ 0 implies
[[Xk[[-* 0 for all k. So we return to the assumption that IlXk,[[4" O.

Define a subsequence {/i} of the {ki} such that [[xt, ll> 3’3 for all/and some 3’3 > 0.
Now

IlO ,,+.,,x,, dllx,,[[,
and by detectability

IIx ,Ml,+s,l,X,,[I >= bllxl,[I > b,

However, from the definitions of Mli+s,l and assumptions on HkXk and uk,

[Ix ,Mli+s,liXli[[-- IlHlxlll --> 0 as li --> oo
1=

So we have a contradiction and the lemma is established.
LEMMA 2.3. Let[Fk, Hk] be detectable. Then [OFk, H] is detectable for 1 + e >- to > 1

and e > 0 sufficiently small.
Proof. Let a tilde denote quantities associated with g pFk and Hk. Now

Now choose p > 1 such that a7 =dp < 1, where d appears in the detectability definitions
for E&, H,]. Then 2]lll if and only if ]]&k+t,,[[ => dll:l]. Also

k+s+, Z 0
i=k

2(i--k) >Mki,kHiHi6 i,k +s,k"

Consequently, if j’Mk+s,k>:b’j, then also ’lk+s.k>--b’. Thus tying the above
results together we have that whenever then ’lk+,ktj>--’j as
required by the detectability definition. This establishes the lemma. []

Remarks. 1. As the proof shows, p can be taken as any number for which p td < 1, d
being the quantity appearing in the uniform detectability definition associated with
[Fk, H].

2. The above lemma is a special case of a more general result which is almost as
easily proved: if [F, H] is detectable, there exists e, depending on [F, Hk], such that
[if’k, #k] is detectable for all k, /-)k with I[Fk-ff’kll < e, [[Hk-l-ik]]<e.

3. Invariance under feedback. With [Fk, Hk denoting an open-loop system matrix
pair, there is interest in a closed-loop system matrix pair [Fk, H,] where Fk
F KH’.

LEMMA 3.1. The observability Gramians M. for the open-loop pair [F, Hk] and
M. for the closed-loop pair [F, H], whereF Fk KHg, bear the following relation
ship"

(3.1) MI ml k Hl kH l, k,HI,kCCHl,k,
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where

(3.2) ml,k [Hk ) tk + l,kHk+1 ,kHl],

(3.3) C

I 0 0
I

il
and denotes terms involving Fi, Ki, Hi, for i= k, k + 1 I. Moreover, with F, Ki, Hi
bounded, then for some positive constants c 1, 2,

(3.4)

Pro@ The relationship (3.1) follows by inductive arguments, the definitions of Ml,,,
and straightforward manipulations. The bounds (3.4) follow from a premultiplication
by H.k and postmultiplication by H,k of the inequalities,

0 < OllI <=/min(Ctkfk)I < Ctkfk < lmax(Ctkfk)I < a2I <

The above bounds are verified as follows. First,/max(Ctkfk) < tr(C,C) < ce2I for some
a2 < oe under the boundedness assumptions, and

Amin(Ctkfk) > Ic’ c l > Ileal a

for some
LEMMA 3.2. In the notation ofthe previous lemma, and with qb. the transition matrix

associated with the closed loop system matrix F F -KkH, then for all >- k,

(3.5) ’,k ll,k + [*]H,,,

where [.] denotes a matrix involving Fi, Ki, Hi for k, k + 1,. 1-1.
Proof. From straightforward manipulations.
We now have the following main result.
THZOREM 3.3. With F, H, and Kk bounded, and with F F-KH’, then

[F, Hk is uniformly detectable i and only i[ [F, H is uniformly detectable.
Proof. It clearly suffices to prove that under the boundedness conditions, [F, H]

uniformly detectable implies [Fk KH’, H uniformly detectable. Let s, t, d, b be as in
the uniform detectability definition applied to [F, H].

Under the boundedness assumptions, Lemma 3.2 yields

for some a3. Let c1 be as in Lemma 3.1, with k + s, and define

=min{alb, al(1-d2} 4\ 2ce3 ]
d d + ce 3

Notice that 1 d > 0. We shall show that s, t, d, b characterize the uniform detectability
of [F,, H].

Suppose that sC’M/s.ksc < bsC’sc. Using (3.4), we have

,f’M, +s,,j < j’tj <- blj’ tj,
01.1
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and also

Consequently,

or

IIH:+,.,4II (’Mt+t,l) 1/2 < (r’Mk+s,k:) 1/2

II& +t.,,ll < dllll +o41111,
IIg,,+,.,,ll < 1111.

Equivalently, [Fk, H] is uniformly detectable. E]
There are two useful corollaries to this theorem.
COROLLARY 3.4. A sufficient condition for the pair [F, H] to be uniformly

detectable is that there exist a bounded gain K such that the closed-loop system
k+ (Fk gkn )$k is exponentially stable.

Proof. IfF defines an exponentially stable system, [/, H is uniformly detectable
for any Hk. E]

Later in the paper, we shall show that the sufficiency condition just stated is in fact
also a necessity condition.

COROLLARY 3.5. With notation as above, the following quantity is feedback
invariant:

d inf [did [0, 1) and II+,,dll -> dllll implies

II’M+,dll -> bJll[2 for some b > 0].

Proof. Let K be a gain sequence, and let a l, a2 be constants defined in the
statement of Lemma 3.1 and the proof of Lemma 3.3. Take e > 0, arbitrary save that
d+ e < 1. Then for d d+ e/2, there exists b >0 such that [[b+t,sc[[>-d[[:[[ implies
[I"M,, +s.dll--> b I1112.

Without loss of generality, we may replace b by min (b, e2/(4ce3acel)). Then with d
referring to the uniform detectability definition applied to [F KkH’, HkI, the proof of
the theorem shows that we can take d with

[ {  (1-d 2] 1/2

min lb, 1\2@:) }
C3-< d +x/a b
411

Og 3 8<=d+e/2
/-7 2a3

-+- 8o

Consequently, inf aT-<_ inf d d. But also we can argue that inf d _-< inf d-, whence the
feedback invariance of d. F1

In case d 0, the result simply says that uniform observability is invariant utder
feedback. For d > 0, the quantity has the following interpretation. Consider trajectories
which are exactly, or approximately unobserved. Then they all decay at least as fast as
(d) 1/’ but they do not all decay faster. Feedback does not vary the conclusion, precisely
because the trajectories are unobserved.
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Finally in this section, we note that there are obvious duals of these results tied to
uniform stabilizability.

4. Lemma of Lyapunov. In this section, we attempt to parallel a result relevant to
estabishing stability. The continuous-time lemma of Lyapunov [10] is concerned with
the matrix equation PA +A’P -O with O > 0, linking positive definiteness of P with
asymptotic stability of Ax; relaxation of O > 0 is accomplished in [11], and a
time-varying version using uniform complete observability ideas can be found in [12]
for continuous time. A discrete-time statement applicable to the time-invariant case
can be found in, e.g., [13], w.hile a time-varying version parallel to [12] is easy to find.
Here, we aim to relax the observability assumption to detectability.

The following result is comparatively straightforward to obtain. We state it as a
lead-in to the more difficult time-varying result.

PROPOSrrlON 4.1. Let IF, HI be a detectable pair of constant matrices. Then the
equation P-F’PF HH’ has a unique solution P P’>= 0 if and only if xk+l Fxk is
asymptotically stable.

Proof. We use the characterization of detectability that Fw Aw, H’w 0 and
w 0 only if I 1< 1, ([13]). Suppose there exists P P’->_ 0. Let Fx Ax, x O. Then
0 <= x’*HH’x (1 -I 12)x’*ex. So 1[< 1, or [[-> 1 and also H’x O, contradicting
detectability. Conversely, if x,+x Fx is asymptotically stable,

P= , (F’)iHH’F
i=0

is well-defined, symmetric, and nonnegative definite, and satisfies the equation
P-F’PF- HH’. Uniqueness is easily obtained.

To obtain a time-varying generalization, consider the sequence IIk.N defined for
k=N,N-1, N-2,...,by

(4.1) F’k IIk+,NFk 1-Ik,N -HkH’ IIN,N O.

Evidently, for k _-< N- 1,
N-1

(4.2) rig,s= Y. 4}.kIt’H’4),k,
]=k

where (j,k has the usual association with Fk. We now have a parallel to one half of
Proposition 4.1.

LEMMA 4.2. With notation as above, suppose that Xk+ FkXk is exponentially stable
and Fk, Hk are bounded. Then

(4.3) Pk lim IIk.
Nx

exists as a bounded nonnegative definite symmetric matrix, it satisfies
(4.4) F’P+F Pk -HH’
for all k >-O, and {Pk} is the unique bounded sequence to do so.

Proof. All claims are clear, except perhaps for the last. Let {Qk} be a second
bounded sequence satisfying (4.4). Set Rk Pk- Qk. Then

F’R+,F Rk O,

whence

l +l,kRk+l(k +l,k Rk O.
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Letting oo, and using the exponential decay of 49 k +l,k and boundedness of Rk+t, gives
Rk =0. [’]

We now seek the converse to this result; i.e., we seek to establish exponential
stability, given (4.4). One might think that V(Xk, k) X’kPkXk could serve as a Lyapunov
function for Xk/l =FkXk. After all (4.4) would then imply V(Xk/I, k)-V(Xk, k)<=O.
One difficulty is that V(Xk, k) is not necessarily positive definite, and in fact it is easy to
construct examples where it fails to be positive definite; another difficulty is that the
monotone decreasing property of V along trajectories is not strict. Nevertheless we
have the following result:

THEOREM 4.2 (Extended lemma of Lyapunov). Suppose that [Fk, Hk is uniformly
detectable, that Fk and Hk are bounded, that there is a bounded nonnegative definite
symmetric matrix sequence Pk satisfying (4.4) on [ko, ). Then Xk+I FgXk is exponen-
tially stable.

Proof. We shall associate with Xk+I "-FkXk a "Lyapunov-like" function,

(4.5) V(Xk, k) x(Pk + eI)Xk,

for some e still to be determined. While V may not decrease at every step, we shall show
that over a larger number of steps than 1, it must strictly decrease.

Setting Vk V(Xk, k), we observe that

V, V+I XkHkHkXk + ex’(I -F.F)x.,

Two cases arise. Let d, b be the quantities of the uniform detectability definition.
Case 1. If II,,,/,.,,x,,ll>-dllx,,ll, then under the detectability assumption

x’,,Mk +s kX,Xk > bX’kXk, SO that

V’ V+s+ x’(Mk+s, + e)Xk --eX’&’+s+.,&+s+,kXk

>=[b + s(1-V)]x’x,

where y is an upper bound on I[b++l,b++l,]l, which exists by virtue of the
assumption of the boundedness of Fk.

Case 2. If IIb+t,,Xkll < dllxk[I, then

Vk Vk+, X’k(Mk+t-l.k + e )Xk eX’k4)’k+t.k4’ k+,.kXk
>= e (1 d2)x xk.

Hence if e is sufficiently small, there exists rt > 0 such that

max {Vk-- Vk+,, Vk--

where the existence of 6 follows from the bound on P.
This inequality shows that there is a subsequence { Vk,} Of { Vk}, depending on Xo

and with ith member Vk, where ki <=i(s + 1) irrespective of Xo, such that the
subsequence decays exponentially fast; i.e.,

Vk, <---- ab i,
for some a >0, 0< b < 1. Then because eX’Xk--<_ Vg, a subsequence
again depending on Xo, decays at least at the same rate.

We must now show that as a result, {llxll also decays exponentially fast. For
arbitrary k, there exists a greatest ki with

ki<=k < ki +s + 1.

Thus any Xk can be written as Xk tk,kiXki, where 0 <- k- ki <=S. Consequently



28 B. D. O. ANDERSON AND J. B. MOORE

[lbk.k, is bounded, and we have

IIxll < a ’be< a’b k,(s+l)-I < a,,(b,)k

where b’= b (s/1)-1 < 1 and a"= a’/(b’)s. This bound holds irrespective of the sequence
{ki} induced by the particular Xo, and exhibits the required exponential conver-
gence.. !-]

Remark. If (4.4) holds not over [ko, o) but over [ko, kl], we can still conclude the
existence of constants a > 0,/ [0, 1), independent of ko, k l, such that

for k0 --< k _-< _-< k by minor variation on the above argument. This remark is crucial in
establishing the dual of Lemma 4.2 and Theorem 4.3, the proof of which is otherwise
straightforward and is omitted. The dual will be of use in the next section.

THEOREM 4.3. Suppose that [/k, (k] is uniformly stabilizable, that and are
bounded, and that there is a bounded nonnegative definite matrix sequence k satisfying

(4.6)

on [ko, ). Then Xk+l Pkx is exponentially stable. Conversely, ifXk+l kXk is exponen-
tially stable, and k, rk are bounded, there exists a unique bounded nonnegative definite
matrix sequence k satisfying (4.6) on [ko, ).

5. Detectability, stabilizability and state estimation. Consider the problem of state
estimation for the signal process

(5.1)
Xk+l fkXk + akWk,

Yk HkXk q- tk.

Here, {wk}, {v} are independent, zero mean, white processes with E[ww’]=L
E[vv’] L (A nonunit covariance for w is absorbed in Gk and a nonunit covariance
for v is absorbed by scaling y and H,, so long as the covariance is nonsingular). We
assume that E[XoX’o] Po, E[x0] m, and x0, {w}, {v} are independent. Finally, we
assume Fk, G, and H are bounded.

The main results of the section are: [F, H] uniformly detectable is sufficient for
the optimal (Kalman filter) error covariance to be bounded. Furthermore, if [Fk, G is
uniformly stabilizable, the Kalman filter is exponentially stable. Uniform detectability
ot [F, H] is sufficient for there to exist a bounded sequence K such that Xk+a
(F KH’)x is exponentially stable.

LEMMA 5.1. With notation and assumptions as above, and with [F, Hk uniformly
detectable, there exists a state estimator producing a filtered state estimate for (5.1) with
bounded error covariance.

Proof. (By construction.) Let s, t, d, b have their usual meanings. By orthogonal
transformation of the state coordinate basis at each time instant, we may assume that
M+s. Mk+s+ -i- MZ+s.k where M,+s. => bI and M,+. < bL (The symbol
denotes direct sum).

Define the smoothed estimate

(52) "k+t[k+s )k+t[k{[ (Mlk+s’k)-I lks! [0 ] }&i,kHiYi d- klk+s-,0 k 0
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with initialization ili+s-t 0 for 0,. , t-- 1. The partitioning in the matrix multi-
k+s

plying klk+s-t is the same as that in the matrix multiplying ",k ti,kHiYi. NOW
Yi HOi,kXk +[*], where [,] is a bounded linear combination of w., vj,/" [k, k + s].
Consequently,

-1

k +tlk +s t k +t,k 0 0] [0Xk 31-M2k +s,k 0

or

0
k+tlk+s --Xk+t tk+t,k

0

Using the detectability definition and structure of Mk+s,k, it is easily seen that

4 /,, 0

Consequently, E[ll2k +ilk +s Xk/,ll=3 is bounded.
Now define 2 k +slk+ # k+,k +t2 k +ilk +. Then

k +slk +s Xk +s t k +s,k+t( k +tlk +s Xk +t) + [*],

and clearly the error covariance bound associated with the smoothed estimate yields a
bound for the filtered estimate error covariance. 71

The following is immediate by optimality.
COROLLARY 5.2. With notation and assumptions as above and with [Fk, Hk]

uniformly detectable, the (Kalman) filter error covariance ,klk and one-step predictor
error covariance E k+ l[k are bounded.

Now we couple in a stabilizability constraint to obtain exponential stability of the
Kalman filter.

THEOREM 5.3. With notation and assumptions as above, and with [Fk, Hk] detec-
table and [Fk, Gk] stabilizable, the Kalman filter is exponentially stable.

Proof. With Kk the Kalman filter gain, and with ’klk and ’k+llk the filtered and
one-step prediction error covariances, we have from [13], quoting only the equations
we need,

(5.3) Kk ,klkHk

and

(5.4) k+Ik (Fk KkH’ )E klk-l (Fk KkH’k )’ + GkKk][GkKk ]’.

The homogeneous equation associated with the one-step predictor is Xk+l--
(Fk--gkHk)Xk, and it is exponentially stable if and only if the filter equation is
exponentially stable. This is easily checked; a formal calculation can be found in [14].

By the assumptions and Corollary 5.2, Kk is bounded as is Ek+llk. By Theorem 4.3,
exponential stability follows if the pair [Fk- KkH’k ], [Gkgk] is uniformly stabilizable.
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This is easily established as follows:

[Fk, Gk is uniformly stabilizable

[Fk, [GkKk]] is uniformly stabilizable (by applying the definition)

[Fk + [GK
-H

[GKk]] is uniformly stabilizable

(applying invariance under feedback).

Now we have the converse to Corollary 3.4, which together with Corollary 3.4
shows the equivalence for bounded F, H of the detectability property and the
existence of an output-to-state feedback law providing exponential stability.

COROtAR 5.4. If [F, H] is uniformly detectable (and Fk, H are bounded),
them exists a bounded sequence K such that X+l (F-KkH’)x is exponentially
stable.

Proof. Consider the process (5.1) with G L Then [F, G] is stabilizable, and
Theorem 5.3 provides the result.

We can also consider the necessity of the detectability condition. Certainly,
detectability is necessary for there to be an exponentially stable estimator of the type

fk+llk Fkl-i +K(y-H’kI-I);

(this is effectively the content of Corollary 3.4). Hgwever, we can get a slightly sharper
result.

COROt.IAR 5.5. Consider the process (5.1) and associated assumptions, and with
[F, G uniiormly stabilizable. Suppose that the associated optimal filter error covariance
is bounded. Then [F, H] is uni]ormly detectable.

Proo] In (5.4), Zk+ll is bounded and the pair F-KH’, [GKk] is uniformly
stabilizable. By Theorem 4.3, x/1 (F KH’)x is exponentially stable, and Corol-
lary 3.4 then yields the result.

Remarks. 1. The main theorem of this section appeals to almost all the important
results of the preceding section. As well, it appeals to the suboptimal estimator
construction of Lemma 5.1, which is not trivial and considerably more complicated
than constructions which have been used in studying observable processes; see, e.g., [4],
14]. In particular, we were not able here to define an exponentially stabilizing feedback
law Kk simply in terms of the observability matrix M, as can be done in the observable
case, 14].

2. The corresponding regulator result of course follows by duality, though some
care has to be taken because of the fact that with the interval for which the filter is
studied being [0, oo), its dual is [-oe, 0), while we wish to study the regulator over (0,
The considerations of the remark preceding Theorem 4.3 can be applied to overcome
this difficulty. An alternative approach to the regulator problem is to show that
complete stabilizability implies the existence of a control yielding a bounded per-
formance index, to conclude then that the optimal index is bounded and achievable with
a linear feedback law, and to show under a detectability assumption that the closed-loop
is exponentially stable. The construction of the control yielding a bounded performance
index is not straightforward; the construction procedure in some way has to parallel the
construction of Lemma 5.1.

Finally, in this section, we illustrate that the feedback invariant d defines an
achievable bound on how stable we can make a closed-loop system via feedback.
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THEOREM 5.6. With Fk, ttk bounded and uniformly detectable, and with das defined
in Corollary 3.5, there exists a feedback law Kk such that all trajectories of Xk+l
(Fk KkH’k )xk decay at least as fast as ( + e)k for arbitrary e > O.

Proof. Define the detectability property of [Fk, Hk using d + e/2, b, t, and s, as we
are entitled to do. Choose so that pt(d + e) 1. Then [fFk, Hk is detectable, by Lemma
2.3 and the remark following the lemma. Find Kk so that xk+a (pFk-KH’)xk is
exponentially stable. Then choosing Kk p-IK, ensures that Xk+l (Fk -KkH’)xk
has the desired property.

Remarks. 1. The discussion following Corollary 3.5 makes it clear that we could not
obtain a feedback law Kk such that the closed-loop system trajectories decay as fast as
( e)k/’ for some e with 0 <_- e <= d.

2. As was noted in Remark 1 following Corollary 5.5, we are unable to define a
stabilizing gain sequence Kk simply in terms of the observability matrix associated with
a detectable pair [Fk, Hk ]. The construction given for the stabilizing gain sequence via
Corollary 5.4 has the potential disadvantage that Kk depends on Ft, HI for all =< k. This
is at least a "causal" ependence; when one considers the problem of constructing a
stabilizing seuence Kk for a stabilizable pair [/6k, (k], the disadvantage is that
depends on FI, at for all -> k. This leads one to consider whether or not there might be a
sequence dependent on a finite "window" only of [Fl, HI] or [JOt, tl]. Indeed there is.
We describe the detectable situation only. Following the idea of the proof of Theorem
5.6, the Kalman filter equations are solved forward in time with Fk replaced by
pFk, ,S-,0I-1 =/, Ok -/, save that at some set of times rl, r2, the choice of which is
described below, we replace the value of )2r, lr,_l predicted by the equations by
Er, lr,-1 =/, amounting to a reinitialization. This has the effect of causing K, and Kk for
k [ri, ri+l- 1] to depend on Fl, Hi for [ri, ri+l- 1], i.e., on no more than ri+l
values of Fk, Hk. The integers ri are chosen so that, with Ck.l the transition matrix
associated with Fk KkH, one has IIri+l.ri[[ < 1. Actually, a lengthy argument will show
that ri may be taken as ir for some appropriately large integer r. The upshot is the
desired exponential decay property.

6. Coordinate basis choice to display detectability. If IF, HI is a time-invariant
detectable pair, it is well known (see [3]) that if the coordinate basis is chosen
satisfactorily, then we can have

Fla 0 ] H’=[H 0],(6.1) F=
F21 F22’

with [Fla, Ha] observable and [Ai(F22)I < 1. We seek here a time-varying version of this
result.

Assume [Fk, Hk is detectable, and d, b, s, and have their usual meanings. We shall
take b here to be very small and assume also that, for some arbitrary but fixed k,

(a) Mk+s+l,k, Mk+s,k and Mk+s,k-a have precisely p eigenvalues less than b, and the
remaining eigenvalues much greater than b.

(b) By orthogonal changes of basis and without loss of generality or variation of
the stability properties, Mk+,k-1 and Mk++a,k are diagonal, with diagonal elements
taking decreasing values down the diagonal,

Under these assumptions and with
p

H:-i [H’_ H’_ ], Fk-1 lF’_, F2__1 J).

Note that if -k TkXk defines the orthogonal basis change, Mk+s.k lk+s,k TkMk+s.kTk.
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we assert that IlH,-111 and IIF2__I = are O(b). Since b is small, this means that Fk-1 and
Hk-1 are approximately of the form of (6.1). Furthermore, we can show that 4k+,,k <
d + O(b 1/2) and IIF,+ 22 ...F2 a/z)t-Fk+,-z < d + O(b This mimics the requirement in
the time-invariant case that [hi(F2)l < 1. Finally, an observability result can be obtained
for the pair [FI,H]. In case Fk, Hk are constant, the time-invariant results are
evidently recovered. Because of length restrictions, proofs are omitted.

7. Conclusions. Given the now widespread knowledge of the linear-quadratic
problem and its solutions, the results of this paper are not particularly surprising.
Certainly, when the ideas of the paper were being developed many of the conjectures
were clear. In hindsight, there is also no real surprise in the techniques required to
obtain the results. However, we must admit that many of the specific techniques,
especially that of Lemma 5.1, surfaced only after exploring a number of misleading
approaches and conjectures. Perhaps this accounts for the comparatively long time
between the intuitive grasp of the general nature of these results and their formal
derivation.

It is clear that one of the main applications of the results is to the linear-quadratic
problem. However, we feel it likely that the extended lemma of Lyapunov is a result of
some power, which should also find significant application. We have, for example,
recently been able to use this lemma to establish that if a linear, finite-dimensional,
uniformly stabilizable and detectable system is bounded-input, bounded-output stable,
then the system is necessarily exponentially stable.
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THE EQUATION XR + QY : A CHARACTERIZATION
OF SOLUTIONS*

E. EMREt AND L. M. SILVERMAN

Abs(raet. In this paper we consider the solutions of the equation XR + QY . Here Q, R, are given
p q, rn and p polynomial matrices over a field k. X and Y are p m and q polynomial matrices
which are unknown. Using certain recent results on the realization of matrix fraction descriptions of transfer
matrices, we give a characterization (parametrization) of all possible (X, Y) which solve this equation. This
also provides a system theoretic interpretation for this equation.

1. Introduction. Let O, R, be p q, m t, and p polynomial matrices over an
arbitrary field k. In this paper, we consider the solutions of the equation XR + 0Y
for q and p m polynomial matrices Y and X over k.

This equation has been considered by several authors including Roth (1952) over
fields, Gustafson (1979) over commutative rings with identity, Wolovich (1977),
Bengtsson (1977), Cheng and Pearson (1978), and Kucera (1975) over polynomials. In
general, it has been shown by Gustafson (1979) that over a commutative ring R with
identity, XR + QY has a solution (X, Y) over Ritt the matrices

[O RO] and[OO
are equivalent. This is a generalization of the result of Roth (1952) which gives the same
criterion for the case where R is a field.

From a system theoretic point of view, this equation is important in the design of
control systems where now the ring R is the set of polynomials over a field k, k[x]. For
details, the reader is referred to Bengtsson (1977), Cheng and Pearson (1978),
Wolovich and Ferreira (1979), Kucera (1975) and the references given there. In all of
the prior work the basic tool is the invariant factor theorem for a polynomial ring k[x].
A direct explicit characterization of all solutions is not provided.

In 2 of this paper, using some recent system theoretic results on the realization of
matrix fraction descriptions by Fuhrmann (1977), we transform this problem (first for
the case O nonsingular) to a set of linear equations over the field k. This also provides a
system theoretic interpretation and more insight. We show that a solution to the original
equation exists itt a solution to the linear equations over k exists. Further, when a
solution exists, all the solutions of the original equation are characterized
(parametrized) in terms of all possible solutions to the equations over k.

Finally, in 3 we consider the case where O is a general polynomial matrix and
show how the general problem can be solved using the results of 2.

2. The case where O is nonsingular. In what follows kq[z] denotes q-tuples of
polynomials in z with coefficients in k, and kq(z) denotes qotuples of rational functions

* Received by the editors November 1, 1979, and in revised form March 21, 1980. This research was
supported in part by the National Science Foundation under Grant ENG-7908673, and in part by the
U.S. Army Research Office under Grant DAA29-77-G-0225 and the U.S. Air Force under Grant AFOSR
76-3034 Mod. B through the Center for Mathematical System Theory, University of Florida, Gainesville,
Florida 32611.

t Center for Mathematical System Theory, University of Florida, Gainesville, Florida 32611.
Department of Electrical Engineering-Systems, University of Southern California, Los Angeles,

California 90007.
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in z over k. In this section we assume that p q and Q is nonsingular, ko denotes the
k- linear space

ko := {x e kP[z]: Q-ix is strictly proper}.

For a p x m polynomial matrix X, such that Q-IX, is strictly proper, the k-linear maps
7r, F, G, H, zro are defined as follows:

G" kn ko, uXu for u in k’.

q strictly proper part of q.

x --> O,rr O x

F ko --> ko, x -ro (zx).

H ko --> k", x--(Q-’X)-l.
Here (Q-ix)_1 is the coefficient of z- in the formal power series of Q-x in z -1. In
terms of the above quantities we have the following results which will be needed in
the sequel:

LEMMA 2.1. (Fuhrmann (1977)). Let Z := Q-’X. Then E:= (F, G, H) is an
observable realization ofZ with the state space ko. (We call E the Q-realization of Z.)

LEMMA 2.2. Let X, Y be solutions of
(2.3) XR + QY .
Then there exist X, Y1 which are solutions of (2.3) such that Q-1X is strictly proper.

Proof. Suppose X, Y are solutions of (2.3). Then extending the map zro to matrices
in a natural way, define

X := ro(X).

Clearly Q-X is strictly proper. On the other hand, clearly there exists a unique
polynomial matrix Q1 such that

Substitution into (2.3) yields

or with

we have

X ((i "+" Xl.

XR + QY + QQIR ,
Y1 := Y+QIR,

XIR + OY .
and

Now suppose Q, R, are given as before. Define

E(Q,R):={(X, Y)’XR +QY= },

/(Q, R):= {(X1, Y)’XIR + QY1 t:I) and o-lXl is strictly proper}.

In light of Lemma 2.2, it is clear that once we have a characterization of E(Q, R)
we also have a characterization of E(Q, R). Once we have a pair (X1, Y) in E(Q, R)
then (X + QQI, Y1-QR) will be elements of E(Q, R) for any p p polynomial
matrix Q1. Also if (X, Y) is any element of E(Q, R) we can obtain a unique element
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(X1, Y1) of E(Q, R) as (X-QQ1, Y + QIR) for some unique polynomial matrix Q1.
That is, we have

E(Q,R)={(X1, YI)+(X, Y)" (X1, Y)E(Q,R)and(X, Y)H(Q,R)},

where

H(Q, R):= {(QQx, -QxR)’Q is an arbitrary polynomial matrix}.

Hence to obtain a characterization of E(Q, R), it is sufficient to obtain a charac-
terization of E(Q, R). For this we first define the following. Let S be a p n polynomial
matrix whose columns are a basis of ko.

Let F, G1, H be the Q-realization of Q-1S as in Lemma 2.1. Let/, 1,/-it be the
matrix representations of F, G, H relative to canonical bases of K’, Kp (note that in
this case p n) and columns of S as a basis for ko. It follows that In, and hence

Let R be expressed as

I(zI-p)-l= Q-lS.

R bl_jzi
j=0

where u_. are m xp matrices over k. Also we can define an n xp matrix over k
uniquely by

ro(O) SO,

and express as

=Q+S,
for a unique polynomial matrix 1.

Finally, let denote the (unknown) n m matrix over k in the linear equations

(2.4)
/=0

THZOREM 2.5. The following statements are equivalent:
(i) (X, Y) is an element ofE((2, R ).
(ii) X $r [or some r which is a solution of (2.4), and Y1 1- Qp where Op is

the polynomial part of Q-aXIR.
Proof. 1) Suppose that XR + QY1
Let E (F, G, H) be the Q-realization of Q-1XI. Let F, GI, H be the matrix

representations of F, G, H relative to canonical bases of k p, k and the columns of S
taken as a basis of ko. Then Vx =/, H1 =/-), and

I-I(zI--)-I-- o-ls.
But then

tr2I(zI-)-IG1 O-SOl O-1Xl,
which implies that X SG1; i.e., with ( G1, X1 S.

On the other hand,

Q-iX1R dpl- yx + o-l,rrO(O
expresses the fact that the system Z with the input sequence consisting of the ith
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columns of u_j, ] 0, , r, reaches the state 0i which is the/th column of 7ro() from
the zero state. During this time it produces the output sequence consisting of the
coefficient vectors of the ith column of the polynomial matrix Qp := 1 Y1. Relative to
chosen bases of k p, k and ko, this state transition for each i, 1, , p can be written
as in (2.4). One explicit way of seeing this is equating the strictly proper part of Q-1XIR
to Q-izro(). This yields

U0

[.p :/lr U-1 ().

Then, by observability of (/-,/6), (2.4) follows. Hence, t is a solution of (2.4). Clearly, if
Qp is the polynomial part of Q-aXR then Y1 1- Qp.

2) Suppose that X1 := S( for some solution G of (2.4). Let us now consider the
system ,q_, (, 0,/-r). Then/6, (,/_ are matrix representations of F, G, H relative to
canonical bases of k, k and the columns of S taken as a basis of ko, where
X (F, G, H) is the Q-realization of Q-1X1. Then (2.4) expresses the fact that the input
sequences consisting of ith columns of u_j drive X from the zero state to that which is the
ith column of S 7ro(). In polynomial terms this can be written as

Q-XIR Qp + O-l’n’o(ep),

where Q, the polynomial part of Q-aX1R, represents the outputs produced by E during
this state transition. Now if we define Y1 to be 1- Qp, we get

Q-1X1R (I)1- Y1 + Q-17ro((I)),
or

XIR + QY1 P.

Remark. By Theorem 2.5, we have transformed the problem to the problem of
finding the solutions of the linear equations (2.4) in (. It follows from Lemma 2.2 and
Theorem 2.5 that (2.3) has a solution (X, Y) iff (2.4) has a solution O. When a solution
exists, one can obtain a parametrization G representing all possible solutions of (2.3)
from (2.4). Then all possible Xa are given by SO and Y1 by (I) --Qp.

Remark. An alternative approach to the problem is as follows. It is easy to see from
the argument in the proof of Theorem 2.5 that Xa is a solution iff

ro(XIR ro(eP).

Let S be a basis matrix for ko. Since O-X is strictly proper, X S for some
(unknown) . Hence if we take the entries of as unknowns and equate ro(XiR) to
ro(q), we obtain the same set of linear equations given by (2.4), whose unknowns are
the entries of . Then Y1 is uniquely determined byX as P Op. Theorem 2.5 has all
these operations built in, and is essentially the same formulation. But it yields a
conceptually dearer picture as well as a system theoretic interpretation of these
equations. Also it provides a more systematic way of obtaining these linear equations
over k.

Remark. We should note here that construction of a basis matrix S for ko can be
easily done as follows. LetM be a unimodular polynomial matrix such that O := MO is
row proper (say, with ith row degree vi). Then it is well known that for a polynomial
vector x, 0-x is strictly proper iff the/th row degree of x is less than v. Hence, for a
polynomial vector 2, O-2 is strictly proper iff the/th row degree of M2 is less than
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From this argument it follows that one choice for S is

0
"1
z %--r

Remark. From the formulation given in the above remark, we see that the same
approach is applicable to the case where k is a commutative ring whenever O is row
proper (i.e., the highest degree row coefficient matrix of O is invertible over k).

Remark. The equation RX+ YO is the dual of the equation XR + OY ,
and thus after transposition, one can apply the same results.

3. The general case. Now suppose that O is a general p q polynomial matrix.
Then there exist unimodular polynomial matrices M1, M2 such that

0

where 0 is a nonsingular polynomial matrix. Define

2:=MX=: 2a,

Y :=M- y =:

Hence the original equation is equivalent to the equations

(3.1) 2:zn =:z,
and

Clearly, characterization of solutions to (3.2) can be obtained as in 2. As for (3.1),
for an explicit characterization of solutions the reader is referred to Emre (,1980).

Remark. We should note here that in general M1, M, 0, ’, I, 1, 2 are not
uniquely determined from the original equation. However, once M1, M2 are fixed and
known, the solutions of the original equation are characterized by the solutions of (3.1)
and (3.2). The original equation has a solution iff (3.1) and (3.2) have solutions. The
solutions of the original equation can be obtained from solutions of (3.1) and (3.2), by
choosing I22 as an arbitrary polynomial matrix of suitable dimensions and using the
transformations M1 and M:. Nonuniqueness of M1, M2 does not pose any problem as
far as the characterization of solutions (X, Y) is concerned.
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EXIT PROBABILITIES FOR A CLASS OF
PERTURBED DEGENERATE SYSTEMS*

ONtSIMO HERN/NDEZ-LERMAt

Abstract. We consider a diffusion Markov process which obeys a stochastic differential equation with
coefficients depending on a small parameter e. The noise enters only in some of the components of the
equation and, therefore, the process is degenerate in the sense that the backward operator associated to it is
degenerate parabolic. Our problem is to estimate the probability that the process exits from a given region
during a certain time interval. The method of solution is similar to one introduced by W. H. Fleming (cf. IRIA
Seminars Review, 1977; Appl. Math. Optim., 4 (1978), pp. 329-346) for nondegenerate systems using
techniques of stochastic control theory.

Introduction. Consider the n-dimensional process x defined by

(0.1) dx F(t, x (t), y (t)) dt, s <= <-_ T,

where e is a positive parameter and y is a diffusion Markov process in Euclidean
m-space which obeys the stochastic differential equation

(0.2) dy b(t, y" (t)) dt + x/- or(t, y (t)) dW, s <-_ <-_ T.

Equations (0.1), (0.2) define jointly the (n + m )- dimensional diffusion process
(x (t), y (t)), which is degenerate in the sense that its covariance matrix is nonnegative
definite, or equivalently, the backward operator associated to the process is degenerate
parabolic. Let r be the exit time of x (t) from a given bounded domain D in R n. Our
problem is to give an estimate for the exit probability

q P(r <-_ T).

It is shown below that

(0.3) -elogq-*I as e-0,

where I is the value function associated to certain (deterministic) control problems.
The problem stated above is sometimes called (see, e.g., [9], [13]) the exit problem.

In its general form, the problem is related to the behavior of a deterministic system
when it is perturbed by a random (white) noise of small intensity. Randomly perturbed
dynamical systems have been extensively studied in the mathematical literature [3]-[6],
[9], [13], and their applications have been explored for engineering [8], [17], random
propagation problems [10], mathematical ecology [12], and other areas.

Statement (0.3) has been proved under different assumptions on the coefficients F,
b, and tr [5], [6], [9], 18]. The main difference between previous results and our present
case is that the backward operator of the process (x(t), y(t)) is not uniformly
parabolic. This is a key point because the proof of (0.3) requires expressing q as a
smooth (not merely a weak) solution of a certain boundary value problem. Following a
suggestion by Fleming [5], we overcome this difficulty by assuming that the backward
operator is hypoelliptic [11], [14]. By a theorem of D. L. Elliot (see Clark [1]), this is
equivalent to a certain form of "controllability" of the system (0.1)-(0.2). To prove
(0.3) we use a method similar to that introduced by Fleming [5], [6] for nondegenerate
systems using techniques of stochastic control theory.

* Received by the editors February 21, 1979, and in final revised form March 17, 1980. This research was
supported in part by the Consejo Nacional de Ciencia y Tecnologia, under grant PNCB 198.
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We begin in 1 by describing the exit problem in precise terms. In 2 we state the
required assumptions on the coefficients of (0.1), (0.2), and the backward operator
associated to the process (x (t), y (t)). In 3 it is shown that the exit probability q is a
smooth solution of the boundary value problem (3.1). Making a logarithmic trans-
formation on q, we obtain in 4 the dynamic programming equation (4.2) of certain
stochastic control problems. Setting (formally) e 0 in (4.2) we obtain the dynamic
programming equation of the deterministic control problem (4.7) whose value function
! is the limit in (0.3). Finally, in 5 we prove statement (0.3), using the first Ventsel-
Friedlin estimate [18] and a stochastic control argument used before by Fleming [5] for
nondegenerate systems.

Notation. If A is a matrix, A* denotes its transpose and Tr (A) its trace. Given a
function v’RR, Vx and Vx denote the gradient and the Hessian matrix of v,
respectively. Random variables are tacitly referred to a fixed underlying probability
space (I, , P). E denotes expectation; E.(P,) denotes expectation (probability)
conditional on the event x(s)= x.

1. Statement o the problem. We first proceed to describe the exit problem within
our present context.

Consider the (n + m)-dimensional diffusion process (x (t), y (t)), -> 0, satisfying
the stochastic differential equation

dx F(t, x (t), y (t)) dt,
(1.1)

dy b(t, y (t)) dt + v/Ttr(t, y (t)) dW,

where x R , y R ", W(t) is an m-dimensional standard Wiener process, and e is a
positive parameter. We can consider (1.1) as a random perturbation of the deterministic
process (x(t), y(t)), _-> 0, which satisfies

dx= F(t, x(t), y(t)) dt,
(.2)

dy= b(t, y(t)) dt.

The functions F, b, and r are to be made precise below ( 2). Let D be a bounded
domain in R", with a sufficiently smooth boundary OD, and let us assume that at some
initial time s => 0 the process x is in D"

(1.3) (x (s), y (s)) (x, y) D x R ".
Let r= r (s, x, y) denote the first exit time from D of the process x (t), t_-> s, and
define q q (s, x, y) as the exit probability:

(1.4) q (s, x, y) P,x,y(r <= T),

where T > s is a (fixed) given time.
With this terminology, our problem can be stated as follows" To prove that

(1.5) lim (-e log q" (s, x, y)) I(s, x, y),
e-+0

where I(s, x, y) is the functional defined in (4.7b). We prove this statement in 5.

2. Assumptions on the perturbed process. To simplify notation, in 2 and 3 we
shall drop the indexing e. Then, in particular, equation (1.1) for the process
(x(t), y(t))- (x (t), y (t)) becomes

dx F(t, x(t), y(t)) dt,
(2.)

dy b(t, y(t)) dt + 4-r(t, y(t)) dW.
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Let D be a bounded domain in R" with boundary, 0D, of class C2. For the (fixed) given
T > 0, let Q be the open set

O=(O, T)DR.
The backward operator corresponding to the system (2.1), when applied to a function
v(s, x, y), can be written as

(2.2)
8

vs +Lv--vs +-Tr (avyy)+F*vx +b*vy,

where a(s, y)= o-(s, y)o-(s, y)*, and F= F(s, x, y), b b(s, y) are the coefficients in
(2.1).

Let us denote by Coo(O) the space of infinitely differentiable functions on O, and by
C (O) the space of functions 4 C(O) with compact support in O. A locally square
integrable function v on O is said to be a "distribution solution" of the equation

(2.3) vs +Lv O,

if for any "test function" b C (Q),

o
(-ck, +L*c)v dQ O,

where dQ denotes a Lebesgue measure on R "+’+1 and L* is the adjoint of L’; that is,

t*qb - (aiit )y,y, . (F,.&)x, Y. (bich
i,j=l i=1 i=1

Throughout the remainder of this work we make the following assumptions.
Assumptions 2.4.

(a) The functions F, b, o-, and tr
-1 are bounded Coo(Q0)-functions, with bounded

first derivatives, where

Oo (0, CX3) R n+m.
(b) The matrix a (s, y)= tr(s, y)tr(s, y)* is strictly positive-definite (that is, there

exists c > 0 such that y*ay -> cy*y for all y e Rm).
(c) The backward operator given in (2.2) is hypoelliptic in Qo (see, e.g.,

Hormander 11 ]); this means that, in particular, if v (s, x, y) is a distribution solution of
(4.7) in Q Qo, then (after correction on a set of measure zero) v is in Coo(Q).

(d) Let v(x) be the outer normal to OD and let us write r r (s, x, y). Let F/ and F
denote the sets of points (t, x, y), with x e OD, where F(t, x, y)*v(x) is positive and zero,
respectively. It is known [16, 7] that

P,,,y ((r, x(r), y(r)) F+ U F, r < oo) 1,

for all (s, x, y) in Q. We assume that, for all (s, x, y) in Q,

Ps.x.y((t, x(t), y(t)) F for some e Is, T]) 0.

Thus, if r -< T, then (r, x(r), y(r)) F+ almost surely.
Remark 2.5. If, for instance, the coefficients F, b, and r satisfy assumptions

(2.4a, b), and the matrix Fr (OFi/Oyi) has rank n everywhere in Oo, then the backward
operator (2.2) is hypoelliptic (Hormander [11]). Necessary and sufficient conditions for
hypoellipticity of a general linear differential operator of second order are given by
Hormander [11], and Oleinik and Radkevich [14]. The hypoellipticity assumption is



42 ONtSIMO HERNANDEZ-LERMA

related to some form of "controllability." Specifically, by a theorem of D. L. Elliot (see
Clark [1]), hypoellipticity implies that the diffusion process (x(t), y(t)) possesses a
transition probability density p(t, (x, y), (sc, rt)) which is C on (0, c)x Rz(n/’), and
which satisfies the "forward" equation pt L" p (in the variables t, :, r/). It also implies
that (x(t), y(,t)) has the strong Feller property. For a linear n-dimensional system, say
dx Ax + Bdw, where A and B are constant matrices, hypoellipticity is equivalent to
the usual "controllability" criterion [7, p. 135]"

rank (B, AB, , An-IB) n.

3. The exit probability. Let (x(t), y(t)), 0 -<_ -< T, be the process defined by (2.1),
and assume (2.4). Consider the boundary value problem

(3.1)

vs+Lv=O inQ=(0, T)DR’,

v(s, x, y)= l onFr,
=0 on{T)xDxR’,

where L is the operator in (2.2) and F/ F+r= {(s, x, Y) 0<s<=T}.
By a "smooth solution" of (3.1) we mean a solution for which all the derivatives

appearing in (3.1) are continuous. Let QI be the set consisting of O t_J ({T} D R"),
together with the points (s, x, y) F+ such that 0 < s < T. We shall prove"

THEOREM 3.2. The exit probability q(s, x, y) P..y(r <- T) is a smooth solution of
the problem (3.1), and it is continuous on O.

The plan of the proof is to introduce a new (nondegenerate) process
(x(t), y(t)), 6>0, and consider (3.1) as the limiting case when -->0.

Let (x (t), y(t)), > 0, be the process satisfying

(3.3)
dx F(t, x (t), y(t)) dt + 4- dl,
dy b(t, y(t)) dt + /-r(t, y(t)) dW,

with the same initial condition as for (2.1)"

(x(s), y(s))=(x(s), y(s))= (x, y) D R".

In (3.3), y(t) is the same as in (2.1), and W(t), >-s >=0, is a n-dimensional standard
Wiener process independent of W(t) and such that ff’(s)= 0. Let r z(s, x, y) be the
first exit time from D of x (t).

Define

IIx  -xll, sup x(r)’ x(r)l,
s<--r<=t

O=z^ T, O=r^ T.

The proof of Theorem 3.2 is based on the following lemma.
LEMMA 3.4. For any initial point (x, y) D R and > s,
(a) IIx xll,- 0,
(b) 00, and
(c) x(O)

almost surely, as - O.
Proof. First note that assumption (2.4a) implies that F(t, x, y) satisfies a uniform

Lipschitz condition.
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Proof of (a). Writing (2.1) and (3.3) in integrated form, subtracting, and taking
absolute values, we obtain

Ix(t)-x(t)l<= I IF(r, xS(r), y(r))-f(r, x(r), y(r))l dr

<=kI [x(r)-x(r)l dr +VlffC(t)l,

so that

IIx
where k is a Lipschitz constant. Therefore, by the Gronwall-Bellman inequality
[7, p. 198], we have

IIx
where c is a constant which depends only on k and t- s. Thus letting 6 0, we obtain
(a).

Proof of (b). We will show that 0* =< 0 <= 0. a.s., where

0* lim sup 08, 0, lim inf 08.

First, since D is open, it will follow from (a) that if 0 z ^ T T and x(O) D, then
08= T a.s. for all 6 sufficiently small and, therefore, we would get (b). Similarly, if
08 T and x 8 (08) D, (a) will imply (b). Thus we can assume that both x(O) OD and

Now if x8(08) OD, it follows from (a) that x(O,) OD a.s. and, consequently,
0, >-0 a.s. To get 0*-< 0, let Aa, (for a > 0, a > 0) be the event (in the underlying
sample space) defined as follows: there exists [0, 0 + a] such that distance (x(t), D) >=
a. If this holds and IIx x[I < then 08 < 0 + a. Thus by part (a), 0* -< 0 + a on Aa. a.s.
On the other hand, Ps.x,y(U>0A,,,)= 1 (a rational, say) by assumption (2.4d).
Therefore Ps,x,y(O* -< 0 + a) 1. Since a is arbitrary, we get that 0* <= 0 a.s.

Finally, we complete the proof of Lemma 3.4, noting that (c) is a consequence of (a)
and (b).

Proof of Theorem 3.2. By the hypoellipticity assumption (2.4c), to prove that
q(s, x, y) PIx,y(z <= T) is a smooth solution (almost everywhere in O with respect to
Lebesgue measure) of (3.1), it is enough to show that:

(3.5) q (s, x, y) is a distribution solution of (3.1).

Let us consider the following backward equation corresponding to the process
(x 8 (t), y (t)):

(3.6a) v + 1/26 Axv +Lv 0 in Q,

where A is the Laplace operator in the x-variables, L is the operator in (2.2) and
O (0, T) D R m. Define 0*(2 as {T} x D R m, together with the boundary points
(s, x, y) F+, with 0<s < T, and let (s, x, y) be a function continuous on 00. By
assumption (2.4b), (3.6a) is uniformly parabolic and, therefore (see, for instance,
Friedman [9, vol. I, p. 147]), the solution of (3.6a), satisfying the boundary condition

(3.6b) v(s, x, y) 4(s, x, y) on 0*(2,
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is

v(s, x, y)= E,,(o, x*(o*), y(0*)).
In particular, let $ bk(k 1, 2,. .) be continuous bounded functions which on 0*Q
satisfy

bk(S,X, y)= 1 if(s,x, y)EF+
T

=0 if(s,x,y)E{T}xDxRandd(x, OD)>l/k,

0$kl if(s,x,y)E{T}xDxRandd(x, OD)l/k,

(where d distance), and which also satisfy

(*) Ik-/lO ask,l

uniformly on compact subsets of Q. Then

v(s, x, y) Es,,,(o, x(O), y(0))
satisfies (3.6a, b) with $ 0. By Lemma 3.4, the continuity of $, and the dominated
convergence theorem,

(**) v(s,x, y)Es,x.y*k(O,x(O), y(O))qk(S,X, y) as0,

where (x(t), y(t)) is the solution of (2.1) with initial condition (3.3’), and 0 min (T,
Furthermore, qk(S, X, y) satisfies (3.6b) with k, and it is a distribution solution of
(3.1), since

(-, +L*)q dO lim -, + +L* v dO O,

for any test function" C (O). Finally, (3.5) is proved in the same manner, by
observing that

q(s, x, y) lim q(s, x, y)
k

almost everywhere in O. By hypoellipticity, q is a smooth solution of (3.1) (almost
everywhere) in O.

Since, in particular, q is continuous in O, to complete the proof of Theorem 3.2 it
only remains to show the continuity of q on the accessible" boundary points of O. Let
us assume first that zo (so, xo, yo) is a point in F+, with so < T. Then Po(r T) 0. By
the strong Feller property (see Remark 2.5), P is weakly continuous in z (s, x, y), and
therefore,

lim sup P( N T) NPo( N T) 0.
0

Since 1-q(z)=P(>T)NP(rT), it follows that q(z)l as zzo, zO. If
z (, x, y) F+ with s N T, then q(z) 1, and therefore, the latter limit also holds when
z zo, with z e O. Similarly, if zo=(T, xo, yo) is a point on {T}xDxR m, then
q(zo) P,o(r N T) 0, so that

lim sup P (r N T) NP.( N T) 0.

That is, q(z) 0 as z zo, with z e O (or O). This completes the proof of Theorem
3.2.
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4. Associated control problems. We shall return now to the original equation (1.1)
for the process (x(t), y(t))= (x (t), y(t)). In Theorem 3.2 we saw that the exit prob-
ability q (s, x, y) is a smooth solution of the boundary value problem (3.1). Now a direct
computation shows that the function

I (s, x, y) -e log q (s, x, y)

satisfies the problem

Is +LI 2a-I a (s, y)Iy 0

(4.1) I (s, x, y) O

=0(3

in O,

onF+
T,

on{T}xD xRm;

(the latter means, of course, that I" (s, x, y) --> oo as s T-, with (x, y) s D x Rm), where
L" is the operator in (2.2).

We can write (4.1) as

(4.2)

where

(4.3)

I +-Tr(alyy)+F*I +H(s, y, Iy) O,

H(s, y, p)= b(s, y)*p-1/2p*a(s, y)p.

Let K(s, y, u) be the "dual" of H(s, y, p)" For p, u R m,
(4.4) (a) K(s, y, u)= max (H(s, y, p)-p*u),

p

(b) H(s, y, p)=min (K(s, y, u)+p*u).

Using (4.3) in the definition of K, we obtain

)-1(4.5) K(s, y, u)= (b(s, y)-u)*a(s, y (b(s, y)-u).

Setting (formally) e =0 in (4.2), we get the dynamic programming equation
[7, Chapt. 4]

Is +F(s,x, y)*I +min (K(s, y, u)+I*yu)=O,

or

(4.6) I +F(s,x, y)*Ix +H(s, y, Iy) O,

for the (deterministic) control problem with system equations

(4.7) (a) dx0= F(t, x(t), y(t)) dt,

dy= u(t) dt, (x(s), y(s))= (x, y),

and the value function
o

(b) I(s, x, y)= utrinf Is K(t, y(t), u(t)) dt,

where 0 is the exit time of x(t) from D, and U U(s, x, y) is the collection of
continuous functions u for which 0_-< T. We assume that U is not empty, and
furthermore, that (0, x(O), y(O))s F/.
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Now, in terms of the function I -e log q" in (4.1)-(4.2), the statement (1.5) to
prove becomes

(4.8) lim I I.
e-0

Following Fleming [5], to prove (4.8) we introduce a new (stochastic) control
problem whose dynamic programming equation is precisely (4.2), for e > 0. Before
doing this, let us recall (see the remark about notation in the Introduction) that random
variables are referred to some underlying probability space (, , P). Then, if {"t} is an
increasing family of sub-tr-algebras of , a process x(t) is said to be nonanticipative with
respect to {/} if x(t) is t-measurable for each t. In (4.9) below, we assume that an
increasing family of tr-algebras ,c, O<=t<=T, is given and the processes
( (t), (t)), v(t) and the Wiener process W(t) are nonanticipative with respect to {t}.

(4.9) A stochastic control problem.
(a) system equations"

drl F(t, rl (t), (t)) dt,

d v(t) dt + 4-r(t, (t)) dW,

with (r/ (s), (s)) (x, y) D R ".

(b) Admissible controls: the collection U’= U’(s, x, y) of nonanticipative controls
v (t), such that

T

[2E Iv(t) dt<m,

and the corresponding assumption (2.4d) holds for (r/t, :).
(c) Opdmal expected system performance"

J s, x, y)= minvu, E{ Is‘ K(t, (t), v(t)) dt + dP(O, rl (0))},
where 0 is the minimum of T and the exit time from D of r/ (t), and (s, x) is a
bounded, nonnegative, Lipschitz function such that 0 on points (s, x) for which
(s,x, y)6F+.

With this notation, we have that J satisfies the dynamic programming equation
(4.2) on Q and the boundary condition

J(s,x, y) (s, x) on O’Q,

where

O*O ({ T} x D x R ") CI F+
T.

To see this, let us consider the system (4.9a) with v(t) b(t, (t)). Then the same proof
as for Theorem (3.2) shows that the function

g(s,x, y) Es.x.y exp [-(0, r/(O))/e]

is a smooth solution of the backward equation (3.1) in O, is continuous in 0"0, and
satisfies the boundary condition

g(s,x, y)=exp[-(s,x)/e] on O*O.
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Then, a direct calculation shows that

J (s, x, y) -e log g (s, x, y)

is a smooth solution of (4.2) in Q and satisfies the boundary condition J on 0* Q.
Furthermore, from the verification theorem in dynamic programming [7, p. 159], it
follows then that J is indeed given as in (4.9c). In particular, we can write

J (s, x, y) Es,x,yG for all (s, x, y) Q,(4.10)

where

(4.11) G =Is K(t, (t), v (t)) dt +(0, r/(0));

v (t) is a nonanticipative optimal control which can be chosen in feedback form as

v(t)=V(t,l(t),(t)) fors<=t<-_O,
(4.12)

=0 fort>0,

with

v (s, x, y) H.(s, y, ] (s, x, y))

=b(s, y)-a(s, y)J(s,x, y).

Notice that, by the boundedness of b and a (assumption (2.4a)) and the definition of
-e log g it follows that v is indeed an admissible control.

5. Proof of the main theorem. We are now ready to prove statement (1.5) (4.8).
We shall prove that

(5.1) (a) lim sup I -</,
0

(b) lim inf I -> L
-0

First, we need the following
LEMMA 5.2. Let T1 < T. Then for s <- T1, there exists a constant C such that

q(s,x, y)>-e -c/,

or equivalently, I (s, x, y) =< C, for all e sufficiently small.
Proof. Let (x (t), y (t)) and (x(t), y(t)) be the processes given by (1.1) and (4.7a),

respectively. By the first Ventsel-Friedlin estimate [18, Thm. 1.1], for any 81 > 0, there
exists e0 > 0 and a constant C such that

P(lly yIIT < 81) > e-c/ for all 0 < e < e0.

(This result in Ventsel-Friedlin’s paper is given in terms of the integrals defining
I(s, x, y) in (4.7b).) Now, writing (1.1) and (4.7a) in integrated form for x (t) and x(t),
we see that, for any 8 > 0, there exists 81 > 0 (in fact, we can take 81 8/k(T- s), where
k is a Lipschitz constant for F) such that

I[y yl] < 81 IIx x[l < .
On the other hand, by the definitions of U and F/, we can assume that, for 8 sufficiently
small, the control u in (4.7a) is such that x(t) OD from some s <- T, where D
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denotes a -neighborhood of D. In such a case,

IIx xllr < --< T.

Combining these results, we get"

q P(’ <_- T) >-_ P([[x xllT < 6)

->_ P(Ily" yllT < 61) > exp (-C/e),

for all 0 < e < e o.

Proof of (5.1a). Consider the controlled systems (x(t), y(t)), (r/(t), (t)) in
(4.7a) and (4.9a) with u v e U such that 0 < T. Let T’ be such that 0 < T’ < T, and let
T be the minimum of T’ and r(rt ) exit time from D of rt" (t). Since T <_- T’< T, it
follows from Theorem 3.2 and Dynkin’s formula that the process I(t, rt’(t), (t))
satisfies

I(s,x,y)=-E It +-Tr(aI,,)+F.I, dt +EI(T,n(T),j’(T))

T

(*) =EJs (H(t, gj(t),Iy)-u(t)*I)dt +EI(T, n(T),(T‘))
T

NEs K(t,(t),u(t))dt+EI(T,n(T),’(T))

Here, we have used (4.2)-(4.3) with b u, and (4.4a). On the other hand, since u v, it
can be seen that

(5.3) (a) I1 xllt + I1 yllt 0,

(b) r" 0 (since r() 0),

(c) (n(T), (T))(x(O), y(0))

in probability, as e 0. Since I 0 on F (see (4.1)), we can obtain from Lemma 5.2
and (5.3) that

E(T", n(T), (T))0 as 0,

and from (*),

0

lim sup I N [ K(t, y(t), u(t)) dt.
as

Finally, by the definition of I, we obtain (5.1a).
Before proving (5.1b), let us consider the "deterministic analogue" (e 0) of the

stochastic control problem (4.9), namely"
(5.4) (a) system equations:

dn= F(t, n(t), (t)) dt,

d v (t) dt,

with (nO(s), :O(s)) (x, y) D x R m.
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(b) admissible controls: The collection U= U(s, x, y) of continuous functions
v(t) such that

Iv(t) dt < oo,

and the corresponding trajectory (t, r/(t), :(t)) exits [0, oo) D x R" through a point
in F+, if exit occurs before or at time T.

(c) performance criterion:

J(s, x, y)= min K(t, (t), v(t)) dt +(0, r/(O)),
vU

where 0 is the minimum of T, r(r/) is the exit time from D of r/(t), and (s, x) is the
function in (4.9c). We define jo= on 0*Q.

If we fix the control function v, the system (r/, :o) in (5.4a) is continuous in the
initial state (x, y). Then it can be shown that:

If (s, xn, yn) is a sequence in Q F/

r such that (s, x,, y,) --> (s, x, y) F-,
then J(s, x,, y,) -+ J(s, x, y) (s, x).

LEMMA 5.6. For any (s, x, y) Q,

lim inf j (s, x, y) _-> J(s, x, y).
e--O

Pro@ Let v (t) be the optimal feedback control for problem (4.9) given in (4.12),
and write je as in (4.10)-(4.11). We shall prove first that

(5.7) J(s,x, y)_-<G +A +B e,

where Ae, B are defined below, so that the lemma will be proved if we can show that

(5.8) (a) lim inf F_.A 0
0

(b) lim inf EB O.

By the assumptions (2.4a, b) on b(s, y) and a(s, y), and definition (4.5) of K, there
exist constants Cl, c2 with cl > 0, such that

K(s, y, v)>-_CllVl2-c2.
From this and (4.11), we see that there exists a constant k such that

IvY(t) dt> kl=),J(s,x, y)<-G

and (5.7) follows in this case. Let us show now that
O

(5.9) I Iv (t)12 dt <= k.

Let (Oe (t), 4 (t)) be the process satisfying

dO F(t, 4, (t), ek (t)) dt,

d49 v (t) dt,
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with (0 (s), b (s)) (x, y) D x R ". Comparing this process with (4.9a), with v v ,
we can see that, as e - 0,

(*)

in probability. From this, it can be obtained that

lim inf (E[lr/ O{Ir +E[ls &llr) O.
e-O

Furthermore, by definition (5.4c) of j0, a stochastic version of the "principle of
optimality" in dynamic programming (cf. [2, p. 264]) yields"

J(s, x, y) -< fs K(t, 0 (t), v (t)) dt + J(O, (0), (0)),

where 0 is the random time in (4.11). Adding and subtracting G on the right side, and
then taking absolute values, we get (5.7), where

0

A Js ]K(t, ebb(t), v(t))-K(t, (t), v(t))[ dt,

B I(0, (0), (0))-(0, n (0))l.

Now, to prove (5.8a)-note that by the boundedness of b, a -1, and its first derivatives
(assumptions (2.4)), the definition (4.5) of K, and the mean value theorem, there exists a
constant C such that

Therefore,

Ig(t, y, u)- g(t, y’, u){-< C(1

A <- C[[4 : liT Is
O

(1 / Iv (t)l) dt k.}lb 4: lit,

for some constant k.. Now (5.8a) follows from (**).
To prove (5.8b) note that, by definition (5.4c) of Jo, if 0 T, then jo= and,

therefore, (5.8b) follows from the Lipschitz assumption on , (*), and (**). On the other
hand, if 0 z(rt), then (0, r/ (0), (0)) F-, and therefore, again from (5.4c) we
have:

n, 1:(0, 4,(0"), 6(0))-(0, n(0), (0))1.
Now, from (*), (5.5), and the boundedness of =J on O’D; we get (5.8b). This
completes the proof of the lemma. I-1

We shall now complete the proof of (5.1).
Proof of (5.1b). Let (x) be a nonnegative Lipschitz function such that (x) > 0 if

x D, and (x)= 0 for x OD. For each M> 0, define

q(s, x, y) Es,x.y exp [-M/(x (z ^ T))/e],

and let It ---e log qt. Then q --<qt, or equivalently, I ->It.
The function q(s, x, y) satisfies (3.1) with the boundary conditions

q(s, x, y) 1 on F+
T

=exp(-MO(x)/e) on {T}xDxR ",
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while I satisfies (4.1) in Q with boundary conditions

I(s, x, y) O onF
=MO(x) on{T}xDxR ".

Moreover, J I if we take in (4.9c), so that

=I on0*O.
For this , let I(s, x, y) be the corresponding performance criterion (5.4c). Then, for
fixed M and (s, x, y) (2, Lemma 5.6 implies that

I (s, x, y) _-< lim infI(s, x, y).
--0

On the other hand, comparing the deterministic control problems (4.7) and (5.4), we see
that

I (s, x, y) _<-lim infI(s, x, y).
Moo

Combining the last two inequalities with the fact that I -<I, we obtain (5.1b). [q
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EXTREME POINTS AND BASIC FEASIBLE SOLUTIONS
IN CONTINUOUS TIME LINEAR PROGRAMMING*

ANDRt F. PEROLD"

Abstract. This paper studies the extreme points arising in continuous time linear programming. The main
result is for the case of constant coefficients where all so-called right analytic extreme points are characterized,
analogously to the result for linear programming, in terms of certain full rank conditions. Examples of
continuous time linear programs with time-varying constraints are given to show that this kind of charac-
terization cannot hold in general.

1. Introduction. The general continuous time linear program is formulated as
follows:

minimize
T

o
C(t)x(t) dt

subject to

B(t)x(t)+Jo K(t,s)x(s)ds=b(t), x(t)>-O, t[O, T],

where c(t), b(t) and B(t), K(t, s) are given and are real vectors and matrices respec-
tively. A special case of this is a linear optimal control problem with constraints on both
the state and control variables:

minimize

subject to

T

{C(t)x(t)+ d(t)u(t)} dt

d
d- x(t) A(t)x(t) + B(t)u(t) + a(t),

0 C(t)x(t) + D(t)u(t) + b(t),

x(t)>=O, u(t)>=O, t6[O,T], x(O) given.

Continuous time linear programs are widely applicable to many real world
situations, for example as intertemporal economic models of investment and planning
(e.g., Bellman I-2] and Dantzig [5]), and occur frequently in engineering applications
(e.g., Teren [17]). They were first considered by Bellman [1], [2] in 1953 and have since
been studied largely as linear programs in a function space with the emphasis on
generalizing the simple but powerful results of linear programming (Dantzig [4]). The
main results to date have been strong duality theorems, the first being obtained by
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81259A01, MCS76-20019 A01, and ENG77-06761 A01 at Stanford University.

Graduate School of Business Administration, Harvard University, Boston, Massachusetts 02163.
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Tyndall [19] in 1965, and subsequently strengthened by a number of authors, e.g.,
Grinold [9] and Levine and Pomerol [13]. Work has also been done on generalizing the
simplex method itself to the continuous time case. In 1964 Dantzig [6] showed that the
special case of the control theory formulation with no state variable constraints could be
elegantly solved by an application of the Dantzig-Wolfe decomposition principle. The
general case was considered first in 1954 by Lehman [12], and then pursued by Drews,
Hartberger, and Segers [8] in 1970, and Teren [17] in 1977. Few clear results emerged
from these papers, however, the major questions still remaining open.

In this paper we study continuous time linear programs from the point of view of
examining the nature of their extreme point1 solutions. The two fundamental results of
linear programming that we wish to generalize are the following"

LEMMA 1. If f: R"R is linear, and f is bounded below on P {x R " Ax b,
x >_- O} where A R’" and b R% then [ attains its infimum on P, and moreover does so
at an extreme point of P.

LZMMA 2. X P is an extreme point ofP ifand only ifA. hasfull column rank, where
{i" X > 0}.
The significance of Lemma 1 is that computational procedures can restrict their

search to extreme points only. Lemma 2 in addition allows one to solve certain
2equations with respect to A. that allow one to determine an "adjacent" extreme point

with an improved objective value. This is the heart of the simplex method, and forms the
motivation for seeking similar results here.

Extreme points in linear programming are also called basic feasible solutions
because of the abovementioned solvability of equations with respect to A.. Both
Lehman [12] and Drews, Hartberger and Segers [8] work with "basic feasible solu-
tions" although these are vaguely defined, and moreover largely so in terms of a
solvability requirement, no connection being made with extreme points. Teren [17]
does likewise by imposing certain full rank conditions. These allow for only a restricted
set of extreme points, none of which need be even near to optimality.

The first question we address in this paper is whether the optimum is indeed
attained at an extreme point. Then we consider sufficient conditions for .a feasible
solution to be an extreme point, these depending on the a priori restrictions on the
constraint coefficients and the class of admissible solutions, e.g., bounded measurable
functions. The main and final result gives a complete characterization of extreme points
in the case that A (.) and K(., .) are both constant and the admissible solutions are the
space of so-called right analytic functions. This characterization is a generalization of
the result for bang-bang control theory [11], and in addition yields the solvability
properties required of basic feasible solutions. Examples are given to show that this
kifid of characterization cannot hold for general time-varying A(.) and K(., .). This
result is fundamental in a sequel paper, Perold 14i, where the question of moving from
one extreme point to an improved one is considered.

1.1. Notation. Let _n denote {1, 2, , n}.
For A R" and a c m,/ c n_n_, let A. denote the submatrix of A whose rows are

indexed by a; let A. denote the submatrix of A whose columns are indexed by/3.
Matrices will be denoted by upper case letters and vectors by lower case letters.

The distinction between row and column vectors will be clear from the context.

I1’ will denote the Euclidean norm.

An extreme point of a (convex) set is one that cannot be written as a proper convex combination of two
other points in the set.

If A.o is not square, it is usually appropriately augmented so as to be square and nonsingular.
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If I (t’, t") is an open interval then/" will denote the interval It’, t").
L[0, T] is the space of real-valued, Lebesgue measurable, essentially bounded

functions from [0, T] into R n. L’[0, T] is the space of real-valued, Lebesgue integrable
functions from [0, T] into R n. When the time interval is clear from the context these will
be written as L and L’ respectively.

The numbers (1), (2), refer to equations, definitions, etc., in the main body of
the paper. (A1), , (B1), refer to the like in Appendices A and B.

2. Extreme points as optimal solutions. For the remainder of this paper, we shall
let X denote the space of admissible functions x :[0, T]-> R ". In order that the term
K(t, s)x(s)ds make sense, X will be assumed to be contained in L’. We shall let

f" X-> R be the objective functional, i.e.,
T

f(x)-- | c(t)x(t) dt,
Jo

and P(X) the constraint set, i.e.,

P(X) is easily seen to be convex, and will be assumed nonempty.
The result that would be most desirable is the following: if X is a given space of

"nice" functions, and if a continuous linear functional f is bounded below on P(X), then
f attains its infimum on P(X) and moreover does so at an extreme point of P(X).
However, without severe preconditions on the coefficients defining the problem, the
only case when this appears possible is when X L and P(L) is bounded. One
complicating factor is that while the notion of extreme points is purely algebraic, one
seems to require heavy topological machinery merely to establish their existence.

THEOREM 3. If the components ofc(.), b(.), B(.), and K(., .) are all in L, and there
is an M>0 such that x P(L)(C)llx(t)l[<=M a.e., then f(.) attains its infimum at an
extreme point of P(L).

Proof. Let Y be the space L]’ equipped with the weak topology. As established in
[9, p. 40], P(L) is compact in Y. Further, since c L, f is a continuous linear
functional on Y. The proof is made complete by noting that a continuous linear
functional on a compact set in a locally convex Hausdorff space attains its infimum at an
extreme point of that set (see, e.g., [10, p. 74]).

In practice we would like to have optimal solutions that are more manageable than
general measurable solutions, for example piecewise analytic solutions having only
finitely many breakpoints. Theorem 3 unfortunately is the best statement available, and
it is still an open question whether it can be improved upon even in very special cases.
Even if we know that the optimum has, say, a piecewise analytic solution, there is no
guaranteee that there is a piecewise analytic extreme point solution. However, there is a
motivation for continuing the study of extreme points in more useful spaces, given by
the following simple result.

PROPOSITION 4. Iff X --> R is concave and x is the unique minimizer offoverP(X),
then x is an extreme point of P(X).

Proof. This follows immediately from the concavity of f and the definition of an
extreme point.

3. Characterizing extreme points. We begin by reviewing the proof of the charac-
terization of extreme points in R" given in Lemma 2. We have a given x 6 R" satisfying

Ax=b, x>=O.
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The necessary and sufficient condition for x to be an extreme point is that A. have full
column rank, where/3 {i:xi > 0}.

To show the sufficiency, we write x hy + (1 h)z, for h (0, 1) and some y and z
satisfying the constraints, and then show that x y x. Set a {i" xi 0}; then x 0,
y -> 0 and z => 0 imply y z 0. Therefore A.y A.z A.x b. Since A. has
full column rank these equations have a unique solution, and we are done.

To show the necessity, assume that A. does not have full column rank. Then there
exists a y 0 such that A.y 0. Setting y 0 and noting that x > 0, we see that
there is a 0 > 0 such that x + 0y => 0, x 0y -> 0. Hence, writing x 1/2(x + 0y) + (x 0y)
shows that x is not an extreme point.

It is precisely these two steps that we shall try to mirror in the continuous-time case,
namely

(i) being able to solve uniquely for the positive components when the remaining
ones are held fixed at zero, and

(ii) being able to perturb the positive components to either side when they are not
uniquely determined.

Our first result here is that uniqueness in the sense of (i) is a sufficient condition for
an extreme point, although in general not a necessary condition.

LEMMA 5. LetX be any space of admissible functions, and let x P(X). Define Zi,
1,. ., n by Zi {t [0, T]: xi(t) 0}. Then x is an extreme point of P(X) if x is the

unique solution to

(6)
A(t)y(t)+ Io K(t, s)y(s) ds b(t),

yi(t)=0, tZi, i= 1,. ,n,

[0,

Proof. The proof in R applies here almost identically. Iq

Example (A1) in Appendix A shows that the uniqueness condition of Lemma 5
need not be necessary. The main reason for this is that the restrictions yi(t) 0, Zi,
can be redundant, as is the case in the example.

In order to obtain a "practically useful" characterization of extreme points,
though, it is important that this uniqueness condition be necessary. To this end, we shall
suitably restrict both the class of admissible solutions and the constraint coefficients. In
the former, we shall work with solutions whose components are positive and zero over
intervals of time, as opposed to more general measurable sets. Problems encountered in
practice usually have solutions of this form, so that this condition will not be unduly
restrictive. In the latter, we shall want to work with equations whose solutions can be
determined by solving forwards in time. More precisely, the coefficients should be such
that (6) has a unique solution if and only if

A(t)y(t)+Jo K(t,s)y(s)ds=b(t), [0, ’],(7)

y/(t)=0, tZiO[O,’], i=l,...,n, yX,

has a unique solution for each - [0, T]. Without this property it becomes extremely
difficult to obtain succinct uniqueness conditions on the coefficients such as full rank
conditions. Examples (A2) and (A3) are cases where this property fails. In Example
(A2), the slope of x at 0, and hence the whole solution, is determined only at time T by
the restriction x(T)=0. Example (A3) is an extreme point where x on [0, 1) is
determined by constraints that hold over [1, 4).
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Note that uniqueness in (7) for each z is equivalent to requiring uniqueness over
each interval Jr’, r"]c [0, T], given the solution history y(t) for [0, r’). With the
above scenario in mind, and assuming that we can sufficiently restrict the problem so
that uniqueness becomes a necessary condition, the following restatement of the
continuous-time linear program applies" choose a partition of [0, T] into time intervals
{(t., tT)}, and an associated partition of the variables {(a, fl.)}, such that the restrictions
x,(t)=0, t(t,t’), all , uniquely determine x and yield the optimal solution.
Moreover, for each , given that x has been uniquely determined on [0, t), the
restriction x(t) 0 for [t, t’) serves only to determine x(. on [t., tT).

In the remainder of this paper we shall work with x being the space of right analytic
functions, defined below.

DEFINITION 8. A function g’[0, T]- R will be called right analytic if for each
[0, T), there is an e >0 and an analytic function h’(t-e, + e)R such that

g(s) h(s) Vs [t, t+ e).
We shall let ’ denote the space of bounded right analytic functions on [0, T]. The

required properties of these functions are established in Appendix B. Our motivation
for choosing the class 4r is that it has been to date the largest class for which the local
uniqueness-over-intervals result, Proposition 11 below, can be established.

The following is a key result in the subsequent analysis.
LEMMA 9. Let g "[0, T]R have right analytic components gi(" ), 1,..., n.

Then there exists a (possibly infinite) disjoint family of open intervals, {Ii}, such that
(_J/. [0, T), and such that for each interval I., each gi satisfies

(i) gi is analytic on I,
(ii) either Igil > 0 on I or gi 0 on I.
Proof. See Appendix B. 71
For a given x P(47) and its associated partition {/.}, let

aj {i" Xi 0 on/.},
and

{i" Xi > 0 0I Ii" }.

Let t and t’ denote the endpoints of/.. Then with the constraints (6), the equation for

xo on Ii becomes

(10) B.,(t)x(t)+ I K.(t,s)x.(s)ds=d(t),
t

for all [t, t’), where d(t) b(t)-io K(t, s)x(s) ds.

PROPOSITION 11. Let x P(’}) and let {/.} be the associated partition,of [0, T]
given by Lemma 9. If (10) has a unique right analytic solution on each interval I, then x is

an extreme point of P(d7).
Proof. Suppose that x is not an extreme point. Then there exist y, z P() and

h (0, 1) such that x hy + (1 h)z, and for some [0, T), x(t) y(t). By Lemma B8
there exist 0 _-< r < s _-< T, such that x y on [0, r) and x y on (r, s). By Lemma 9 there is
an interval /.=(t., t) of the partition such that t. <-r<tT. By analogy with the
sufficiency argument presented for R, it is clear that on/, y satisfies

B.,(t)y,(t)+ I K.,(t, s)y,(s) ds eJ(t),
t}
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for all ItS, t ], where

eJ(t) b(t)- K(t, s)y(s) ds.

However, since y x on [0, r), it follows that eJ(t) di(t) on/.. Thus yCj satisfies (10) on
/.. Since yj xj 0 on //, yj xt on /. 71 (r, s) , contradicting the uniqueness
hypothesis. 71

Remark. In sum we have shown that being able to solve uniquely for the positive
components locally is indeed a sufficient condition for a right analytic solution to be an
extreme point. The important part in the proof played by the right analyticity was that
when given x, y P(a) with x y, we could find an earliest interval,/., in the partition,
on which x y. An example where we cannot find a first interval is the following. Let
x(t) [t sin (l/t)]/ (i.e., positive part), and y(t)= on [0, 1]. Clearly, in the partition of
[0, 1] induced by x, there is no first interval on which x and y differ. Note further that the
theorem is false if the solution is right analytic but we choose a partition {//} that does
not satisfy [0, T)= U.=I This can be seen in Example (A2) as follows"

Choose x(t)= 1 (not an extreme point), and choose the partition /. with /.
T/ (I" + 1), T/j). Then U T/(] + 1), T/]) (0, T), and x is uniquely defined on each
interval T( + 1), T/j).

We can now proceed to find algebraic conditions on the coefficients that ensure
unique solutions to equations of the type

(12) D(t)x(t) + L(t, s)x(s) ds g(t), It’, t").

Since, by Example (A3), such conditions cannot in general also be necessary conditions
for uniqueness, we shall confine ourselves to the case where the necessity has been
established. This is the time-invariant case, i.e., when D and L are constants.

Before doing so, we remark briefly that in the event D(t)= I, (12) is a Volterra
equation of the second kind, and it is well known that such equations always have
unique solutions, provided that the coefficients gi(’) and Li(., .) are in L2. See for
example [18, p. 10]. Thus if D-l(t) exists a.e. and (D-Ig), (D-aL)j L2, we also obtain
uniqueness. In general, however, D(t) may be singular. This case has been studied by
Dolezal [7], and in differential equation form by Silverman [16]. However, their work
provides only a partial answer, and a general succinct uniqueness condition has, to our
knowledge, yet to be discovered.

In the time-invariant case, (12) reads

(13) Dx(t) +L It, x(s) ds g(t), It’, t").

This equation has been thoroughly studied in its more conventional differential
equation form by a number of authors; see for example [3], [7], [16]. The uniqueness
condition we require is the following.

LEMMA 14. If the components of g(.) are analytic and x satisfies (13), then a
necessary and sufficient condition for x to be the unique analytic solution is that there exist
a scalar Ix such that IxD +L has full column rank.

Proof. See [3]. [3
Remark. This full rank condition has several interesting interpretations. If D and L

are square, then IxD +L has full rank iff det (IxD + L) is not identically zero as a function
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of IX.3 On dividing by Ix and setting e 1/ix the ,ndition reads: D + eL has full column
rank for all e sufficiently small. If we replace (13) by its discrete time analogue using
time intervals of stepsize e, we obtain a block lower triangular coefficient matrix with
each diagonal block being D + eL. Clearly this block triangular matrix has full column
rank iff D + eL has full column rank. Another interpretation can be made by taking
Laplace transforms on both sides of (13) with dummy variable Ix. The coefficient matrix
of the Laplace transform of x so obtained is precisely D / (1/IX)L.

In order to show that this full rank condition is also a necessary condition for a
solution to be an extreme point, we require the following lemma.

LEMMA 15. If there is no scalar tx such that IXD +L has full column rank, then for
each z > O, there exists a nontrivial analytic solution to the homogeneous equation

(16)

satisfying

Dx(t) + L Io x(s) ds O, t>=O

X(S) ds O.

Proof. We use an argument similar to that given in [3, p. 418]. By assumption, for
each/ there exists a nonzero (constant) vector o, such that (D /L)0, 0.

If D has k columns, let M > 2k be any integer and let Ix 1, , Ixt be any distinct
scalars. Let G be the following 2k M matrix:

[ e/t’l’r(/.tl e/-t,2’r/,D el’tM’r(l.t,MJ"’’2

Since M> 2k, the columns of G are linearly dependent. Hence there exists a nonzero
vector r/= (r/1, , r/M) such that G, 0.

Set
M

x 7/? ix e "’to,,.
i=1

Then it is easily verified that x satisfies (16) and that S x(s) ds 0. Moreover, x is not
identically zero.

We can now obtain the main result of this paper.
THEOREM 17. (Characterization of right analytic extreme points.) Let x be right

analytic and satisfy

(18) Bx(t)+KJo x(s) ds=b(t), x(t)>-O, ts[0, T],

where B andKare constant. Let {Ij} be the associated partition of [0, T] given by Lemma
9 and define

a. {i: Xi 0 on//}, /3i {i: Xi > 0 on/}.

Then a necessary and sufficient condition for x to be an extreme point is that for each
there exist a scalar Ix such that IXB. + K.t has full column rank.

Note that det (/xD + L) is a polynomial in/z. Hence it is zero either for all or for at most finitely
many/.
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Proof. Sufficiency. By Lemma 14, xo, is uniquely determined on Ij. By Proposition
11, x is an extreme point.

Necessity. Suppose there is a j such that for all/x, B.o + K.o does not have full
column rank. Since xj(t) > 0 on Ij, there is a closed interval [u, v]c Ii and e >0 such
that Xi(t) >- e for [u, v] and /3i. By Lemma 15 there exists a nonzero analytic Yi("
satisfying

B.,yt,(t)+K.t, f y,(s) ds=O, t[u, v],

and

yo (s) ds O.

Rescale so that lyi(t)] <= e for all [u, v) and 6/3i. By the construction of Yt in Lemma
15, this can always be done. Set y 0 on [u, v) and y 0 on [0, T]\[u, v). Then by
construction y satisfies

By(t) +K| y(s) ds O,
Jo

and

x(t) + y(t) >_- 0, x(t)- y(t) >_- 0,

for all [0, T]. Hence both x + y and x y satisfy (18). Since y is not identically zero, it
follows that x is not an extreme point. ]

4. Concluding remarks. Some conclusions are immediate from the charac-
terization in Theorem 17"

1. Right analytic extreme points can have at most m variables positive over any
interval of time, where B is m n.

2. For the control theory formulation (given in the introduction) with constant
coefficients, the matrix/zB.; +K has the form

G

for some submatrices E, F, G, H of A, B, C, D, respectively. A sufficient condition for
this matrix to have full column rank for some x is that H have full column rank. (This is
the assumption made in Teren [17].) In the event that there are no constraints on the
state variables (other than the differential equation), the submatrix G above is zero. H
having full column rank is then also a necessary condition. This can be interpreted as the
control u(t) being an extreme point of the polyhedron

Du(t)= -b(t), u(t)>-_O,

as in the bang-bang principle [11].
For computational purposes we would work with extreme points having only

finitely many constant basis intervals. As is the case in linear programming, the index
sets/3, would be appropriately enlarged so that (/xB.0 + K.;)-1 exists for some/x. This
will allow the/3. (basic) variables to be represented as functions of the ai (nonbasic)
variables. In this setting, we can then work with these extreme points precisely as with
the basic feasible solutions in linear programming. This is pursued further in Perold
[14].
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Appendix A. Examples of extreme points. The constraints are all of the form

B(t)x(t) + Jo K(t, s)x(s) ds b(t), x(t) >- O, [0, T],

where B(t) and K(t, s) R TM.
(A1) An extreme point whose positive values are not uniquely determined when

the remaining ones are held fixed at zero. rn n 1, B(t) t, b(t)=1/2t3, and K(t, s)
-2. Thus

tx(t)- 2 Jo x(s) dx 1/2t2, x(t) >-_ O, [0, T].

One can easily show that the only solutions to this equation are of the form

x(t) + ct,

for c any fixed but arbitrary scalar. The feasible (nonnegative) solutions are generated
by c => 0, and the only extreme point is given by the case c 0,

x(t)=t.
Observe, however, that since all feasible solutions are positive on (0, T] and zero at

0, the restriction x(0)= 0 is redundant.
(A2) An extreme point whose values throughout the interval depend explicitly

on T.
tx(t) 2 | x(s) ds -t, x(t) >= O, [0, T].

ao

This differs from (A1) only in the right-hand side. Here, all solutions are of the
form

x(t)= l +ct,

for ce any fixed but arbitrary scalar. The (only) extreme point is given by c 1/T,

x(t) 1 T"

In this case x(T)=0, x(t)>0 on [0, T), and the restriction x(T)= 0 does uniquely
determine x.

(A3) An extreme point that is not locally uniquely defined, and has more variables
positive over an interval of time than there are equations, m 1, n 3, T 5, B (t) 0
on [0, 5-1. Define K(t, s) [k(t, s)k2(t, s)k3(t, s)] on the triangle 0 =< s =< -< 5 as follows:

kl(t, s) k2(t, s) k3(t, s)

Is, 1) 0 0 0

[1, 2) e 0 0

[0, 1] [2, 3) 0 e 0

[3, 4) 0 0 e

[4,5] 0 0 0

(1,5] [s, 5] 0 0 0
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Set

and then define b(. by

x(t) .(t)= x(t)=

(t) 22(t) 23(t) 0

on [0, 1),

on [1, 5],

b(t) J0 K(t, s)2(s) ds, [0, 5].

Consider now the specific values of K(t, s)"
(i) For e [0, 1] the equation is trivial, i.e., 0 0, so that the values of x on [0, 1)

are not in any way determined by the coefficients on [0, 1).
(ii) For e [1, 2), the equation reads

e-Stx (s) ds b(t)

The left-hand side is the Laplace transform of xl on the interval [0, 1), evaluated at t. By
the uniqueness theorem for Laplace transforms. (see [20]) the above equation has a
unique (a.e.) bounded solution X on [0, 1). By construction this solution is X 21 1.

(iii) For e [2, 3) and e [3, 4) we obtain similar equations in x2 and x3 respec-
tively, and conclude that the only possible solution is x2 22 and x3 23 on [0, 1).

The above shows that x on [0, 1) is uniquely determined, independent of the choice
of x on [-1, 5]. Thus choosing x 0 on [1, 5] yields x 2 on the whole interval, and this
must be an extreme point solution.

Notice that we have one equality constraint in three nonnegative variables, and
that on [0, 1) all three are positive while on [1, 5] all three are zero.

Appendix B. Right analytic functions. This appendix contains the propositions
about right analytic functions that are required in 3. The main result is the proof of
Lemma 9 which we restate below as Lemma B3. For completeness we review the
definitions of analytic and right analytic functions.

DEFINITION B 1. [e.g., 15]. Let f c R be open and g" f- R. Then g is said to be
analytic on f if to every open interval I c 12 with center a, there corresponds a series

Yi=0 ci(t-a) which converges to g(t) for all e L
DEFINITION B2. A function g’[0, T]R will be called right analytic if for each

[0, T) there is an e > 0 and an analytic function h’ (t- e, + e) R such that
g(s) h(s) for all s 6[t, + e).

LEMMA B3. Let g’[0, T]R have right analytic components gi(’ ), i= 1,..., n.
Then there exists a (possibly infinite) disfoint family of open intervals {Ij} such that
[0, T) ---" Uj., and such that for each interval I, each gi satisfies

(i) gi is analytic on I, and
(ii) either [gi[ > 0 on I. or gi 0 on I.
The proof of this result will require the following lemmas.
LEMMA B4. Let I R be an open interval and {Ji} a family of open intervals whose

union is L Let g" I R be given. If g is analytic on each Ji then g is analytic on L
LEMMA B5. Let K R be a compact interval, and let h be an analytic function

defined on a neighborhood ofK. Then either h 0 on K or h has finitely many zeros in K.
COIOILAIY B6. Let I c R be an open interval, and let h" I R be analytic. Let

Z(h) {tI" h(t) 0}. Then eitherZ(h)=I, orZ(h) has no limitpointin L In the latter
case Z(h) is at most countable.

The proofs of both these lemmas may be found in [15].
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LEMMA B7. Let {J} be any family of open intervals, and {Ij} be a dis]oint family of
open intervals such that iI. UJ. Then U] ..

Proof. Since the collection {I.} is disjoin.t, th.e connectedness of intervals implies that
each J,, is contained in a unique/.. Thus J ___/. for some ] and we are done.

Proof ofLemma B3. We shall prove the proposition for the case n 1, since from
this, the general case follows immediately.

By definition of g being right analytic, for each [0, T) there exists an t >0
such that g is analytic on Kt (t, + e,) c [0, T). Let V U tgt and W tIt Since V is
open, there exists a disjoint family of open intervals {Ji}--1 whose union is V.

On each Ji we now obtain the following: By Lemma B4, g is analytic on Ji. By
Corollary B6, either g 0 on Ji or g 0 on at most a countable sequence {tl, t2, "}
Ji. In the latter case write Ji (t’, t"). Since the sequence has no limit point in Ji, and since
by definition g agrees with an analytic function defined on a neighborhood of t’, the only
possible limit point of {tk} is t". Hence we may assume that

t’ < < t2 < < t".

With this partition of Ji we can now conclude that there is a (possibly infinite) collection
of disjoint open intervals {L/k} such that Igl> 0 on or g- 0 on tf, and such that

Now it is clear that W [0, T). By Lemma BT, it follows that U iJi [0, T). Hence
Ui,kki [0, T). By relabeling the family {L/k} as {I.}, we obtain the desired result. !-1

LEMMA B8. Let g, h "[0, T]R be right analytic, and toe [0, T) be such that
g(to) # h(to). Then there exist O<-r <s <- Tsuch that g h on [0, r) and g h on (r, s).

Proof. Let E {t" g(t) h (t)}. Since to 6 E, E is nonempty. Let r inf E. Then by
definition of r, g h on [0, r). Since both g and h are right analytic, there is an e > 0 such
that g and h agree with analytic functions on Jr, r + e ]. Again by definition of r, there is a

(r, r + e) such that g(t) h(t). By Lemma B5, g-h has finitely many zeros on
[r, r + e ]. Hence there is an s (r, r + e) such that g
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NECESSARY CONDITIONS FOR DISTRIBUTED CONTROL PROBLEMS
GOVERNED BY PARABOLIC VARIATIONAL INEQUALITIES*

VIOREL BARBU-

Abstract. Necessary conditions for optimality in distributed control problems governed by semilinear
and variational parabolic inequalities are given. The optimality conditions are expressed in terms of
generalized gradients, and are obtained by means of an abstract approximating control process.

1. Introduction. This paper is mainly concerned with distributed control problems
with a convex cost criterion governed by parabolic semilinear equations of the form

y, + Aoy +/3(y) Bu +f on O 12 x ]0, T[,

0y
(1.1) cely 4-6e2 0 on E=Fx]0, T[,

Ov

y(., 0)= Yo on lq,

where/3 is a maximal monotone in R R, Ao is a second order elliptic differential
operator on lq and B is a linear symmetric continuous operator from a control space
U to L2(iq). Here fl is a bounded open subset of Euclidean space Rv with the
boundary F.

In particular (1.1) represents the most convenient way to formulate a large class of
parabolic variational inequalities arising in mechanics, heat transfer, and the theory of
free boundary problems. Examples of this kind can be found in the book of Duvaut and
Lions [7], and the survey of Lions [8].

Several results on existence, necessary conditions for optimality and approxima-
tion for control problems governed by equations of the form (1.1) have been obtained
by, among others, Lions [9], Mignot [12], Yvon [19], Puel [13], and Saquez [17], [18].
The results we give here differ in certain key respects from most of the existing literature
on necessary conditions. The underlying idea behind our approach consists of approxi-
mating the control problem for (1.1) by a family of smooth problems and afterwards to
tend to the limit in the approximating optimality equations. This approach has already
been used by the author in [2].

The plan of the paper is the following. In 2 and 3 we study a general
approximating process for convex control problems governed by a general class of
nonlinear evolution equations in Hilbert space. The main results of this paper,
Theorems 1, 2, and 3 are derived in 4 by specializing the general theory to control
problems governed by (1.1). This general approach is also used in 5 to derive
necessary conditions of optimality for control problems governed by nonlinear boun-
dary value parabolic problems of the form

yt+Aoy=Bu+f onQ,

(1.2)
0y
w+/3(y) 0 onE,
Ov

y(’, O)= Yo on .
* Received by the editors June 18, 1979, and in revised form April 11, 1980.

" Faculty of Mathematics, University of Iasi, Iasi 6600, Romania.
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Based on this approach, Theorems 1 and 4 can certainly be extended to more
general equations of the form (1.1) and (1.2), but we do not here attempt maximum
generality nor claim to be comprehensive in any sense. The conditions which are shown
in these theorems to be necessary for optimality, are detailed and made more explicit
for two important cases" / locally Lipschitz and/ a multivalued graph of the form
(4.45).

The following notation is used. If E is a Banach space, then we shall denote by
Lp (0, T; E), 1 _-< p <-m, the space of all p-integrable E-valued functions on [0, T], and
by C(0, T; E) the usual Banach space of all continuous functions from [0, T[ to E. We
shall denote by WI’"(0, T; E) the space {y L"(0, T; E); y’ L"(0, T; E)} where the
derivative y’ of y is taken in the sense of vectorial distributions on ]0, T[. Equivalently,
y W’p (0, T; E) means that y" [0, T]- E is absolutely continuous, a.e. differentiable
on ]0, T[, and

(1.3) y(t) y(0)+J0 y’(s) ds forte[0, T], y’6L’(O, T;E).

In the special case when E is a space of functions we shall denote y’ by the symbol yt.
Given a lower semicontinuous convex function q" X-R ]-, +] we shall

denote by Oq(x) E’ (the dual space of E) the set of all subgradients of q at x, i.e.,

(1.4) 0q (x) {x* E’; q(x) <= q(y) + (x*, x y) for all y E}.

If p is Gteaux differentiable at x, then 0(x) consists of a single element, namely the
gradient Vq (x) of q at x. The mapping 0q" E E’ is called the subdifferential of q, We
shall denote by D(q)={x;q(x)<+c} the effective domain of q and by D(0q) the
domain of Oq; i.e., D(0)={x E; O(x)# }. For other notation and results in
convex analysis relevant to this paper we refer to the books [1], [6], [14] and to the
recent survey by Rockafellar [16].

If lq is an open subset of the Euclidean space R N, we shall denote by Wk’p (lq) and
W0’" (fl), (k a natural number and 1 -<_ p -< ), the usual Sobolev spaces on lq. For p 2
we shall simply write wk’2(’) Hk () (respectively, Wo’ (lq) Ho (lq)). For any real s
we denote by H (F) the corresponding Sobolev space on the boundary F (see [11, p.
34]). For 1 _-< p _-< o we denote by W’1 (Q) the space

w’1 (o)= z;"(0, T; W’"()) W’(0, T; t"()),

where Q f ]0, T[. For p 2 we set W’1 (Q) H2’a(Q).
2. An abstract tormulation o the problem, Let H and U be two real Hilbert

spaces identified with their duals with norms denoted[. [, 11. and with inner products
(., .) and (.,.), respectively. Let B be a linear continuous operator from U to H, and let
q H R ]-c, +o] be a lower semicontinuous, convex function, not identically +.
We set F

The state equation governing our control problem is ([0, T[ is a finite interval)

(2.1)
y’(t)+Fy(t)Bu(t)+f(t) a.e. t]0, T[,

y(0) y0,

where y0 D(q) and fL:(O, T; H) are given and the controller u(.) is an element of
L2(0, T; U).

It is well known (see [3], [4]) that for each yoD(q) and t)L2(0, T;H) the
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Cauchy problem

z’(t) +Fz(t) v(t) a.e. ]0, T[,
(2.2)

z(0) yo,

has a unique solution z=(R)v wa’2(0, T;H). Furthermore the operator (R) is
Lipschitzian from L2(0, T; H) to C(0, T; H).

The optimal control problem we consider here is"

(P) Minimize
T

Io L(y(t), u(t)) dt in wl’2(0, T; H) and L2(0, T; U)Y

subject to (2.1).
In terms of the operator defined above, problem (P) can be brought into the form

T

(2.3) min {Io L(O(Bu +f)(t), u(t))dt;u L2(0, T; U)}.
We proceed now to set forth the basic assumptions on L and F.

(i) L" H x U R is convex, lower semicontinuous ana + 00. The Hamiltonian
function
(2.4) H(y, p)= sup {(p, v)-L(y, v); v e U}

is everywhere finite on H x U.
(ii) F 0<. Every level subset {y e H;ly 12 - ( (Y) C} is compact in H.

(iii) There exists afamily oflowersemicontinuousconvexfunctionsq H -> t (e > O)
such that"

(a) For each y D(q) one has

(2.5) lim sup q (y) _-< q (y),
e--)0

while lim inf-o q(y) --> q (y) for any sequence {y } convergent to y for e -> O.
(b) There exists a lower semicontinuous, convex function " H --> R, d/ + o such

that

(2.6) q(y)-->4(y) forallyeHande >0,

and every level subset of the form {y H; [y[2 + O(y) _< C} is compact in H.
(c) LetF Oq . There exists a constant C independent of e and h such that

(2.7) (F (y)-F (z), y z) >= -C(e + h )(1 + IF (y)l2 + IV (x)]2)

for y D(F), z D(Fx).

(d) For each e 0 the operator (R) L)(O, T; H) -> L2(O, T; H) is Ggteaux differen-
tiable.

Here F (y) inf {[w[; w F(y)}, and denotes the operator defined by
(R)v z, where z W1’2(0, T; H) is the solution to

z’ +Fz v a.e. on ]0, T[,
(2.8)

z(O) yo,

(Yo D(p) is the element fixed in problem (P)). F can be regarded as a penalty operator
associated with F. Now we shall establish some technical lemmas.
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LEMMA 1. The operators (R) and (R) are weakly-strongly continuous from
L2(0, T; H) into itself. Moreover, one has

(2.9) [(vO(w)v)(t)l <-_ [v(s)[ ds, [0, T],

for all v, weL2(0, T;H). Here V(R),(w)(L2(0, T;H),L2(O, T;H)) denotes the
Gteaux differential of (R) at w.

Proof. Let {vn} be a sequence of L2(0, T; H) which converges weakly to some
element v. We set zn (R)v,. By (2.2) it follows that (see, e.g., [3])

1/2 Iz’ ds+q(z,(t))<--q(yo)+1/2 Iv, 2 ds<--C,

and

It follows by estimates (2.10) and (2.11) that {z} is bounded in W1’2(0, T; H), and
p(zn(t)) <-_ C for all [0, T] and n. Along with Assumption (ii) and the Arzela-Ascoli
theorem, the latter implies that {zn } is a precompact subset of C(0, T; H). Hence there
exists a subsequence again denoted {z} and z C(O, T;H) such that z(t)z(t)
uniformly on [0, T]. Then by a standard argument it follows that z is a solution to (2.2),
i.e., z (R)v. Hence (R)Vn -- (R)V strongly in L2(0, T; H). The weak-strong continuity of (R)
follows by a parallel argument.

Let w and v be given in La(0, T; H). We have

VO(w)(v) lim (O(w + hv)-Ow)/h,

and

(2.12) (O(w+hv)-O,w)’+FO(w+hv)-FOw hv on]0, T[.

Multiplying (2.12) by (R)(w + by)- (R)(w) and integrating over [0, t], we see that

I(R),(w+hv)(t)-(R),w(t)l<--hIo Iv(s)lds, [0, T],

which implies (2.9) as claimed.
LEMMA 2. Let v 6Lz(O, T; H) and yo D(q) be fixed. Then

(2.13)

(2.14)

[((R)v)(t)-((R)v)(t)l<-Ce 1/2 forte[O, T], e >0,

((R)v)’-, ((R)v)’ weakly in L2(0, T; H) for e - O.

Proof. Let z (R)v be the solution to (2.8). By estimates (2.10) and (2.11) (where
q and v v) it follows that

(2.15) Iz’[ ds+lz(t) 2 +q(z(t))<_C, tel0, T], e >0,

(we shall denote by C several positive constants independent of e.) To get the estimate
(2.15) we have also used condition (2.6) which implies that the uniformly majorize an
affine function on/-/.
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In particular it follows by (2.15) that {F(z)} remain in a bounded subset of
L2(0, T; H). Along with Assumption (iiic) this yields

(2.16) Iz(t)-za(t)12<-C(e+A) fore, A>0, t[0, T].

Thus there exists z W1’2(0, T; H) such that
oz z in C(0, T; H).,

z’ (z) weakly in L2(0, T; H),

Fz g weakly in L2(0, T; H).

To conclude the proof it remains to show that

g(t) Fz(t) a.e. ]0, T[.

By (2.8), we have

(Z(t)-z(s), z(t)-z)+ Is (q(z(o.))-q(z))do.<=fs (v(o.), z(o.)-z) do’,

for all z H and 0 < s < <- T. Letting e tend to zero and applying Fatou’s lemma we get
in virtue of condition (ilia) in the assumptions

(z(t)-z(s), z(t)-z)+ Is q(z(o’))do’-(t-s)p(z)<-Is (v(o’), z(o’)-z) d,

and this yields

(z)’(t) + Oq(z(t)) v(t) a.e. ]0, T[,

as claimed. Hence z=(R)v and by (2.16) the estimate (2.13) follows, thereby com-

pleting the proof.

3. Convergence of an approximating control process. For each e > 0, denote by
L H U R the regularized function

(3 1) L(y, u)=inf ItY-Zl2+llu-vtt2+Z(z, v); zH,
t 2e 1

It is well known (see e.g., [1, p. 107]) that L is Fr6chet differentiable.
Let 6" R+- R / be a continuous function satisfying

(3.2) lim 8(e)/e O,

and let L H x U R be the function defined by

(3.3) L L() for e > 0.

By OLd(y, u)=(OiL(y, u), OEL(y, u))c H x U we shall denote the gradient of L
at (y,u). Let u’eL2(0, T; U) be an optimal control in problem (P) and let
y* wl’Z(0, T; H) be the corresponding state in (1.1).

Consider the approximating control problem"
(P) Minimize

T

(L (y, u + 1/2[[u * u 2) at in y W1’2(0, T; H) and u L2(0, T; U),
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subject to

y’ +Fy Bu +f a.e. on ]0, T[,
(3.4)

y(0) yo.

LEMMA 3. For each e >0, problem (P) has at least one solution (y, u)
W’2(O, T; H) x L(O, T; U).

Proof. Let L(0, T; U)R be the function given by
T T

(3.5) *(u):Io L((R)(Bu+f),u)dt+1/2Io [[u*-u[12dt.

Inasmuch as L is Lipschitzian and 19 is weakly-strongly continuous, we may infer that, is weakly lower semicontinuous on L(0, T; U). Moreover, (u)+ for
[lu[[(O.T;U) +. Consequently, attains its infimum on L2(0, T; U) as claimed.

LEMMA 4. For each e > O, there exists a function p L(0, T; H) such that

(3.6)

and

p =-(VO(Bu +f))*OxL(y, u),

(3.7) B*p 02L (ye, ue) + ue u*.

Proof. Since (y, u) is a minimum point for (P) and L is Fr6chet differentiable, we
find by a standard argument,

(3.8)

T

Io ((0L(y, u,), 7(R)(Bu, +f)Bv)

+ (02L (y, u) + u u*, v )) dt 0 for all v L2(0, T; U).

Let p be the function defined by (3.6) where (V(R) (.))* denotes the adjoint of V(R) (.).
Then (3.8) yields (3.7) as desired.

LEMMA 5. For e - 0 we have

(3.9) y-> y*

(3.10) uu*
(3.11) y’ --> (y*)’

strongly in C(0, T; H),

strongly in L2(0, T; U),

weakly in L2(0, T; H).

Proof. It suffices to prove (3.9)-(3.11) on some subsequence. We have for all
u e L2(0, T; U), and e > 0,

(3.12)

T T

(L(O(Bu +f), u)+llu*-ull) dt

T

<= Io L ((R)(Bu* + f), u*) dt.

On the other hand, we have shown in Lemma 2 that

(2.13) [O (Bu* +f)(t)-(R)(Bu* + f)(t)l--< Ce 1/2

while by (3.1) it follows that

for e [0, T],

L ((R) (Bu * + f), u*)_-< L(y *, u*) + lo (Bu* +f) (R)(Bu* + f)12/2,(e ).
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Combining the latter with (3.12) and (3.13), we see that
T T T

l msu 
kJo Jo Jo

In particular, it follows that {u} is bounded in Lz(0, T; U). Then multiplying both sides
of (3.4) (where y y and u u) by Fy and integrating on [0, T] we get (see
inequality (2.15)),

T T

(3.15) fo IfY(t)lZdt+ fo lY:(t)12dt+w(Y(t))C fort[0, T].

Then by condition (iiib) and the Ascoli theorem it follows that the family {y} is
compact in C (0, T; H). Thus selecting a subsequence, if necessary, we may assume that

0 L2u u weakly in (0, T; U),
oy, y strongly in C(0, T; H),

Y’ yO, weakly in L(0, T; H),

Proceeding as in the proof of Lemma 2, we see that (yO, u o) satisfy (2.1). In other words
o oy O(Bu +f). On the other hand,

(3.16) lim inf L (y, u) dt L(y, u dr,

because the function (y,u)IL(y,u)dt is weakly lower semicontinuous on
L(0, T; H)x L(0, T; U), and by (3.1) (see [1, p. 107]),

where y z 0 in L(0, T; H) and u w 0 in L(0, T; U) as e 0. Now by (3.14)
and (3.16)

T

lim / Ilu u*ll d 0.
E0 o

Hence u= u*, yo= y. and all conclusions of the lemma follow.
LEMMA 6. There existunctions p L(O, T; H) and q L(O, T; H) such thator

(3.17)
p, - p weak star in L(0, T; H),

01L(y,u)q weaklyinLl(O, T;H),

(q(t), B*p(t)) OL(y*(t), u*(t)) a.e. ]0, T[.

Here OL" H x U H x U is the subdifferential of L.
Proof. We shall argue as in the proof of Theorem 1.1 in 1, p. 222]. By the definition

of OL we have

(OxL(y, u), y-y*-ow)+(O2L(y, u), u-vo)

>_- L (y, u) L (y* + Ow, Vo)

and therefore

for all w H,

0(3.19) -101L(y,u)[<-(B*p+u*-u,u-vo)+L(y*+OW, Vo) a.e. te]0, T[.
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According to Assumption (i) the Hamiltonian function H and its subdifferential OH are
locally bounded on H U. Let Vo(t) be a measurable function such that Vo(t)
OoH(y*(t)+pw, 0) a.e. t ]0, T[. For Iwl- 1 and 0 sufficiently small we have IIv0(t)ll-< c
and

L(y*(t)+w, Vo(t))=-H(y*(t)+ow, O)<=C a.e. t]0, T[.

Then by inequality (3.19)

[01L (y (t), u (t))l <_-(l[B*p(t)[[/[lu(t)- u*(t)ll)
(3.20)

(M + Ilu (t)ll) + C a.e. ]0, T[.

On the other hand, it follows by Lemma 1 (inequality (2.9)) that for all w and v in
L(0, T; H),

T

(3.21) I((vO(w))*v)(t)[ _-< J, [v(s)l ds, [0, T].

The latter in conjunction with (3.6) and (3.20) implies, via Gronwall’s lemma,

(3.22) [p(t)[<=C a.e. t]0, T[, e>0,

and therefore

(3.23) [01L(y(t), u(t))[<=C(l+llu(t)-u*(t)ll)(l+[[u*(t)ll) a.e. t]0, T[.

Then by the Dunford-Pettis criterion the set {01L(y, u)} is weakly compact in
L 1(0, T; H) and therefore there exists a subsequence convergent to zero, again denoted
{e}, such that

(3.24) 01L (y,, u) -> q weakly in L (0, T; H).

By (3.10) and (3.23) it follows that q L2(0, T; H). Next, by estimate (3.22) we may
assume that

(3.25) p --> p weak star in L(0, T; H).

By (3.21) and (3.23), we see that
T

(3.26) [p(t)[<-C(I I[u*(s)l[ds+T-t) a.e.t]0, T[.

Now from (3.7), (3.9), (3.10), (3.24), and (3.25), (3.18) follows by a standard argument
(see [1, p. 236]). This completes the proof of Lemma 6.

One expects from (3.6), (3.9), (3.10), (3.24), and (3.25) that the following formula
holds:

(3.27) p =-(O(R)(Bu +f))*OiL(y*, u*) on ]0, r[,

where 019 is the "differential" of 19 in some generalized sense. We shall see below that in
some important cases one may give a precise meaning to (3.27).

4. Control problems governed by (1.1). Let fl be a bounded and open set in R
with a sufficiently smooth boundary F. Let Ao denote the second-order elliptic
symmetric operator on fl,

N

Aoy Y (aiiyx,)x, + ay,
i,i=l
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where aij CI(’), a L(f), a >= O, aij aji and there exists a positive constant o such
that

N

E a(x)ioll a.e.xO, R.
i,i=1

We shall denote by 0/0u the outward normal derivative corresponding to Ao, and by
a "Ha(O) x Ha(O)--> R the bilinear form

a (y, )= f (aiiYx,tPx, + ayO) dx.
i,j=l

Let U be a real Hilbert space with norm I1" and inner product (.,.).
Consider the following distributed control problem’

Minimize
T

(4.1) Io L(y(t), u(t))dt

subject to

over all u L2(0, T; U) and y H2’I(Q),

y, + Aoy + fl(y) f + Bu on O,

0y
(4.2) aay+a2--=0 on E=F]O, T[,

Ou

y(x, 0)= yo(X) x 9,.

Here/3 is a maximal monotone graph in R x R such that 0 e/3(0) and Oi, 1, 2 are
positive constants satisfying" a 12 +a # 0; B is a linear continuous operator from U to
LZ(II); and L" L2() x U/ is a lower semicontinuous convex function on LZ(II) x U
satisfying Assumption (i) (H La(f)). The subscript denotes partial differentiation
with respect to t. The function f 6 L(O) is given.

Since /3 is maximal monotone in R xR, there exists a lower semincontinuous
convex function j’ R R such that O/= B. The function j is uniquely defined up to an
additive constant, so that we may Suppose that

(4.3) inf {/(y); y 6 R} j(O) O.

Problem (4.1) can be put into the form (P), where H L2(’),) and F" L2()L2()
is defined by

(4.4) Fy =Ay +/y foryD(A)f’lD(l),

where

(4.5) Ay =Aoy

and

0---Y 0 on F}for yD(A)= y eH2(f); Cely+Ce2
cOte

(4.6) (/y)(x) {w L(I)); w(x) fl(y(x)) a.e. x

(4.7) D(/) {y L2(D,); ::lw L2([I); w(x) /3 (y(x)) a.e. x
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It is well known (see [3]) that F 0q, where

(Y)=21-a(Y, Y)+ i(Y) dx +2c---7 y do-,

(4.8)
D() {y H(f); j(y) L(fl)}.

If a2 0, then

(y) a(y, y)+frj(y)dx, D()={yeH(n);j(y)eLl(n)}.

The initial data yo will be chosen such that

(4.9) yoHl(), j(yo)eL(fl) ifa2#0,

and

(4.9)’ yoH(), j(yo)L(fl)ira2=0.

Let O be a fixed C function on the real axis R such that JS O(t) dt 1, o(t) O,
o(t) o(-t) for Itl < and o(t)= 0 for ltl 1. We set e-l(1 -(1 + e)-), and define
the mollifier

(4.10) (y)= (y- e0)O(0) d0 e e(0)O(e-l(y-0)) da

Clearly is infinitely differentiable and monotone on R. Consider the family of
operators G :H H,

(4.11) G(y)=Ay+(y) foryeD(G)=D(A), e>O.

Obviously, G 3 where

(4.12) (y) (y)+f j (y) dx f j(y) dx,

and

(4.13) j(y)= fl(y-e0)O(0)d0, yR.

Here fl(y) /3 (r) dr inf {j(r)+(2e)-lly-rl2; reR}. We now show that q and F
satisfy Assumption (iii). Condition (iiib) is obviously satisfied with O(y)
2a-a (y, y) + (1/2cra) Ir Y do" for ca # 0, and 6(y)= 1/2a(y, y) for aa=0. We have

(4.14) j(y)_-<j(y)+ tgaO(tg) dO for all y R, e >0,

which along with (4.12) implies (2.5). As regards the remaining condition in (ilia), we
proceed as follows. Let y - y strongly in L2(D,) for e 0. Thus we may assume that
y (x) - y (x) a.e. x e f. By (4.13) it follows that

(4.15) j(y(x))= f_ (j(z(x, O))+(2e)-a[z(x, "O)--ye(x)--8,0[)20(’tg) d’O,

where z(x, O) is the minimum point of the function rj(r)+(2e)-lr-y(x)-eOI2.
Suppose that {nj(y(x))dx} is bounded for e 0. Then we infer that (z(x, O)-
y(x)-eO)O a.e. x ell, 0 [-1, 1], and therefore

(4.16) z(x, 0) y(x) a.e. x e D,, 0 e ]-1, 1[.
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Since f is lower semicontinuous, the Fatou lemma along with (4.15) yields

lim_oinf In j (y(x)) dx >- In f-oo j(y(x))o(O) dO dx In j(y(x)) dx,

as claimed. By Green’s formula,

(4.17) In (F(y)-Fx(z))(y-z) dx >- In (/3(Y)-/3(z))(Y-z) dx,

On the other hand, we have

(/ (y) -/3 (z))(y -z)

(4.18)

y, z D(A).

>-(e-h)

_
O(B(y-eO)-B,(z-hO))0(O) dO

+ I_ (e/3(y -eO)-hBx(z -hO)l(fl(y -eO)-Bx(z -hOl)0(O) dO,

because/3 is monotone. Next by (4.10) we see that

(4.19) [/3(y)-/3(y)]--<_ I_ [fl(y)-(y-eO)lO(O) dO <- l,

because/3 is Lipschitzian with constant 1/e. Hence

(4.20) fore>0, 0[-1,1], yR.

Estimates (4.19) and (4.20) inserted in (4.18) yield (2.7). Since/3 is differentiable the
operator (R), defined in 2, is Gteaux differentiable on L2(0, T; L2(1)), and its
Gteaux differential VtO w is given by VtO w)v z, where z Hz’l (O) is the solution
to

z, + Az +VB (Ow)z v onO,
(4.21)

z (x, 0)= 0 on ft.

Since VB((R)w)eL(Q), (4.21) has for each v eL2(O) a unique solution z
H2’I(Q) f’) L2(0, T; D(A)).

The dual operator (V(R)(w))* is given by (V(R)(w))*q=-(, where r
H2’I(Q) fq L2(0, T; D(A)) is the solution to

(4.22)
(t-A-V(Ow)=q on O,

((x, T) 0 on f.

Let (y*, u*)e H2’1(O)x L2(0, T; U) be any optimal pair in problem (4.1). Since
Assumptions (i)-(iii) are satisfied we may apply the results established in 3. Thus there
exist sequences {y}c H2’l(O)L2(O, T; D(A)), {u}c L2(O, T; U), {q} L2(O),
{p}c H2’I(O), and functions p e L(0, T; t2()), q L2(O) satisfying the equations

(4.23) (y)t+ay+B(y)=Bu+f onO,

(4.24) (p)t-Ap-VB(y)p=q on O,

(4.25) y (x, 0) yo(x), p (x, T) 0 on D,

(4.26) (q(t), (B*p)(t)) OL(y*(t), u*(t)) a.e. ]0, T[,
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and

(4.26)’ (q(t)B*p(t)+u*(t)-u(t))=OL’(ye(t),u(t)) a.e.t]0, T[,

(4.27) y y* strongly in C(0, T; L2(D,)),
(4.28) .u u* strongly in L2(0, T; U),

(4.29) p p weak star in L(0, T; L2(f)),
(4.30) q --> q weakly in LI(0, T; LZ(f)).
We notice that by (3.15), {Aye +/3 (ye)} remain in a bounded subset of L2(O). Since
is monotone we deduce, by a standard argument involving Green’s formula,

IlAy,ll(o)+ll/(y)[I,(o <- c for all e >0,(4.31)

and therefore

(4.32)

where

Aye -->Ay* weakly in LZ(Q),

fie (y) h weakly in L2(Q),

h =Bu*+f-Ay*-y*t,

In particular, it follows by (4.32) that

h(x, t) /3(y*(x, t)) a.e. (x, t) Q.

weakly in H2’1 (O).

Since {(y,)} is bounded in L2(Q) and {y} in L2(0, T; H2(O)), it follows that. (see,
e.g., [10, p. 70]) {y} is a compact subset of L2(0, T; H(D,)). Hence (4.27) can be
strengthened to

(4.27)’ y--> y* stronglyin C(0, T;L2(f))f’qL(O, T; Hi(D,)),
and weakly in H2’a (Q).

Now we multiply both sides of (4.24) by p and integrate with respect to (x, t), to obtain,
since

Aoppe dx dt >-_ C I.. [grad 12 dx dt, V/3 (y) _-> O,P
(4.33)

IIpll,.(0,;,(-<_ c for all e > 0.

Next we multiply (4.24) by ’(p) where ’(r) is a smooth, monotone and bounded
aplroximation to sign r. Applying Green’s formula and letting : sign r, we get

(4.34) Io IV/e (Y)P[ dx dt <= C for all e > 0.

Thus selecting a subsequence, if necessary, we may assume that

(4.35)
P p weakly in L2(0, T; H(f)),

and weak star in L(0, T; LZ(f)),
and

(4.36) V/3(ye)p rp weak star in (O),

where //(Q) denotes the space of all bounded measures on Q. Letting e 0 in (4.24),
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we see that p L’(0, T;L2(fl))L2(O, T; Hl(fl)) is a solution (in the sense of dis-
tributions) to

(4.37)
Pt Ap 7rp q on Q,

p(., T) 0 on 12.

In other words,

(4.37)’

T

pxtdxdt+ a(p,x) dt+-- pxdo’dt+Trp(X)

+ Jo qu dx dt 0 for all Da.o,

with the usual modification in the case a. =0. Here Dn.0 denotes the space of all
infinitely differentiable functions on O that vanish for s [0, 6] for some 6 > 0.

LEMMA 7. p --> p strongly in L2(O) on some subsequence e --> O.
Proofi By virtue of the Sobolev embedding theorem, H (fl)c C(fl) for s > N/2.

Hence LI(I))c H-S(fl), and estimate (4.34) implies that {V/3(y)p} is a bounded
subset of LI(0, T;H-S(fl)). Next by (4.33) we see that {Ape} is bounded in
LI(O, T; H-S(l))), and therefore {(P,)t} is bounded in L(0, T; H-S(fl)) for s > N/2.
Since by (4.33), {p} is bounded in L(0, T; L(fl)) we may conclude in virtue of the
Arzela-Ascoli theorem that {p} is a relatively compact subset of C(0, T; H-()).
Hence p C(O, T; H-s(D)) and for e -> 0,

(4.38) Ilp(t)-p(t)llH-s(a)-->o uniformly on [O, T].

On the other hand, since Hl(f) is compactly embedded in L2(f), for each r/> 0
there is C(r/) such that (see [11, p. 102]),

[Ip(t)-p(t)llL2m) <- llp(t)-p(t)[lt-Im) + C(l)[[p(t)-p(t)[[i4-sm,

and therefore with other constants C and C(r/) we have

IIp -pll=<o <- c / c()llp-pll,=<o,;H-<)> for all r/>0.

Along with (4.38) the latter implies Lemma 7, as claimed.
Summarizing, we get
THEOREM 1. Let (y*, u*) H2’1(O) L2(0, T; U) be an optimal pair for problem

(4.1). Then there exist functions p s L(O, T; L(fl)) f’I L(O, T; H(II)) f’l
C(0, T; H-(fl)), q sLE(Q) and a bounded measure 7rp l(Q) which satisfy (4.26)
and (4.37). Furthermore, (y*, u*, p, q, 7rp) are limits in the sense of (4.27)-(4.30) and
(4.27)’, (4.32), (4.36) of solutions (y, u, p, q) to approximating equations (4.23)-
(4.25).

Remark. If a2 0, then by (4.33) and (4.35) it follows that p t2(0, T; Ho()). It is
natural to call such a function p a coextremal of problem (4.1) corresponding to y*.

Now we shall discuss some consequences of Theorem 1 in two notable cases.
1. is locally Lipschitzian. According to (4.27), we may assume that y(x, t)

y*(x, t) a.e. (x, t) Q. Then by Egorov’s theorem, for each /> 0 there exist a measur-
able subset E, of Q and C, >0 such that the Lebesgue measure m(Q\E,) of Q\E, is
<=r/, [y (x, t)] <= C a.e. (x, t) E, and

y(x,t)->y*(x,t) uniformly on E, fore->0.

Since V/3 is uniformly bounded on bounded subsets, selecting a further subsequence
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en "-> 0, we may assume that

(4.39) VBn(y.)--> r, weak star in L(E,) for n -->

Then according to Mazur’s theorem, zr, is the strong limit in LI(En) of a sequence
consisting of convex combinations of the Vfln(y.). In other words,

r,(x, t)= lim /x (x, t) a.e. (x, t)s E,,

where/. are of the form

iIm

For each m, I is a finite set of natural numbers of Ira, +[ and c, _-> O, a, 1.
Arguing as in the proof of Theorem 2 in [2] we finally find

7r,(x, t) OB(y*(x, t)) a.e. (x, t) 6 E,,

where OB(y) is the generalized gradient of B in the sense of Clarke (see [5], [16]); i.e.,
OB(y) is the convex hull of all elements of the form {limn_.o Vfl(y,)} where yn y and
VB (yn) exist. On the other hand, as seen in Lemma 7, p --> p strongly in L2(Q) for e 0.
Extracting a further subsequence and modifying the subset E,,, if necessary, we may
assume that p L(En) andp p uniformly on E, for e 0. It will be more convenient
to regard the measure rp as an element of the dual space (L(Q))* of L(Q). As a
matter of fact, by (4.34) and (4.36) we see that selecting a further subsequence
(eventually a generalized one) we may assume that

V/3 (y)p --> r, weak star in (L(Q))*.

Along with (4.39) the latter implies that r, rnp on E,. In particular we may infer that
for r/# r/’ one has

(4.40) (r,,- 7rn)p 0 a.e. on E, (3 E,,.
On the other hand, estimate (4.34) yields

(4.41) _--< C for all r/> 0.

Define on E [-J,>o E, the measurable function

/x(x, t) 7rn(x t)p(x, t) for (x, t) E,.
By (4.40) and (4.41) we see that/. is well defined and belongs to LI(Q).

Let zrp (Trp)a + (Trp)s be the Lebesgue decomposition of 7rp (L(Q))* into the
absolutely continuous part (rrp)a LI(Q) and the singular part (rrp)s (see, e.g., [15]). We
have

IE (Trp)ax dx dt + | dx dt,
-E

for all x L(Q) which vanish outside E,. Next the "singularity" of (’n’p)s implies
the existence of a nondecreasing sequence of measurable sets Qk c Q such that
m(Q\Qk)O for k oo and (Trp) =0 on L(Qk). Hence

IE ((TrP)a P’) dx dt O’

for all L(Q) which vanish outside of some E, f3 Qk. Since m(Q\E)= O, we may
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infer that/z (7/’p)a a.e. on Q. Remembering that 7rn(x, t)O(y*(x, t)) a.e. (x, t) Q,
we may therefore conclude that

(4.42) (rp)a(x, t) 0/3 (y * (x, t))p(x, t) a.e. (x, t) Q.

Now we shall assume that the following condition is satisfied,

(4.43) sup {Iwyl; w 0/3(y)}_-< c(I/(y)[ / [y[= / ), yR,

or equivalently (we recall that V/3(y) =>0 a.e. y R),

(4.43)’ V(y)[yl<-_c([(y)l+ly[+l) a.e. yR.

Parenthetically we notice that every function/3 satisfying (4.43) is of polynomial growth
at co. By (4.43) it follows after some computation involving (4.10) and (4.19), (4.20) that

]Vfl(y)yl<=f([fl(y)[+ly]2+ l) forallyR,

where C is a positive constant independent of e. For each e > 0 and natural number n
we set

E2 ((x, t) Q; ]y (x, t)[ <_-- n }.

We have

IV/3 (y (x, t))l =< Cn for (x, t) E,

because/3 is locally LipsChitzian on R. Let E be an arbitrary measurable subset of Q.
We have

/ f Ip(x, t)[ IV/3(y(x, t))l dx at
aEC(E,)

Cn fl?.[pe(x,t)[dxdtff-Ct’l-l IE [(y)p(x,t)[dxdt

+ Cf lye (x, t)] dx dt + Cn-1.

Since {/3 (y)}, {y} and {p} are bounded in L(Q) it follows that for each 3’ > 0

fpVfl dx dt] <= Cn

if rn(E)<=f(y). Since n is arbitrary we see that the family {5zpV(y,)dxdt} is
equicontinuous and so {pV/3 (y)} is, by virtue of the Dunford-Pettis criterion, weakly
compact in LI(Q). Hence rrp =(rrp)a e L(Q), and the coextremal p satisfies the
equation

(4.44)
p,-Ap-Ofl(y*)p q on Q,

p(x, T) 0 on f.

Since the functions q and rrp =-q +pt-Ap are in the space La(Q), the solution p to
(4.44) is continuous from [0, T] to Ll(f).

We have therefore proved the following theorem.
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THEOREM 2. Under the hypotheses of Theorem 1, assume that [3 is locally
Lipschitzian. Then the absolutely continuous part (rp)a of the measure rrp satisfies
(4.42). If in addition, condition (4.43) holds, then the coextremal p
Lm(0, T; Lz(’))[’-]L2(0, T; Hl(-) is continuous from [0, T] to LI(D,) and satisfies
(4.44). (If az 0 then p L2(0, T; Ho(O,))).

By (4.42) the coextremal p is the solution to

(pt-Ap), Ofl(y*)p +q a.e. on Q,

p(., T)= 0 a.e. on lq,

where (pt-Ap)a--(rt,), is the absolutely continuous part of the measure pt-Ap. If
{Qk} is the sequence of measurable subsets of Q which occur in the definition of (rp)s,
then the above equation can be equivalently written as (see (4.37)’)

T

pxt dx dt + a p, x) dt + px do" dt
og 2

+ g dx dt + ax dx dt O,

for all Da.o which vanish outside of some Ok. Here g L(O) satisfies

g(x, t)e O(y*(x, t))p a.e. (x, t)e O.

2. A unilateral problem. Let the graph be defined by

0 for r>0,

(4.45) (r)= R- fort=0,

for r < 0.

Then the state equation (4.2) reduces to the unilateral problem (see [3], [4]),

y (x, t) _-> 0 a.e. on O,

Yt q" Aoy +Bu a.e. on {(x, t); y (x, t) > 0},

(4.46) Yt max {+ Bu, 0} a.e. on {(x, t); y (x, t) 0},

0___y 0 a.e. on E,aly +a2
O,

y(., 0)= Y0 a.e. on .
According to (4.9), the initial data yo must satisfy

yo HI(), yo(x)_-> 0

We have

so that trivially,

a.e. x f.

/3 (y) e
-ly

(y-eO)O(O)dO for all y R,

Vile(y) e
--ly

o(O) dO for all y R.
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Therefore

(4.47) [YVfl(Y)P -Pfl(Y)[ [P I 0(0)
--ly

Define (e and ye on O by

0 if lYe(X, t)l > e,
&(x,t)=

1 if lYe(X,t)l--<e;

J" 0 if Ye (x, t)>-e,
(x, t) / 1 if ye(x, t)-<-e.

One has

fie 1
pal3 (Ye)=e-lPe& (Ye-eO)0(O) dO+e PeYeYe on O,

Ye

and this yields

(4.48) IPe (ye)I<--2e[V/3 (Ye)Pel(& +e lYelY) a.e. on O.
--1Since by (4.34), {7/3 (ye)P} is bounded in LI(O), and by virtue of (4.31) e Ye/e

/3" (Ye)Ye remain in a bounded subset of L2([I), there exists a sequence {e} convergent to
zero such that

(4.49) Pe (x, t)/3 (y (x, t))- 0 a.e. (x, t)e Q.

This implies in conjunction with (4.47)

(4.50) ye (x, t)V/3 (ye (x, t))pe (x, t)- 0 a.e. (x, t) O.

By Lemma 7, pp in L2(Q), and by (4.32), e(ye)f+Bu*-Ay*-y*t weakly in
L2(Q). This along with (4.49) implies that

(4.51) (y*t + Ay* Bu* f)p 0, ,a.e. on Q.

Since V/J(ye)p, zr, weak star in ///(Q), and ye y* in C(0, T; L2(I))) we have by
(4.50) that

(4.52) y*(%)a 0 a.e. on Q.

(This follows by the same argument as in the proof of (4.42)). We notice that the
solution y 6 HE’I(Q) to problem (4.46) satisfies the equation (see [3, II.2.4]),

Yt--0 a.e. on {(x, t)e Q; y(x, t)= 0}.

This fact combined with (4.51) yields

p(Bu* +f) 0 a.e. on {(x, t) 6 Q; y*(x, t) 0}.

We have therefore proved
THEOREM 3. Let (y*, u*) H2’I(Q) L2(0, T; U) be an optimal pair for problem

(4.1) with state equation (4.46). Then there exist the functions p
L(0, T; L(D,)) 0 L2(0, T; Hi(D,)) and q LE(Q) satisfying along with y* and u* the
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following system of equations.

(4.53) y*=>0

(4.54) Y*t +Aoy*=f+Bu *

(4.55) yt* =0

a.e. on Q,

a.e. on {(x, t); y*(x, t)> 0},

a.e. on {(x, t); y*(x, t) 0},

3y*
(4.56) a lY* + a2 0 a.e. on E,

(4.57) y*(x, O)= yo(x)

(4.58) (pt-Aop)a q

a.e. on f,

a.e. on {(x, t) Q; y*(x, t) > 0},

(4.59) 01 lP +

(4.60) p =0 a.e. on {(x, t); y*(x, t)= 0}

71 {(x, t); (Bu*)(x, t) +f(x, t) 0},

(4.61) (q(t), (B*p)(t)) OL(y*(t), u*(t)) a.e. on ]0, T[.

If 012 0, then p L2(0, T; Ho(D,)).
To give a precise meaning to (4.58), (4.59) we notice that by definition of the

"singular" part (zrp)s of measure zrp, which for convenience will be regarded as an
element of the space (L(O))*, there exists an increasing sequence {Ek} of measur-
able sets satisfying [,-Jk=l Ek {(X, t) Q; y*(x, t) > 0} such that (Trp)s() 0 for any
L(Q) which vanishes almost everywhere outside of some Ek. Then keeping in mind

the approximating equations (4.23)-(4.26), we may write (4.58) and (4.59) as

(4.62) Iopxtdx dt + o7"

a (p, ) dt + p do" dt + qx dx dt 0,
0l 2

for all x Dn.0 which vanish outside of some
Remarks. 1. Theorem 3 is closely related to the main result given by Saguez in [17]

on control-constrained quadratic problems governed by (4.46). However there is not a
large overlap and the methods are quite different.

2. If {y } is a compact subset of C(Q) (this happens for instance if the {y } remain in
a bounded subset of W2q’1 (Q) where q > (N + 2)/2, and in particular if N 1), then
y y* uniformly on ( and by (4.48) we see that p/3(y) 0 strongly in LI(Q). Then
(4.47) implies that yVfl (y)p 0 strongly in LI(Q) for e 0 and therefore 7rpy* --0
on Q. Then (4.58) becomes

(4.63) p,-Aop=q on{(x,t)6Q; y*(x,t)>O}.

5. Control problems with state equation (1.2). We shall study here the following
control problem"

Minimize

(5 1) fT"
Jo L(y(t),u(t))dt over all u L2(0, T; U) and y H2’I(Q)

subject to (1.2).
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The function L satisfies Assumption (i) and Ao, B, U, and/ satisfy the conditions
stated in 4. One assumes in addition that Ao is coercive, i.e., a (x) => to1 > 0 a.e. x 12.

To rewrite problem (5.1) in the abstract form (P) we take H L2(12) and define F:
L2(’),) L2(’),

N

(5.2) Fy Aoy (a0yx,)x, + ay for y D(F),
i,i=l

where

D(F) y H2(fl); u+/(y) 0 a.e. on F

It is well known (see [3]) that F 0 where

(5.4) q(Y) 2 (y,y)+ j(y) dtr foryCHl(fl),

where j’R is defined by j=/3. We fix fL2(Q) and yoH(12) such that
(yo) < +o; i.e.,/’(y0) LI(). Define

(5.5) F,y Aoy for y D(F,),

where

D(F)= yH2(lq);uu+/ (y)=0a.e. onF

and the/ are given by (4.10). Clearly F, 0q" where

(5.6) q (y) Ir na(y, y)+ (y) dtr for y (f),

and the/’ are defined by (4.13).
Assumptions (i), (ii) and (iiib) are obviously satisfied. Observe also that condition

(2.5) is implied by inequality (4.14). To verify the remaining part of condition (iiia)
consider {y} strongly convergent to y in L2(Q) for e 0. If lim_o inf (y,) < +,
then by (5.6) we see that the {y} remain in a bounded subset of H(lq) and therefore the
family of traces {yoy} is bounded in H1/2(F) (see, e.g., [11, p. 41]). Hence {yoy} is a
precompact subset of L2(F) and so by taking subsequences we may assume that
y (tr) y(tr) a.e. tr F (for simplicity we shall write yoy y). This implieby the same
reasoning as in 4 that

lim inf lr] (Y) dr >= rJ(Y) dr’

and therefore lim_,o inf o (y)>-o(y). The proof of condition (iiic) is entirely similar
to that for its counterpart in problem (4.1). Let us now calculate the Gteaux differential
VO,(w) of the corresponding operator O’L2(12)-L2(fl). For each wL2(fI) and
v L2(fl), VO,(w)v z,, where z, Ha’I(Q) is the solution to

(z,), + Aoz = v on Q,

(5.7) Oz---+V[3((R),w)z =0 on E,

z (x, 0)= 0 on 1).
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It is easily seen that the adjoint operator is given by (V(R)(w))*q =-v where
v H2’1 (Q) is the solution to

(ve)t-Aov q on Q,

(5.8) av+ ((R)eW)Ve 0 on E,

ve (x, T) 0 on f.

We are therefore in the situation described in 2. Thus if (y*, u*)
H2’I(Q) x L2(0, T; U) is an optimal pair for problem (5.1) then there exist {ye}c
H2’I(Q), {ue}c L2(0, T; U), {pe}c H2’I(Q), and {q}c L2(Q) satisfying

(y)t +Aoy Bu +f on Q,

(5.9)
0y
+fl (y) 0 onE,

y(x, 0)= yo(X) x f;

(Pe)t-Aope q on Q,

(5.10)
Op
+Vfl (Ye)Pe 0 on ,
p(x, T)=0;

and

(5.11) (q(t),B*pe(t)+u*(t)-ue(t))eOLe(ye(t), ue(t))

Furthermore, according to Lemmas 5 and 6 we have

(5.12)

and

a.e. ]0, T[.

Ay -Ay*

strongly in C(0, T; L2()),
weakly in L2(Q),

weakly in L2(Q),

strongly in L2(0, T; U);

(5.13)
qe q weakly in LI(0, T; L2()),
p - p weak star in L(0, T; L2(I)),

where q LE(Q) satisfies the equation

(5.14) (q(t),B*p(t))6OL(y*(t),u*(t)) a.e. t6]0, T[.

On the other hand, since {Aye} is bounded in L2(Q) we may infer by [3, Lemma 1.10]
that {y} is bounded in L2(0, T; H2()). Since {(y)t} is bounded in L2(Q), we conclude
that {ye} is compact in L2(0, T; HI(Iq)), and therefore

(5.15) y y* strongly in L2(0, T; Hl(fl)).
Next, multiplying both sides of (5.10) by p and sgnp (more precisely by a C-monotone approximation of sgn) and using Green’s formula, one obtains

(5.16) f ]Vfl (y)pe ]do" dt + f [grad pel2 dx dt <- C.
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Thus by taking further subsequences, we may also assume that

(5.17) p p weakly in L2(0, T;

and

V/3 (y)p - yp weak star in (E),

where (Z) denotes the space of all bounded measures on E.
Letting e tend to zero in (5.10) and using (5.13), (5.17) and (5.18), we find that

pL2(0, T;HI(fl))L(O, T;L2()) is a weak solution to the boundary-value
problem

Pt AoP q onQ,

Op
+ yp 0 on Z,(5.19)

0u
p(., T) =0 on I);

for all Da,o.

a(p, ) dt + yp(x,)+ Io qx dx dt O,

We have therefore proved the following theorem.
THEOREM 4. Let (y*,.u*) HE’a(Q) L2(0, T; U) be an optimal pair for problem

(5.1). Then there existfunctions p L(O, T; L2(I))) f"l L2(0, T; HI(f)), q 6 L2(Q) and a
measure yp e/l(Z) satisfying along with (y*, u*) (5.14) and (5.19). Moreover, y*, u*, p,
q, and yp are limits in the sense of (5.12), (5.13), (5.17) and (5.18) of some sequences
{y,}, {u}, {p}, and {q} satisfying (5.9), (5.10) and (5.11).

We have also the following analogue of Lemma 7.
LEMMA 8. YoP - YoP strongly in LE(,v.,).
Proof. Since {p} is bounded in L2(0, T; Ha(O)) and {q} in La(0, T; L2(Iq)), we see

by (5.10) that {(p)t} is bounded in LI(0, T; H-a(lq)). Then arguing as in the proof of
Lemma 7 we deduce that p p in C(0, T; H-1(1))), and for each r/>0 there is a
such that

(5.21)

where 0<6-<_1/2. Hence p-)p in L2(0, T;HI-([I)), and by the "trace" theorem
([11, p. 41]) the set {yoP} is precompact in L:(0, T; H1/2-(F)c L(Z)) as claimed.

Theorem 5 below follows by way of nearly the same proof as for Theorem 2.
THEOREM 5. In Theorem 4 assume that fl is locally Lipschitzian. Then the

absolutely continuous part yp)a of the measure yp [t (,) satisfies the equation

(5.22) (yp)a(x,t)6OB(y*(x,t))p(x,t), a.e. (x,t)6,,

where O denotes the generalized gradient of. Ifin addition, satisfies condition (4.43),
then yp La (,), and p C(0, T; L (I))) satisfies the equation

Pt Aop q on Q,

Op
--+0/(y*)p90 on E,(5.23)
Ou

p(x, T) O, x I),
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Finally, we shall consider the case in which the control problem (5.1) is governed by
the unilateral problem

yt + Aoy f+ Bu on Q,

8y 8y
(5.24) y-u=O, -u_-->O, y-->O onE,

y(x, 0)= yo(x), x e f,

which corresponds to a maximal monotone graph/3 defined by (4.45). According to
general theory the initial data yo must satisfy

yoHl(lq), yo(x)>=O a.e. x F.

Variational problems of this type arise in the theory of temperature control through the
boundary and theory of semipermeable walls (see [7, p. 23]).

The same reasoning which led to Theorem 3 now gives us
THEOREM 6. Let (y*, u*) Hz’I(Q) L2(0, T; U) be an optimal pair for problem

(5.1) with state equation (5.24). Then there exist functions p6L(O, T; L2())("I
LZ(O, T; Hi(O)) and q LE(Q) which satisfy along with (y*, u*) the quasi-variational
inequalities

y* +Aoy*=f+Bu a.e. on Q,

(5.25) y* 0Y----*=0, OY*>=O, y*>=O a.e. on Y_,,

y*(x, 0)= yo(x) a.e. x

(5.26) pt Aop q on Q,

a.e. on {(x, t) 6 5;; y*(x, t) > 0};

(5.27) p --0y 0 a.e. on Z,
Ou

p (x, T) 0 a.e. x lq;

(5.28) (q(t), B*p(t)) OL(y*(t), u*(t)) a.e. ]0, T[.

Of course (5.26) is meant in the weak sense (see (4.62)).
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ASYMPTOTIC PROPERTIES OF STOCHASTIC APPROXIMATIONS WITH
CONSTANT COEFFICIENTS*

HAROLD J. KUSHNERt AND HAI HUANG

Abstract. Asymptotic properties (as n->, and then a-->0) of the Stochastic Approximation (SA)
algorithm

(*) X+I X’ + aha(X,, ’),

are obtained, where ha is not necessarily additive in :. If Eha(x, ) g(x)+ O(a) and k g(x) is globally
asymptotically stable about a solution xt=O, then the asymptotic properties of {(Xn-O)//-d}==-{U’} are
developed. In particular, it is shown that (as a 0) a natural continuous parameter interpolation of the tail
part of U converges weakly to a stationary Gauss-Markov process, from which the asymptotic properties
of U and {X can be obtained for small a. The conditions on {} are reasonable from the point of view of
the usual applications to adaptive systems and identification. These results seem to be the first of their type for
SA’s with constant coefficients. Some rate of convergence results for classical SA’s are improved. Also, an
application of (*) to a problem of tracking the time varying parameters of a linear system is discussed, and a
limit theorem obtained. Because in the usual practical implementations of SA to problems in systems theory,
the gain sequence {an} does not normally go to zero (due to considerations of robustness and nonstationari-
ties), these results are of particular importance.

1. Introduction. In [1] asymptotic properties and rates of convergence for sto-
chastic approximations (SA) of the type

(1.1) Xn+l Xn + anh(Xn, n)

were studied, where {an} is a sequence of positive numbers tending to zero and is such
that an c, and {:n} is a sequence of random variables. In this paper, we obtain
analogous results concerning asymptotic behavior of (1.2) where an =a, a small
constant. For each a, {:} is a stationary sequence and fa, g, and ka are measurable
functions, further properties of which will be given below.

X./1 Xn +ah,:,(X,,,, ’)---X, +ag(Xa)+ afa(X,, ,)+o(a)k,(X, )
(1.2) X X0, independent of a, X R r, Euclidean r space.

Algorithms of the type (1.2) are particularly important in applications to both
identification theory and adaptive systems theory; for a typical example of this
problem, the results are both specialized and extended in 6 and 7; in 7 {} is
allowed to be nonstationary in a way that allows us to treat the "time-varying
parameter" identification problem. In engineering practice with algorithm (1.1) there is
usually a constant a > 0 such that either {an} tends to a or else that an= a, although
almost all the existing analyses of (1.1), (see, e.g., [2], [3], [4]) assume an --> 0. The case
(1.2) is more robust than (1.1) in the sense that it can better accommodate non-
stationarities and modeling errors.

In general, little is known about the sequence {X}. Normally, {X} does not
converge w.p. 1, and if {:} is nonstationary {X} may not even converge in distribution.
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Under various assumptions, (1.3) (a specialization of (1.2)) has been treated in the
adaptive process literature and results such as lim E[xa [= 0 obtained. In (1.3), B is a
vector valued bilinear form and A, C are matrices (Widrow, et al. [5], Senne [6-1,
Davisson [7]).

(1.3) /1 X, + aB(X, )+aC +aAX.

Our method works under broader conditions and yields a much more complete picture
of the process behavior. As in [1], [3], weak convergence methods (see note on weak
convergence below) are used.

The problem of interest is roughly the following. Let 0 be a globally asymptotically
stable solution to =g(x), and suppose that Efa(O,)=-O and define ua
(X 0)/x/. We are interested in information on the "error" (X 0) for large n, and
small a. Such information is not easy to get, but it is of importance in the design and
analysis of algorithms. We proceed in a natural way by studying the distributions of U
for large n and small a. Suppose that tn an and {na} is any sequence which goes to c fast
enough as a 0 (see Theorem 1 for the "rate"), and define the piecewise constant
continuous parameter process Ua( by uaa (0) uaa and Ua(t) U.+n in [na, (n +
1)a). In the proofs, the sequence {n} will always be clear from the context. The
behavior of the initial part of the sequence {U} is strongly affected by the value of X,
and does not pertain to the long run behavior of the algorithm. So we study U (.) and
show, in particular that this sequence converges weakly (see note below) to the
stationary Gauss-Markov diffusion defined by (5.1) as a 0, where H gx(O) and R is
defined below (5.1). See also the remark (i) in 4.

The results yield stability of the process (1.2) for small a, together with the
asymptotic (as a - 0) error variances and correlation functions of the normalized error
process ua( ). It seems to us that the general approach is quite natural and straight-
forward and relatively easy to use. The weak convergence and stability ideas yield a lot
of intuitive insight into the relations between the structure of an algorithm and its
asymptotic properties. For the special adpative process case when (1.2) reduces to (1.3),
the situation is simpler since we can center U, about its mean value and use n =- 0, and
we can obtain better results. See 7.

Note on weak convergence. A sequence of random variables { Y,, } is said to be tight
(equivalently, bounded in probability) if limN sup P{[ Y[ _-> N} 0. By tightness of { ua,
small a, n _--> N,} we mean that there is some ao > 0 (whose value will be unimportant)
such that doubly indexed sequence is tight. We need some type of boundedness
property on the tails of {U, n _-> 0} uniformly in a, and the above tightness property
serves this need well. Dr[0, c) denotes the space of R valued functions on [0, c) which
are right continuous and have left hand limits, and which is endowed with the
Skorokhod topology [10]. By weak convergence of ua( to U(. in Dr[0, ) we
mean that for any real valued continuous function F(. on Dr[o, ), EF(Ua( ))-
EF(U(. )) as a 0. This is a substantial generalization of the notion of convergence in
distribution of Euclidean space random variables, and is well suited to our purposes.
Billingsley [10] is an excellent reference on weak convergence theory.

Outline of the paper. In 2, assumptions for the general problem are stated.
Tightness of {U, n _-> Na, small a } for a sequence Na o as a - 0 is obtained in 3.
This tightness is crucial for it implies that the normalization of the error process by 1/Ca
is the appropriate one, and that the error process does not "blow up", as n , and
a 0. The argument is of the "Lyapunov function" type. 4 contains some remarks
concerning special cases, and on the use of the methods of this paper to extend known
convergence and rate of convergence results for SA’s of the type (1.1) when the SA
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sequence converges in probability rather than (the usual assumption) almost surely. The
main limit theorem, the weak convergence of {U (.)} to U(. if na - fast enough, is
given in 4. The proof is essentially a brute force direct construction of the limit by use
of weak convergence arguments. Some of the arguments required for our proofs are
similar to those used in [1], and we formulate the problem here so as to use the earlier
results whenever possible. For results and techniques that might be more useful when
the {:} are state-dependent or the dynamics discontinuous, see [13]-[15].

2. Assumptions for 3. Throughout the paper, K denotes an arbitrary real
number (independent of x, sc, n, a) and its value may change from usage to usage. Gxx (x)
denotes the Hessian matrix of a function G and E denotes conditioning on :, < n.

Remarks on the assumptions. In order to study the asymptotic properties of U (.)
for small a we obviously must be able to show that the "tails" of the sequences
{X, n -> 0} converge in some sense as a - 0. This requires some stability assumptions
on the "deterministic" part of (1.2), in particular that a solution xt constant 0 of the
ODE g(x) is globally asymptotically stable. It seems best to deal with the stability
problem by introducing a Lyapunov function V(. for g(x). Conditions (A6)-(A7)
below are often guaranteed by various forms of strong mixing conditions on {:}. In the
usual applications to identification and adaptive systems theory [5], [8], there is an
asymptotically stable A such that g(x)-Ax and an affine function f(. such that
f(x, ) =/(x). Then V(. is chosen to be a quadratic form and (A4)-(A5) hold, and so
do (A6)-(A7) under simple conditions on {:,}. See 7 for more detail.

A1. is bounded by some constant K, uniformly in a., n and Era(x, :an) 0, all
x, a, n.

A2. g(O)= O, g(. ), k(.,. and (.,. are measurable. The first and second
partial x-derivatives Offa( ) and g( are continuous for each .

A3. There is a nonnegative three times continuous differentiable Lyapunov function
V( ]or g(x) such that V(x) >- O, V(x) o as Ixl-, V(x) x’Ox / o(lxl=) or
some positive definite matrix O, where 6x =-(x- 0).

A4. For some real y > O, V’ (x)g(x) <= yV(x).
A5. Vx(.) is uniformly bounded and IL(x,)l=+lka(x,)l=+lg(x)l=<=

K(V(x)+ 1) and ]V’(x)k(x, )I<-_K(V(x)+ 1).
A6. Y.=.alEV’(X)[a(X,7)l<-_aK(V(x)+ 1).
m7. Y.=alE2(W’(x)L(x, ))l<-_ag,

Y.=.alE(V’(x)l(x, 7))x[<-aK(V/(x)+ 1).

(A5) implies that fa and g grow at most linearly in x.

3. Tightness of {U, small a, n ->_ Na}. Fix K0 > 0. Let N denote any integer such
that exp(- (ay/2)N) <- Koa.

THEOREM 1. Under (A1)-(A7), {U, small a, n >=N} is tight.
Remark. We have the n->N requirement because of the effect of the initial

condition. In general, {U, n _-> 0, small a } will not be tight unless X0 0. So we wait (Na
steps) until (as implied by the proof of Theorem 1) the effects of the initial condition are
small. For the special case (1.3), it is possible to center the sequence { Un, n >- 0} in such a
way that N =-0 can be used. See 7.

Proof. Recall that tn an. By (A6), (3.1) is well defined.

(3.1) V (x, tn)= a
i=n

Define V by

(3.2) v (x, t.) V(x) + v7 (x, t,, ).
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The proof uses a "Lyapunov function approach", with Lyapunov function Va. The
bounds which imply the tightness will follow from the basic inequality (3.3b). Write

EVa(Xan+l, tn+)-- Va(Xan, t,) T + T+ T3,

where

T E"nV(X+1 V(X ),

T2 EV’ (X, t+) V (X, t),

T3 EV(X+x, t/) EV(X, t+).

Then, truncated Taylor series expansions yield the following, where X+ andX++

are random variables in the range [X, X+x ].

T1 aV’(X)g(X + a V’x (X )f, (X,
2

+-(f(X, )+g(X))’Vxx(X+ )(f,,(X’, :,) + g(X,)),

T2 -aV’(X) f(xa,

--a

Z E, V’x (X,,+l)L (Xa+n 1, ) a
i=n+l i=n+l

i=n+l

Vx (xan)fa (X ’)

E.(V(X.)L(X, ’))’(L(X,, )+g(X))

3

+-- E E"(L(x
2 i=n+l

+g(X,)),[v,(x+.+)L ++(x,, ’)]xx(f(X,, ,,)+g(X)).

These expansions together with (A4)-(A7) yield (note that T. cancels out the
second term of T1; this is the reason for the introduction of V).

(3.3a) EVa(X+I, t+l)- V(Xa, tn)<= -a’V(X)+a2g[v(s)+ 1].

By (A6), IVY(x, t)l<-ag(V(x)+ 1), and by (3.3a),

(3.3b) E,V(XT,+I, tn+)- V(X,, tn) <- -ayV(X,, tn)+a2g[va(x, tn)+ 1].

Let a be small enough so that a2K <-ay/2 (or, equivalently a <= ao--y/2K). Then
(3.3b) yields

(-?)(3.4) E,Va(xan, t,)__<exp
n

Va(X, O)+Ka.

Equation (3.4) also holds for V replacing V, since V (x, n)] -< Ka (V(x) + 1).
Thus, by (3.4) and (A3), for any constant kl and n ->N, a -<a0, we have

K[exp(- (ayN,/2))][ V(X’) + 1 +Ka K
(3.5) e{xa OXZ + o(lxa z) > k a } -< --< --.

kla -k

As will be seen, the V’ is used as an "averaging" device, to average out the effects of the {}. If the {:7}
are mutually independent for some a, then V -0.
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Tightness of {U, small a, n->Na} follows from (3.5) in the following way. Fix
6 > 0. To get the tightness it is enough to find a ks < oe such that

(3.6) p{ SX’QSX, }-->ks _-<8, alla_-<ao, n
a

There is an co> 0 such that for 6x’Q6x <= eo and the o(. of (A3), Io(l x I=)1-<_  x’Q x/2,
For each real k3 > 0, there is a k4(k3) > 0 such that 6x’Q6x >= k3 implies V(x) >= k4(k3)
and we can choose k4(" to be a monotonic function.

Let n _-> Na. By (3.5) (recall that K might have a different value in each usage),
a’

>-k, <--,+P{6X’O6X -->eo}

K K Ka
<--l + P{V(X2 >= k4(e)} <=- + k4(eo)"

Choose k, such that K/k, 6/2. If a <= 6k4(eo)/2K, then the right-hand side is _-<6.

If ao -> a > ti, note that for any k > 0

>=k <=P >=k <=P{V(X)>=k4(ak)}
a a

Ka Kao
k4(tk k4(ak )"

Now choose k2 such that Kao/k4(ik2)-< 6. Finally, define the ks to be used in (3.6) by
ks max (kl, k2). Q.E.D.

4. Remarks. (i) In a practical implementation of the algorithm (1.2) a, might not
be chosen to be constant, but might be allowed to decrease to some value a > 0 by
iteration number n, where n might be chosen such that EI6X 2Ka, and a, will
remain at value a thereafter. But if we are interested only in the "tail" of {X }, we can
often assume that the initial condition error is commensurate with the value of a (e.g.,
EI6X <- Ka). We might also be more concerned with the ability of the algorithm to
track changes (e.g., the changing system parameters in the identification example ( 7)),
than with the transient errors. Then we need only look at the "errors" U2 for large n
(say, n _->N) at which time transient errors due to the initial condition have been
"dissipated".

(ii) Stochastic approximation (1.2) with a-0. Again, suppose without loss of
generality that the origin is the unique asymptotically stable point of g(x). Let
a =A/(n + 1). Then the method of Theorem 1 can be used to show tightness of
{6X/Va, n >-_ 0}, without the (usually required) assumption that 6X - 0 w.p.1. To do
this we first define t,=Y’.i=oai and V(x,t,)=Yi=,aiE, V’x(X)f(x, sei), where E,
denotes the expectation conditioned on :i, < n. Assume (A1)-(A5) and the natural
analogs of (A6)-(A7), where the a under the summation is replaced b_a and that on
the right hand side is replaced by a. Assume Ay/2 > 1. Then {SX,/x/a,, n >-_ 0} can be
shown to be tight. The proof closely follows the lines of the proof of Theorem 1 and we
only make a few remarks concerning it. Define V(x, t,) V(x)/ V(x, t,). Then using
the method of Theorem 1, derive the inequality

(4.1) EnV(Xn+l, t.+a)- V(X., t.) <- -ya.V(X.)+aZK[V(X.)+ 1].

(4.1) holds with V replacing V on the right-hand side. Effecting this replacement and
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iterating (4.1) yields

EV(X,, t,) <- exp- V(Xo, O)+K 1--ai+Ka ai.
i=0 l=i+l

Finally, show that the above right side is bounded above by Kan.
This result is important because the proof of tightness of {SXn//-d-,} is the basic

difficulty in obtaining rate of convergence results for classical stochastic approxima-
tions. If tightness of {SX,//-d} is known, then the rate of convergence proofs in [1], [3],
[9] all go through with virtually no changes without using the assumption thatX --> 0
0 w.p.1, which was required in those references.

(iii) Stochastic approximation, additive noise. Continue with the situation in the
last paragraph, but let f(x, )= :, the classical Robbins-Monro case. Then (A6)-(A7)
are particularly simple. There are adaptations to the Kiefer-Wolfowitz case, where
ci C/(i + 1) TM, ag =A/(i + 1), 23’ < a, 3,>0, and {Ci} is the finite difference coefficient
sequence. Then the normalizing sequence is {/--/c,} rather than {x/--}.

5. The limit theorem. Let {na} denote a sequence of integers such that na => N,
where N is defined in 3. Define Q n-Na. If {n} is not specified further, it is an
arbitrary sequence satisfying the definition. For each a > 0, define U( by U(0)=
Ua and for each integer i, U(t) Uio in [ia, ia + a). We will show that U(
converges weakly in Dr[o, oo) to the solution to the Gauss-Markov process U(.
defined by

(5.1) dU=IYlUdt+R1/2dB, U(0)=weaklimit of {U(0)},

where H g,(O), B(O) is a standard Wiener process and R is defined by (see (A9)
below)

R lim Ra(i),

where

R(i) Eft(O, )f’(O, la+i).

Also, as asserted by the theorem, if aQ --> oo as a --> 0 then the weak limit of {U (.)} is
the stationary solution to (5.1).

The proof is simplified by the following consideration. Suppose that Ua( does
not converge weakly to U(. in Dr[0, oo). Then there is a sequence {ak} of positive
numbers which goes to zero as fast as we wish and a T < oo such that Uak (.) does not
converge weakly to U(. in Dr[0, T]. Thus, it suffices to show convergence of Uk(
to U(. in Dr[0, T] for an arbitrary T, and for a sequence {ak} which goes to zero fast
enough but is otherwise arbitrary. We will set the problem up similarly to the way it was
set up in [1], so that the results of that reference can be used whenever possible.

The following assumptions are required (analogous to (A3a) of 1 ]). After stating
the conditions, we comment on their reasonableness. Define m(t)=max {i; ai<-t}.

A8. There is a T1 > 0 such that (f, is the gradient off)

ma(tN+t)--I
max a

O<--t<=T1 i=ma(tN)
>-e =-ka(e)-->O

as a --> 0, for each e > O, uniformly in N.
A9. Define h f (0, ). Then {h .} is stationary for each a. Define e (i)
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), Then R =_R(i) is absolutely summable and the sum converges 2EhT(hi+i
uniformly in a. There is a matrix R such that R R as a O.

El isgala la’ 2A10 Define pl(i) =supi,/=>o .,i,i+i,]+i+l R (1)1 Then Y’,i=o (pl(i)) 1/2<, where the sum converges uniformly in a.
All. Define p2(i)=supk>__oE/2[Ehk+i 12, i>=O. Then Y’.g=o (p(i))i/2< where

the sum converges uniformly in a.
m12. I’a,xx(x, )1 + g.
Remarks on (A8)-(A12). The conditions do not seem to be particularly strong.

Except for the boundedness of {}, they are basically the conditions used in [1],
adapted to the present case.

Let {:} be a b-mixing process in the sense of [10] with E /4 < 00, where (i does
not depend on a. Then (A9)-(A11) hold. Since use will be made of results from [1] we
note that condition (A3b) of [1] always holds if the noise {so,} there is bounded (set r 0
there). The main use of (A9)-(A11) is in showing that a certain sequence of interpolated
sums converges weakly to a Wiener process. Since they were used in [1] for a closely
related problem, we use them here in order to simplify the proof.

Define ki fx(O, i ), let there be an/ such that IEki ki+il <- 1, for all ] and (small)
a > 0, and define R Ri. Then by a Mensov-Rademacher type estimate ([3, p. 98]),
there is a K (depending on R) such that for each T1 > 0

ma(tN+t)--I 2

a2E max , k <=Ka2(m(tN+T1)--m(tN))log4[m(ts+T1)--m(tN)]
tNT i=ma(tN)

<- TaKa log 4 Tx-<K1a log a,
a

which implies (A8). Other examples satisfying (AS) appear in [3].
THEOREM 2. Assume (A1)-(A12). Then {Ua( )} converges weakly in D[0, c)to

the U( of (5.1). IfaQ - o as a 0, then U(O) has the stationary distribution of U(t).
Proof. Fix T > 0. Let {ei} and ak denote sequences of positive numbers such that

i ei <, ak - O, and (see (A8))

(5.2)
k

If (A8) holds for some T1 then it holds for all T, so we can suppose that T1 T. By the
discussion at the beginning of the section it is enough to prove the theorem for {Uak (.)}.
We suppose w.l.o.g, that Uk converges weakly to a random variable U(0)tlk

-,N+n -1Part 1 Define x/f(0, :.)=-6Wi, and WN, ---’=N 6Wi and let Wu(’
denote the function on [0, T] which equals W.n on [an, an + a). By a truncated Taylor
series expansion

6xan+a [I + agx(O)+ alex(O, )]6xa,

+a’a(O, ,)+aBa(G(X+, ), 6X)6X +o(a)k(X,

=-[I +aH,]6X +aft(O, se)+ay,

where B(G(X+, ), 6X,) is a matrix valued bilinear form in G(X+ and 6X,, and the
elements of G(X+,) are components of the second derivatives of f(x,:)+g(x)
evaluated at some point in the interval [0, X: ]. H: is defined in the obvious manner.

By 21 qi converging uniformly in a, we mean Y Iq*[--, 0 uniformly in a as n eo.
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Thus

(5.3) U,+ =[I +an]u, +6W’ +x/-y.

Define Fu,, zi=uw
u+"-a x/3,, and let F(. denote the function on [0, T] which

equals Fv,, on [an, an + a ).
Define the function C(a) by C+1 (a) I and for n _-> + 1,

N+n

CN++IN+ (a)= Z [I+aHia ]=(I+aH,,+,). (I+aHv+l+).
j=N+l+l

By iterating (5.3) and doing a summation by parts, we get (5.4), just as (3.6) of [1]
was obtained.

UN+n+I Cq+n (a)Uv + C1-1 WN, +1 - rN, + 1)
(5.4)

,.-Nwn
atN+t+ (a)HN+t[( +Wu., Wu,/)+(Fu.,+a-Fu,)].

/=1

From this point on, the proof is basically a brute force construction of the limit process,
by showing that each term of (5.4) converges weakly to a limit such that the resulting
sum is a representation of U(. ).

Part 2. We now claim that

Cma(tN+t+s),,,t,+ (ak) exp/-t on [0, T]

uniformly w.p.1, as k oo, for any fixed Nor sequence N c as k oo. The limit result
(5.5) follows from [1, Lemma 2], when we make the following identification of our {ak}
with the {ak} in [1, Lemma 2]. To avoid confusion write the {a} of [1] as {a}. Then set
the first T/a l] of the {an}equal toour al, the next[T/az]of the {an}equal toour a2, etc.
Then (A8), (5.2) and the Borel-Cantelli Lemma imply [1, (A2)], hence also [1, Lemma
2] and (5.5).

Part 3. Write nak n. As in [1, Theorem 2], (A9)-(All) imply that Wnk(’)
converges weakly to a Wiener process W(. with infinitesimal covariance R; i.e.,
W(t) Ra/2B(t), where B(. is a standard Wiener process. In Part 4 below it is shown
that

(5.6) {F( )} converges weakly to the zero process as k

Assuming (5.6), the proof is completed via the arguments of [1, Theorem 2, Part 3], as
follows. The argument in [1, Theorem 2, Part 3], can be used to show that when a andN
in (5.4) are replaced by a and nk resp., the resulting H+I in (5.4) can be replaced by
gx (0) without affecting the limit. With this replacement and the convergence of {U }nk

and{W (.), F(. )}, (5.1) follows from (5.4) and (5.5), since the limit of (5.4) is simply
a particular integral representation of U(.). The stationarity argument is in Part 5.

Part 4. Proofof (5.6). LetM denote [T/a] and n n. In view of the properties
of {yT}, (5.6) holds if (5.7) does"

nk +Mk -1 }(5.7) 4-- Y ]X12->e 0 as koo, each e >0.
i=nk

[2 < KakIf V(" ), the Lyapunov function of Theorem 1, is quadratic in 6x, then EISX,+
by Theorem 1, and (5.’7) holds by an application of Chebyshev’s inequality. We now
prove it in the general case. The subscript k on a will be dropped.
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Recall from Theorem 1 that there is a K such that for n >=Nk and the V of
Theorem 1,

EV(X2)Ka, IEV(X, t)l<=ga,

(5.8) Va(x, tn)>= -Ka,

E,V(X+I, tn+l)<-(1-ya +Ka2)V(X,, t,)+a2K.
Let K be fixed at its above value henceforth in this proof, and let n_->nk and
n- nk <- T/a and let a be small enough such that

ya +Ka2<0, Ka < l, a < l.

Define the random variables L by

La(X, n)= V(X, t)+aK +(T-a(n -Na))a3/4K.
Then Z (san, n) --> 0. By (5.8), we have

ELa(X+I, n + 1)_-< (1- ya +Ka2)Va(X, tn)
(5.9a)

+ aK + T + aN (n + 1)a)Ka 3/4 + Ka,
and, consequently,

LE,L (X,+, n + 1)- (Xn, n)
(5.9b)

<= (- ya +Ka) V (X, t,) + Ka z Ka7/4 <= O.

Thus {L (X, n)} is a nonnegative supermartingale for each small a. Thus, there is
a real K such that

K(a+a3/4)EL (Xnk, nk)
<_ 0(al/8)(5.10) P{ sup L(Xi, i)>--a5/8} <- 5/8 5/8

nk <=i<=nk +Mk--1 a a

There is a K2 < oo such that if L (X, n) <- a 5/8, then V(X <Ka5/8. We can suppose
that a is small enough so that V(x)<-K2a 5/8 implies that V(x)>=6x’Q6x/2, and
V(x, n)>-x’Qx/2-aK. Then, for small a and La(X, n)<-a 5/8,

(5.11) 0 <- L (X, n) O(a 3/4) t-

where 8 <= (8X )’QgXn/2. Equation (5.7) follows from (5.10) and (5.1 1), since there is
a real Ko such that with probability 1- 0(al/8),

nk +Mk--1

i=nk 2

Part 5. Stationarity. Let a//denote all possible weak limits of the set {U,a, a small,
n->N} introduced in 3. Then 07/ is tight. We have proved that as a 0, U(
converges to a solution of (5.1) for each sequence {na} if n->N. It can be shown
(although we have not done so here) that U(0) is independent of B(. in (5.1). The
measures of the limits of different subsequences of {U( )} might be different only
because the measures of the limiting initial condition might be different. Fix a
convergent subsequence for initial times n Na and denote the limit by Uo(’ ). Then
there is a B (.) such that for any to > 0

t
(5.12) Uo(to) e’qtUo(0) + e(t-S)R 1/2 dBs.
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Now, let na Na + Q, where Qa to and let ua[to, denote the part of the above
defined ua( on [to, oe). Then ua[to, converges weakly to a limit Uto(" whose
initial condition is given by (5.12). Due to the tightness of ag, Uto(O) Uo(to) converges
in distribution to the stationary.initial condition of (5.1) as t0-m, uniformly in the
initial condition U0(0). This implies the stationarity of U(0) if aQ oe. A similar
argument shows that this stationary U(0) is independent of the Brownian motion used
to represent U(. ). Q.E.D.

6. Adaptive systems-examples. We will describe very briefly two of the more
important systems which fall into our framework. Let {un,/zn} and {yn} denote the input
and output sequences, resp., of the linear system

(6.1) Yn [cyn- +" + cky-k]+[boUn +" + bun-]+/Xn.

Suppose that the system is asymptotically stable when un -= 0,/zn 0. Define

I/Jn (-- Yn-1, Yn-k, Un, Un-l)t, 0 (Cl, Ck, bo, bl)’,

and let {n} be a zero mean random sequence which is independent of the zero mean
sequence {/zn}. A common algorithm for estimating 0 is

(6.2) n+ =Xn
where xa is the nth estimate of 0. Under various conditions (including an 0) X 0
w.p.1 [2], [3]. In practice, due to extraneous noise, robustness considerations or model
uncertainties, it is common for either an $a > 0 or an a, a constant, perhaps a matrix.
The case where 0 varies with time and an a is dealt with in detail in the next section.

Next, consider a similar algorithm which is very useful in adaptive communications
theory. Let {She}, i= 1, 2 and {Nni}, 1, 2, represent stationary signal and noise
sequences, resp. {Snl} and {Sn2} ({Nn 1} and {Nn2}, resp.) are related in the sense that they
are signal (noise, resp.) processes appearing at the inputs to different antennas, but are
from the same transmitting source. Let yn Snl + Nnx and un- Sn2 +N2 denote the

),actual inputs to the two antennas Let k be a fixed integer and set tPn (un,
In practice it is desired to find the weight vector X which is the minimizing X in the
expression E[yn- X’ffn]2. The reasons for this, together with some interesting exam-
ples, appear in [5]. Essentially, under frequently occurring conditions the signal to noise
power ratio of the sequence {yn -X’ffn} is much greater than that of the sequence

The algorithm (6.2) is often used to calculate the optimum X recursively, when
an a. But, in this context, (6.2) is not well understood. Usually, it is proved only that
EX converges. Exceptions to this are the work of Davisson [7] (with m-dependent
stationary Gaussian sequences as inputs) and Senne [6] (where the stationary inputs
satisfy a type of mixing condition), where it is proved that lim---, EIX, -..12 0 as a 0.
The method of 7 exploits the technique of the last section in order to get a more
complete picture in the general case where a is small and the processes are nonsta-
tionary, an important case which actually justifies the use of the adaptive algorithm, but
which has not yet been dealt with in the literature.

7. The nonstationary identification problem (6.1). In this section, the parameter 0
in (6.1) is allowed to vary with time, and we let 0, denote its value at time n. Since the
variations in {0} affect the statistics of {4’}, the identification problem is more
complicated than the adaptive communications problem, and we consider only the
former case. Assume that {un,/xn} are bounded. Nonstationarities due to the 0
variations are more difficult to treat than the effects of nonstationary {un,/zn}. In order
to concentrate on the more important effects and minimize the notation, we assume that
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{un,/xn} is stationary. Also {/zn} is assumed to be zero mean, and independent of {un} and
we let Eun =-O.

We now model the time variations. Let 0(. denote a uniformly continuous R l/k/l

3valued function on [0, ), with values in a bounded set S. Suppose that the parameter
0a takes the value O(an). To see the reasonableness of the model note that the rate of
change of the 0 mustgo to zero in some sense as a 0, for otherwise tracking would not
be possible. 0(. could be a random process, but no generality is gained by that, since
we treat one sample function at a time anyway. The uniform continuity condition is used
to assure that the {yn} sequence has a certain stability property on [0, m). We want to
avoid 0(. getting "wilder and wilder" as .

We could allow {0} to be a random sequence for each a. Even then, its rate of
change must still be proportional to a in some sense (or to a fractional power of a; but
then the un,/xn terms play no role in the limit as a 0). In any case, we want an (limit)
equation which yields the limit of the behavior of the normalized interpolation of the
error (X 0) process in terms of the limit of the parameter process, so that the precise
relationship can be seen. Our scheme is a natural way to get this.

The main object is to get some information on the properties of {U } when a is
small. We might be interested, for example, in an approximation to the distribution of

Usome continuous function of { na <= T}. To get this, it makes sense to parametrize
the problem so that we can get a limit result (as a-0) which will serve as the
approximation to the {U }, and from which the approximation to the distributions of
functions can be obtained (particularly if the convergence is in the sense of weak
convergence). If we allow a 0 without simultaneously slowing down the rate of
variation of 0,, then obviously no limit result is possible, in general. Thus, to even
discuss the behavior for small a, we must allow the 0 to depend on a. As mentioned
above, there are several ways in which this can be done. Our choice allows a relatively
simple exhibition of the structure that the limit would have in a wide variety of cases
(where, perhaps, 0(. might be a limit in some sense of the sequence of parameter
variation functions 0 (.), where 0 (t) 0, on [an, an + a)). The problem is formulated
and some terms are defined in Subsection 7.1. Subsection 7.2 obtains estimates
concerning the dependence of the output sequence yn on 0n, where 0n =- 0, a constant.
Subsections 7.3 and 7.4 obtain a limit theorem for the interpolation of a deterministic
centering sequence {I?n}, and tightness of {U}={(X-O-’n)/4-d}, resp. In
Subsection 7.5, the C (a) (defined above (5.4)) are approximated by an exponential
function and in Subsection 7.6, Theorem 5 gives the appropriate Wiener process limits
and the convergence theorem for {Ua( )}. The large amount of detail is due to the
awkward way that the time variations in {0a} affect the statistics of the yn process.

7.1. Formulation of the problem. Let {yn(0), 0n(0)} denote the output and
output-input sequence when 0n 0, for all n’, then 0n (0)
{-yn+l(0), , --yn-k(O), Un,’’’, Un-l}. By (B1) below, these sequences are second
order stationary for each OS. Define R(O)=E()(0) Rt=R(O(t)) and

E$n$,, the true covariance. Set Y X 0an, 0 O(an + a)- O(an), an
[R’-g’nOn ], n(O)=[R(O)-O,(O)4,’(O)], =E/x,O, yn /Xng’n--, and F(O)=

yYn, forE#Oi(O). The superscript a will normally be omitted on Yn, Xn, t and " -notational convenience. We have

Xn+l Xn + a [(O)’n + tzn

Yn+ Yn 0 alanYn + aO’Yn +a/xnPn.

The parameter 0, is the value of (cx, ", Ck, bo, ", bt)’ at time n. Then the c, b are components of
(hence functions of) O at time n.



98 H. J. KUSHNER AND H. HUANG

Define the sequence { Yn} by

(7.1 a) ’n+1 ’rn 60 an at na "n + aP, "o Yo,

and define IT"n Y,- I7,. Then
(7.1b) I7",+1 lT"n a/lT’, + a/3, (lT"n + IT"n) + ay, 0=0.
Y, is the "noiseless" part of Yn, and contains the effects of the initial conditions. It is
most convenient to work with the form Yn I7", + ITn. Finally, define {U}=
the sequence with whose convergence we will ultimately deal. We will not require that
n>-Na.

In order to exploit the stability properties of (6.1), it is convenient to work with
(6.1) in state variable form. To set this up, define tin =(un,"’, U,-l)’ and Z,
(y,-, ", yn-1)’. Recall that, by definition, 0 O(an) value of
{c 1, , c, bo, , bl}’ at time n, a (k + + 1) vector. For any $ valued parameter 0, we
define

0 1. i 0. 0!A(O)= B(O)=

--k(O), "’’, -’1(0 bo(O), ’’’, bt(O)

D=[0,. ,0, 1].

We define Ai A(O), Bi B(O). Then Zi+l AiZi +Biai + CIxg, Yi OZi+l.
Define Zi(O)= {yn-k(0),""", yn-l(0)}. Then

(7.2) Zg+l(0) A(O)Zi(O) + B(O)ai + Ctxg, y(0) DZi+l(O).

Write En for the expectation conditioned on txi, fii, < n. The following additional
assumptions are required.

(B1) [An(0)]o 0 as n oct, uniformly for 0 S.
(B2) 2i=n [E,($iO -/)[ Y’.i=n [E,/3n[ bounded uniformly in n, to.

(B3) There is a ql > 0 such that R (0) qlI is nonnegative definite, for all 0 S.
(B4) Y.g=n IE,($iui -J0)l Yi=n IEn’i bounded uniformly in n, to.

(B2) and (B4) are not restrictive. Under (B1), they hold under a 0-mixing
condition (see [10] for the definition) on {u,,/xn} with Y. &/2 <. (B4) holds if the
are mutually independent, and independent of the {ui}.

7.2. Some preparatory estimates. Since the statistics of the (0) are easier to get
than those of the qi, we show that $i can be well approximated by (0), uniformly in i,
for small a. Let P(O) denote the unique symmetric positive definite Lyapunov matrix
satisfying A’(O)P(O)A(O)-P(O)= -L By (B1), there are 0<pl <pz< such that

(7.3) plI <-_P(O) <-_p2I forall O S.

We now obtain a series of results concerning the closeness4 of R(O,) to/ and
Zn+l(0) to Zn+l. Recall that Zi(O,) is the value obtained from (7.2), when the 0 in (7.2)
is held fixed at 0 for all (i.e., A(O)= An, B(O)= Bn). We can write

(7.4) Zn+l fan’’’ Ai+l](Bii + Ctzi).

4 Recall that R(O) is the covariance EOi(O)O(O)" i.e., the parameter 0 is held fixed at 0--0.
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For small a, the sum in (7.4) converges uniformly by virtue of the stability assumption
and its convergence (7.3). Indeed, by (7.3) and the fact that IA(O,+I)-A(O)I-->O
uniformly in n as a 0, there are ao > 0, e > 0, K1 < co, such that (see also [11] for a
similar estimate)

)n-j,(7.5a) [A12...Ai+1]<=K1(1-e all n, j, for a =< ao.

By (B 1), we can suppose that K1, e, are chosen such that (7.5b) also holds.

(7.5b) IA] =< K1(1 e

The following approximation result is the basis of much of the rest of the
development.

LEMMA 1. Under the stability assumption (B 1),

sup [Z12+l-Z,+l(O)]->O as a 0.

Proof. Let Ma denote an integer whose specific value will be selected below. The
variations in the B cause no problem in the proof and neither does {Ctti}. So, in order to
simplify the proof set Bi B, a constant, and C 0; i.e., the bi components of 0(.)
are constant. Then

, (A12"" A12-M,+l)An-M, Ai+lBfl,

j=n-Ma+l
JA. Ai+l A:-[ .IBti I.

By (7.5), there is a real K (not depending on a or Ma) such that the first two terms
of (7.6) are each bounded in norm by K(1--e)Ma/e. We will next get a bound on the
third term. In (7.6), the value of the time parameter n plays no special role and it is
enough for us to show that (7.7) tends to zero uniformly in Ao A(O(O)) as a -->0"

(7.7) A ’ti+l

i=0

In (7.7) Ai takes the form Ai Ao + $i, and all that we assume on ti is that there is a real
Ko such that 16i[ =< KolO(ia) 0(0)]. It is convenient to work in a matrix norm I" Io which
might depend on 0(0) but where there are real K2, K3, independent of 0(0), such that

I" I<--gl Io, I" Io--<gl I, In particular define IA[o=supll= x’A’P(O(O))Ax. Then
IAolo < . By (7.3), K2, K3 exist and we can also suppose that I&lo--< K2lO(ia) 0(0)l. For
the jth term of (7.7) in the ’lo norm, we have

j+l[Ao(Ao+81)"" (Ao+Si)-Ao [o

IAolo E lailo + IAol{- E I&&=lo+"" / IAololal" 1o.
i=1 i2>il

Let A K2 SUps<-_Maa ]0(S)--0(0)[. Then a crude upper bound on the above is

IAol+l{ ()(IAho]0) + () (IAhol0)
2

+lAo -1
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and (7.7) satisfies

(7.8) 1(7.7)]=<K3 [Aol+ 1+ -1
i=o IAo[o

Now choose Ma - as a 0 in such a way that aMa (hence A) goes to zero. Then, since
supo(o IA(0(0))lo < 1, the right side of (7.8) and (1 e)Ma both tend to zero uniformly in
0(0) e $, as a 0. Q.E.D.

Similar proofs yield the following corollaries.
COROLLARY 1. Assume (B 1). LetMa -. 0 andM o as a 0 and let (R) denote

the set {0 (u): na Ma < u <= na +Ma}. Then

(7.9) sup [Z,,+I(O)-Z,,+I(O)[O,

as a 0, uniformly in n.
COROLLARY 2. Assume (B1), (B3). Then [R(0,a)-/a[0 uniformlyinnasa 0.

Also there are K < o, eo > 0 such that for n > ]

(7.10) I(I-aR(oa,))(I-aR( ,,_)). (I-aR(Oi+))[<-K(1-aeo)"-i,

for all n, and small a. The function R, R (O(t)) is continuous. The function F(. is
continuous and1 F(O(t)), uniformly in t, as a O, n c if an is held equal to t.

Proof. The second assertion is a consequence of the continuity of 0(. ), and (B3)
and (7.9). The rest are consequences of Lemma 1, and Corollary 1 and the details are
omitted.

7.3. A limit theorem for { Yi}. We next turn to the treatment of the deterministic
sequence { Yi}. Let (t, s), > s, denote the fundamental solution of the linear equation. -Rtx, and let ya(. denote the piecewise constant function on [0, ) with values
ITa (t)= ITn on [an, an + a), n >-0.

’’aLZMMA 2. Assume (B1), (B3). Then {Yn} is uniformly bounded. Ifthe Rj in (7.12)
are replaced by R(O), then the difference between Yn+l and the new right hand side
converges to zero uniformly in n, as a- O. As a O, ya(. converges uniformly on
bounded intervals to the function Y( defined by

Y(t) (t, O) Y(O)- (t, s) dos + (t, s)F(O(s)) ds

(7.11a) (t, O) Y(O)-(t, O)(O(t)- 0(0))

fo (t, s)R(O(t)- O(s)) ds + fo (t, s)F(O(s)) ds,

which is the unique solution to the equation

(7.11b) dY(t) RtY(t) dt- dO(t) + F(O(t)) dt.

Proof. For the first assertion we write the solution to (7.1a) in the form (using a
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summation by parts to get the second equation)

n+l--- fi (I "-aR "o- fl (1-a17)07 + i fl (I-al,
i=0 i=0/=i+1 i=0/=i+1

(7.12) fi (I-at7)o-fl (I-al’)[O(an+a)-O(O)]
i=0 i=1

fi (I-al’/)l’[O(na+a) O(ia)] + fi (I a/) "aFi.
]=i+1 i=0 ]=i+1

Now use Corollary 2 together with the boundedness of 0(. ).
The second assertion follows from Corollary 2. The last assertion then follows by

letting a O, n oo, an in (7.12) and noting that for > s

ma(t)
1-[ (I aR (0)) - dp(t, s), >--_ s,
ma (s)

uniformly on bounded s, intervals. Q.E.D.

7.4. Tightness of {U }. With the preparatory results available, we proceed to the
main result, by following the pattern of development in Theorem 1.

THEOREM 3. Under (B 1)-(B4), {U, n >-_ O, small a} is tight. In particular (since
<=Ka.Yo Uo 0),EIf’l

Proof. The proof is quite similar to that of Theorem 1 and we only remark on the
basic setup. The Lyapunov functions of Theorem 1 will be V(37) 97’37 =,

Vl()7, tn)=237’ E En[3 y + 2’ E En[J gi +2 E
i=n i=n i=n

V (, V() + aV (, t).

By virtue of (B2) and (B4), the sums are uniformly bounded and, as required by
Theorem 1,

(7.13) V (37, t)l K(V() + 1).

Now, applying the mechanisms of the proof of Theorem 1 and using the bounded-
ness of {I Iil} yields

(7.14) Enva(yn+, tn+l) Va(’rn, &)<= -a’ "a.R . +Ka(l+llT"[).

Since R, is positive definite, uniformly in small a (Corollary 2 and (B3)), there is a
3,>0 such that I7"/a17", => 3"V(I7",) and the method of Theorem 1 (together with the
uniform positive definiteness of/) yields the desired tightness. Q.E.D.

7.5. Approximating C7 (a) by an exponential. Recall the function C’ (a) intro-
duced below (5.3). Here -’n4" is the H of (5.3). We can write

(7.15) ua [I + aHa U, + 4-fl "n 4"+1
q- 3,n.

The estimate (7.16) is needed in the proof of the next theorem. By (B2), (B4), (the limits
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of the sums are ma(s), ma(t)-1),

,.aE _-<2EEl ; l Ei+l 2
ji a

By this estimate and Chebyshev’s inequality there is a real K such that

m Ka(t-s)
(7.16) a e N

i=ma()

TOM 4. Under (B 1)-(B4)

uniformly on bounded s, intervals i a 0 ast enough; in particular, through any
sequence {a} where 2 a <.

Pro@ The proof is very similar to that of Theorem 2, Part 2. First, fix N T, let M
denote an integer, and divide [0, t] into M intervals, each of width 8. Suppose (without
loss of generality) that N 8/a is an integer and 8 < 1. The constants K below do not
depend on a, or on N T, and their values may change from usage to usage. We have

(7.17)

C- (a)- I + a 2 H N a 2 IHH + + a
]=0 i>i

(7.17) holds (with the same K) when 0 and N- 1 are replaced by iN-N and iN, resp.,
for any > 0. Hence,

(7.18) C-((a)- I+a H I+a 2 H NKS.
=NM-M

Let {a} satisfy a < m. Next, we want to show that

(7.19)

I( NM-1

;)(
N-1 ;)( NM-1

;)( 1I+a E H I+a E H I-a E I-a 0
]=NM-M ]=0 =NM-M

uniformly for {iS" T/8}, w.p.1, as a 0 through the sequence {a}, for each fixed
ma(+u)-I (z+u)8 > O. Owing to the fact that both products (1 a Li:( H ana () a) can

be made arbitrarily close to the identity by letting u and a be small, (7.19) implies that

H

uniformly in N T, w.p.1, as a 0 through {a}. To get (7.19), we use the estimate

(7.20) 1(7.19)1Ka 2 2 o(a),
]=iN-N

and, by using (7.16) with 8 (t-s) and M= T/8,

P{Eo(a e e } N 2 a 2
]=iN-N

T2 T3

<--()KSae:fiE= K(-)a.
Thus Y’.k P{Eo(ak) >- e}< c and the Borel-Cantelli Lemma and (7.20) imply (7.19).
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Finally, use the fact that by Corollary 2, (7.19) remains true when/] is replaced by
R (O(a]))= R(O.) and the fact that

NM--1

[-I (I aR (O(a]))) --> dp(t, O)
i=-O

uniformly in [0, T], as a --> 0, to complete the proof. Q.E.D.

7.6. The Wiener process and the limit theorem for { U"(.)}. Define Ua( as in
4 (but with na =-0) and define wa, and F by

n--1 n--1

i=0 i=0

and let wa( and 1-’a( be the continuous parameter processes with values W, and
F, resp., on [an, an + a). By solving (7.15) and doing a partial summation, we get (5.4),
but where U is replaced by 0 and all N’s are deleted. The limit result is given in
Theorem 5 under the additional assumptions:

(B5) {/xi} is a sequence of bounded independent and identically distributed random
2variables with E/z r, and E/zi O. Also {/xi} is independent of {u;}.

(B6) {ui} is a bounded c-mixing process [10] with mixing rate {b/} satisfying
1/2E <.

Remark on (B5)-(B6). They are stronger than necessary. (B5) is used because
otherwise F(O) 0 and it seems pointless to get a limit theorem for U(. ), when the
Y(. itself is biased by F(O(. )). Also, (B5)-(B6) imply (B2) and also that (B4) is zero.

TI-IZorzM 5. Assume (B1), (B3), (B5), (B6). Then {W’( ), F( )} converges in
O2(l+l+l)[o, ) weakly to a Wiener process (W(. )F(. )), whose covariances are

(7.22a)

(7.22b)

(7.22c)

{U( )} converges weakly in Dk++l[0, ) to the diffusion U(. given by

(7.23) dU -RtUdt + dW+ dF.

Remarks. (7.22a-c) are well defined. The sequence {/.Li} and, for each 0, the
sequence {4/n(0),/3n(0)}, is a stationary process so the subscripts 0 and in (7.22b, c)
could be and + l, resp., for any i. These expressions are calculated by first calculating
the asymptotic moments of {4/n(0)} needed in (7.22) for each 0. These are continuous
functions of 0, so (7.22) makes sense. Note that the differential of the covariance at
depends only on the parameter O(t), which is the hoped for form. Compare (7.22) to the
R below (5 1). They are equivalent if we use fa(O, .)= , +/3. Y. and neither the
parameters nor Y/vary with time.

The exact values of the covariances are complicated and one would not normally
want to calculate them--even for some known "test" variation 0( ). Theorem 5 gives
the structure of the limit and indicates how the variances depend on the unknown
function. This, in itself, is useful.

Proof. Once the assertions concerning convergence to the Wiener process are
shown, the proof is completed as indicated below (5.6) for Theorem 2. Only the
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assertions concerning the Wiener processes will be proved. The proof of those asser-
tions is based on the proof of similar assertions in Theorem 2 and in [1, Theorem 2].
The main changes are due to the nonstationarity, which requires altering (A9)-(A11)
(resp., (A6)-(A8) of 1 ]).

In our nonstationary and bounded {u,, /x,} case, (A10) and (All) should be
.replaced by: Let hi yg or 3i and define

(7.24a) O (i) sup IEjhi+ihja’+i+t-Ehj+ih ’j+i+l[, l>-O,i>-O,

(7.24b) p. (i) sup [Eh /il, > 0.
k

Then

(7.24c) E (P(i))/2+Y (P(i))1/2<

where the sums converge uniformly in a.
By the independence of {/xi}, (7.24) is obvious for h y. There are linear F (.)

with uniformly (in n, q) bounded coefficients and {e} satisfying [e]_-<K(1-e) such
that y F (u, , u,_o,/z, ..,/x_) + e . From this representation and (B5),
(B6), we can readily show (7.24) for h? fl?. The propert (7.24) was used in [1, Parts

5 m(tN+t)--I1, 2 of proof of Theorem 2], to show that ,,,(tN) x/aihi was tight and converged
weakly to a continuous martingale, and that lY’. "(t’/’)-I 4/hgl:,(t.) is uniformly integrable
in N. The same proof can be used when a--a. Thus, {W( ), F( )} are tight in
D2(+/+)[0, cx3) and all weak limits are continuous martingales and {[ W(t)[2, [F(t)l 2,
small a} is uniformly integrable for each t.

Choose and fix a convergent subsequence and index it by n, and let W(. ), F(.
denote the limit. As we will see, the limit will not depend on the subsequence. Let q be
an arbitrary integer, and si, <= q, t, s arbitrary numbers except that si < < + s, and let
g(. be a bounded continuous function. Let Et denote Em(t). By the weak convergence
and uniform integrability,

Eg(W (si), F (Si), <-- q)Et[F (t + s)- r (t)][F (t + s)- F (t)]’
(7.25)

--> Eg(W(si), F(si), =< q)[F(/+ s) F(t)][F(t + s) F(t)]’.

Evaluating the Eli term and using the independence of the {/xi}, yields (the limits of
the sums below are ma(t), ma(t + s)- 1)

o-tEtti ti(7.26) E,[r(t+s)-ra(t)][r(t+s) r(t)] aE, EVi(r =a E
Since lim 1E4,4,’i-I1->0 as li-m(t)l ->c by (B5), (B6), the limit of the right side is
the limit of 2 tr.R(O’) which (in turn) equalscr.Ri, which (in turn) is the limit of a 2

tr.R(O(v)) dv. Due to the arbitrariness of si, q, g, s, t, we have that
t/s

E{[F(t + s)-F(t)][F(t + s)-F(t)]’lF(v), W(v), v < t} I rR(O(v))dv,2

hence that the right side of (7.22a) is the quadratic covariation of F(. [12]. Since it is
absolutely continuous and nonrandom, F(. is a Wiener process [12]. Similarly, if the
right sides of (7.22b, c) are the cross quadratic covariation of W(. ), F(. ), then (W(.),
F(. )) is the asserted Wiener process, and the proof will be completed.

In [1 ], m(t) max {n’ g ai <= t} and ai 0 as and ai o; also the superscript a was not used or
needed. But the proof can also be used for our case, since only (7.24c) was used. Recall that ma(t)=
max {n: an <= t}.



ASYMPTOTIC PROPERTIES OF STOCHASTIC APPROXIMATIONS 105

We now do a similar calculation for wn( )o We need only show that (the limits of
the sums are ma (t), ma (t + s) 1 unless otherwise written)

converges to the integral in (7.22b) with limits (t, + s) instead of (0, t). Equation (7.26)
equals (use the convention y.b 0 if b < c)

(7.28)
(t+s)--l--1 (t+s)--

aEt[3 Yi+l[3 i+l -- aEt[3i Yi Yi+l[3 i+l.
l>=O i=ma(t) /<0 i=ma(t)+lll

For all i, + in the range of the above sums, the b-mixing implies that

Yi+l[3 i+l] Kc
Since 2[llL"i=ma(t)a ->0 as L-->c, we may evaluate the limit of (7.28) by
evaluating the limit of the inner sums individually as a -> 0, and then summing over I. By
the same argument which we used for F (.) below (7.26), the limit of the lth inner sum is
the same as the limit when Et is replaced by E. Furthermore, by Lemma 1 and its
corollaries,/3 can be replaced by i(0) without altering the limit. Upon making these
replacements, we see that Ith inner sum converges to the Ith integral in (7.22b) with
limits (t, + s) instead of (0, t). By the argument used in connection with F(. ), this
implies that W(. is a Wiener process with the asserted covariance.

We need only show that the cross-quadratic covariance between F(. and W(. is
(7.22c). The proof of this is the same as that just given for W(. above. The sum is
rather than _, since/x, is independent of yi, < n, and of 4’i,/3, <_-n. Q.E.D.

REFERENCES

[1] H. J. KUSHNER AND HAI HUANG, Rates of convergence for stochastic approximation type algorithms,
this Journal, 17 (1979), pp. 607-617.

[2] L. LJUNG, Analysis of recursive stochastic algorithms, IEEE Trans. on Automatic Control, AC-22
(1977), pp. 551-575.

[3] H. J. KUSHNER AND D. S. CLARK, Stochastic Approximation Methods for Constrained and Uncon-
strained Systems, Appl. Math. Sci. Series, no. 26, Springer-Verlag, Berlin, 1978.

[4] M. T. WASAN, Stochastic Approximation, Cambridge Univ. Press, Cambridge, 1969.
[5] B. WIDROW et al., Stationary and nonstationary learning characteristics of the LMS adaptive filter, Proc.

IEEE, 64 (1976), pp. 1151-1162.
[6] K. SENNE, Adaptive linear discrete-time estimation, Stanford Univ. Rept. SEL 68-090, June 1968.
[7] J. K. KIM AND L. D. DAVISSON, Adaptive linear estimation for stationary M-dependentprocesses, IEEE

Trans. on Information Theory, IT-21 (1975), pp. 23-31.
[8] L. LJUNG, On positive real transferfunctions and the convergence ofsome recursive schemes, IEEE Trans.

on Automatic Control, AC-22 (1977), pp. 539-550.
[9] H. J. KUSHNER, Rates ofconvergence for sequential Monte-Carlo optimization methods, this Journal, 16

(1978), pp. 150-168.
[10] P. BILLINGSLEY, Convergence of Probability Measures, Wiley, New York, 1968.
[11] C. DESOER, Slowly varying system Yc=A(t)x, IEEE Trans. on Automatic Control, AC-14 (1969),

p. 780.
[12] W. WONG, Stochastic Processes in Information and Dynamical Systems, McGraw-Hill, New York,

1971.
[13] H. J. KUSHNER, An averaging method for stochastic approximations with constant parameters; small

parameter values. Proc., 1980 Joint Automatic Control Conference, San Francisco.
[14] H. J. KUSHNER AND HAI HUANG, Averaging methods for the asymptotic analysis of learning and

adaptive systems with small adjustment rate, submitted to this Journal.
[15], On the weak convergence of a sequence of general stochastic difference equations to a diffusion,

SIAM J. Appl. Math., to appear.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 19, No. 1, January 1981

(C) 1981 Society for Industrial and Applied Mathematics
0363-0129/81 1901-0008 $01.00/0

A NOTE ON THE BOUNDARY STABILIZATION OF
THE WAVE EQUATION*

GOONG CHENt

Abstract. We study the energy decay rates of the wave equation in a domain where boundary damping is
present. We generalize the geometrical conditions obtained earlier in (J. Math. Pures Appl., 58 (1979),
pp. 249-273) by using some more general multipliers of Strauss (Comm. Pure Appl. Math., 28 (1975),
pp. 265-278). The interaction between distributed damping and boundary damping is discussed. A regulator
problem is also formally discussed by the synthesis method.

Introduction. The wave equation with boundary dissipation

(0.1) Wtt(X, t)--AW(X, t)= O, X f, bounded, open in

(0.2) Wlvo= O,
(WE) (wt/alW,/zW)lrl=O

(0.3)
a >0, az=>0, Fo t] F

(0.4) w(x, O)-- Wo(X), wt(x O)- lAo(X)

has been studied in [3], [5], [6], [9], etc. The dissipative boundary condition (0.3) arises
naturally from some acoustical and optical problems. It is important in the control
theory of partial differential equations because the wave equation (0.1) can be stabilized
by (0.3) [9-1, [11]. Moreover, if the domain (lq, Fo, F1) satisfies some geometrical
conditions [31, the wave equation becomes uniformly exponentially stabilizable, and
Dirichlet, Neumann or Robin type boundary feedback controllers on F1 can be con-
structed from (0.3).

In 1, we use a new energy identity of Strauss [12] to prove a uniform stabilizability
result. It is shown that if the domain (lq, Fo, F1) satisfies the "D-conditions", then the
energy of (WE) decays uniformly exponentially. This generalizes the "scsssd"
geometrical conditions the author obtained earlier in [3].

In 2, we discuss some interactions between boundary damping (0.3) and dis-
tributed positive and negative dampings for a domain which satisfies the D-conditions.

In 3, we discuss a regulator problem associated with the boundary control of the
wave equation. We show that the solution of a regulator problem is unlikely to satisfy a
boundary condition like (0.3). The argument presented there is only formal because of
the difficulty in the regularity of solutions.

1. Energy decay of the dissipative wave equation in a domain satisfying D-
conditions. Following 3], we define the spaces

={(w, v)Hl(f)L(f)lwlro=O},
2 =- D(A) {(w, v) nZ(f)(R)nX(f)lwlro Vlro O, (v + w + czW)lr 0},

A -= is the wave operator.
A

Denote ui Ou/Oxi, Vu (u,. , u,). Let n (nl(x), , nu(x)) denote the unit
outward normal field on F. We say that (D., Fo, F1) satisfies the "D-conditions" ("D" for

* Received by the editors December 31, 1979, and in final form April 25, 1980.
t Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.

This work was supported in part by the National Science Foundation under grant MCS 7822830.
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decay) if there exists a vector field (li(x))E C4(N N) with compact support such
that

(1.1)(1) l.n=,ljnj<-O a.e. onF0;

(1.2) (2) n Y ljni -> 3’1 > 0 a.e. on Fa, (]/1 some positive number),

(3) with lii =--Olg/OXj, lgik 021i/(c3XiOXk), etc., the matrix [/gi(x)-1/28ii] is strictly posi-
tive definite on fl, i.e.,

(1.3) , lii(x)gi >- rl , 2k, rl > 1/2 V X fl;
i,i

(4) there exists ]/2 > 0 small enough such that

(1.4) 12 l..I v2 a.e. on II,
i,j

(1.5) [E l,inil<=]/2 a.e. onF1.
i,i

The smallness of ]/2 will be clear in the subsequent discussion.
Remarks. (i) Comparing our assumptions with those made by Strauss in [12, p. 265,

(i), (ii), (iii)], we understand that here what is important is the behavior of the multipliers
(li(x)) on and near f; their behavior on the infinite exterior region outside some sphere
becomes completely immaterial. A question naturally arises: how much of the tech-
nique developed by Morawetz, Ralston, and Strauss [7], which is useful in proving
exterior energy decay theorems, can be used in solving the interior decay problem?

(ii) One can argue as in [12, Thm. 3] that there does not exist a closed polygon in
NN fi whose vertices lie on F0 and whose corners make equal angles with n and lie in a
normal plane.

(iii) It is easy to see that if we define /(x) xior (x) xi + exi/r(e > 0,small) andlet

where

li(x) O(x)li(x),

{ 1 if Ilxll--< R,0(x)=
0 ifllxll=>2R,

R large enough,

then (1.1), (1.2), (1.3), (1.4), and (1.5) are all satisfied. So a "scsssd" I-3] satisfies the
D-conditions.

THEOREM 1. Let (f, Fo, F1) satisfy the D-conditions. The exponential decay of
energy

E(t)=--Ia [IVw(x, t)l 2 +(wt(x, t))2] dx <- Me-tE(O)

holds for some M, > 0 for the solution w(x, t) of (WE) uniformly fo: all initial states
(W0, D0) Gal.

Proof. According to the argument in [3], we need only consider the case aa -=a >
0, a2 0 in (0.3); i.e.,

(0.3)’ wt+aw,,=O onF1.
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It is straightforward to verify that

O (wtt- Aw) 2{(1- l)twt + 2 liwi + 1/2(, l,-1)w}

(1.6)

0 2{(1-/x)t(w, + IVw12)+[2 2 Z,w, + (2 z.-1)w]wt}

-div {2(1-u)tw,Vw +(w2 IVw[2)/

+[2 2 liwi-’F(E lii--I)W]VW--1/2W2(E liij)jn=l}

In the above, the main multipliers we use are due to Strauss [12]. Define

(1.7)

O(t) I {(- )t(wz + LVwi2)+[2 E liwi-t-(E lii-- 1)w]w,} dx.

Integrating (1.6) over 12, we obtain

dtQ(t) (l. n)wndr+2(1 I)t wtwd+ (l. n)wt d

1

i,i
liiii)

TI+ Tz+ T3+ T4+ Ts+ T6+ Tv+ Ta+ T9+ Tlo.
For any/x satisfying 0 </ < 1, there exists to > 0 such that

(1.8) (1-tX)tE(t)<-O(t)<-tE(t), t>-_to.
2

We choose

(1.9)
(1.10)

then

1-(.-21- if7<,
/x= 21 if rt __>23_;

(1.11)
T9 (-&) I Ivwl= dx o,

Now, we want to show that (1.7) is nonpositive for all _-> tl for some tl > 0.
T1 _<-- 0 due to (1.1),
T2 _-< 0 due to (0.3),
T3 can be absorbed into T2 for all large enough,
T4 _-< 0 due to (1.2),
T5 can be absorbed into T2 and T4 for all large enough,
T6 can be absorbed into T2 and (1.11) by the trace theorem for all large enough,
T7 can be absorbed into (1.11) by (1.5) if 2 is small,
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T8<_-0,
Tlo can be absorbed into (1.11) if 72 is small by Poincar6’s inequality.

Therefore dQ/dt <= 0 for sufficiently large. Thus Q(t) is nonincreasing for all large
enough and by (1.8) the exponential decay follows. ]

After Theorem 1, many corollaries such as exact boundary controllability, obser-
vability and parabolic controllability can be immediately obtained for domains satisfy-
ing D-conditions. We refer to [3] for the details.

2. Distributed damping and boundary damping. We consider a wave equation
with distributed viscous damping

(2.1) Wtt + 2ywt- Aw 0, y > 0.

With energy-conserving boundary conditions, one can show that the energy decay rate
of (2.1) is Me-2vt if 7 is small [1]. Consider a situation where an energy-conserving
boundary condition is replaced by

(2.2) Wlro 0, (Wt -- OWn)IF1 0, O > 0;

i.e., boundary damping is also present on the F1 part of the boundary. In general, one
cannot expect any faster decay rate than Me-2’ if 01l is not well-dented. If gf is
well-dented in a certain sense, then it is not too surprising that the decay rate can be
improved.

TI-IEOREM 2. Let (fl, Fo, F1) satisfy the D-conditions. Assume that 7, a7 are positive
and small. Then the solution w(x, t) o]: (2.1), (2.2), (0.4) satisfies the following energy
decay rate for some M > 0:

(2.3) E(t)<-Me-2Vtt-E(O), t>0

uniformly for all initial states (Wo, Vo)
Proof. We choose suitable multipliers"

(2.4)

0--" (Wtt " 27wt--Aw) 2e2Vt{(1 --tz)twt + , liwi + [7(1 --/x)t +1/2( lii-- 1)]w}
t9 2 2=--e v’{(1-/)t(w, +lVwl2)+ 2wt , liwi +[27(1-tx)t +(E 1,,- 1)]wtw-7w2}
ot

-div e2Vt{ 2(1 )twtVw + (W --IVwl=)l +2(E lw,)Vw
N

+[(-)t+(2 l.-)]- 2 l
i j=l

+e "tlxwt +2 .. li,- 1- a w,wj+(272-1/2 l,ii)w +27ww,}.

Define

0(t) -= e2Vt{(1 i)t(wt + IVwl=) + 2w, y. liw q-[27(1 IZ )t + (Y, l,- 1)]WtW 7W2}.

Integrating (2.4) over l), we obtain

dt
Q(t) Ti,

i=1
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where

i Ti e 2vt as in (1.7), 1, 2, 3, 4, 5, 7, 8, 9,

]6e2"/’ fF [2y(1-tz)t+(2 l.-l)]ww,,do.,

e2Vt f ,y2 w 21o =- (2 1/2 , liiii dx,

1 =-- 2ylz e 2vt In wwt dx.

We then choose/z as in (1.9), (1.10). The counterpart of (1.8) in this case is

(2.5) (1-1)te2tE(t)<-O(t)<--te2E(t), t>-to.
2

The estimates can be made in the same fashion as in the proof of Theorem 1, provided
that 3’ and aT are small enough. (The additional term Tll can be absorbed into T8 / T9).
Therefore, we again have

d-
dtQ(t)<--O for allt_->tl,

for some tl > 0. In view of (2.5), we conclude (2.3).
Now, consider another situation. Suppose there is the presence of "negative

damping" in I and also (positive) boundary damping on the Fa part of the boundary 01).

The equation becomes
Wtt- 2")/w AW O, O,

(2.6) boundary conditions (2.2),

initial conditions (0.4).

From
d
[energy of this system] - [(wt)z + IVwlz] dxdt

27 w dx a w do’,

we see that some energy is generated on 12 but dissipated on F1. What can we say about
the energy of this system? The following theorem somewhat says that in this "competi-
tion", boundary damping seems to "win".

THEOREM 3. Let (1, Fo, F) satisfy the D-conditions and assume that 3’ is positive
small. Then the energy of the equation (2.6) decays uniformly exponentially.

Proof. The infinitesimal generator associated with the (2.6) is

Ax 2y

It is a bounded perturbation of the operator A by

[0 0]B=
0 23,"
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Since A is known to generate a semigroup S(t) satisfying

[IS(t)[[ =< Me-m, > O,

by 18, Thm. 3.1.1, p. 80], the semigroup $1(t) generated by A1 satisfies

1151(t)11 <-Me (-0 +MIIBII)t <Me(-0 +2vM)t.

Take y _-< (//3M); then the proof is complete. l
The proof above also applies to the case

B 3"1, 3’2 > 0

in (2.7). As 3’1 and 3’2 become large, more and more eigenvalues of A +B cross the
imaginary axis into the right halfplane. But one cannot expect A +B to generate a
semigroup Sl(t) with exponential growth rate by letting 3"1 and 3"2 be arbitrarily large,
since A is known to have an infinite point spectrum distributed along the negative real
axis ([6], [9]).

One might ask yet another question: what might happen if there is (positive)
viscous damping on f but "negative boundary damping" on Fl? That is,

Wtt "F 2 3"W Aw O, 3" > O,

W[o 0, (w,- w.)l 0, > 0,

initial conditions.

Unfortunately, this problem is not well-posed in general [5]. It is especially "strongly
ill-posed" when a 1.

3. A regulator problem. The regulator problem corresponding to a distributed
parameter control for the wave equation is relatively simple. One can apply the work of
R. Datko [4] directly and obtain exponentially stabilizing feedback control for certain
cases (see [2]). This becomes a very difficult problem if the control is boundary value
control. R. Datko’s theorems are not applicable because no existence of any semigroups
is guaranteed a priori. Consider

inf f w(., t; u) w(., t; u)
(3.1)

L(o.;L(r)) Jo v( t; u) v( t; u

where (w, v) satisfies

(3.3)

(3.4)

(3.5)

and

+(Nu( t), u( t))(r)] dt,

v( ,t;u A v( ,t,u

al,
v( 0; u Vo

(w+Cw)lr=u L2(0, c;L2(F1)) onF1, /31>0, /32=>0,

W[ro= O,

W a self-adjoint strictly positive bounded linear operator on

N a self-adjoint strictly positive bounded linear operator on L2(F1).
The boundary conditions (3.4) ensure the regularity (w, v) L2(0, T; Y(1) for any T > 0.
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According to Theorem 1 and follow-up exact controllability results, if (f, F0, F1)
satisfies the D-conditions, then (3.1) has at least one solution u E L2(0, oO; LE(FI).
Consequently, it has a unique solution .

Synthesis procedures for (3.1)-(3.5) are not justified because the adjoint state is
not smooth enough. The following discussion is only formal. It shows that solutions to
the regulator problem are unlikely to have boundary conditions like (0.3) as stabilizing
boundary conditions.

The adjoint state (po, qoo) is the limit of

]_
(3.6)

qT A qT LO(aT)J’

qr( T)

(.7) (fip +p)l, o,
(3.8) qr]ro= o,
(3.9) qw --INT on F1,

as T m, if such a limit exists. Assuming the feedback relation

(3.10) P =Q
q v(a)J’

we derive formally the Riccati equation (cf., e.g., [10])

(3.11)

For simplicity, let

and write

then from (3.11) w.e get

(3.12)

(3.13)

(3.14)

(3.15)

QA-AQ+ W O.

O21 O22J’

QA-O W1,

Qll- Q22 0,

Q22A-AQll--0,

Q:zl- AQI:z -W2.
From (3.4), (3.9), (3.10), we derive

/31wn +fl2w t7 -1--N-lqoo
(3.16)

fll
1 N_I(Q21w + Q22v).

From here we observe that even in the simplest case N flI (I is the identity operator
on L2(F1)) and W-I (the identity operator on 01), (3.16) produces a boundary
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condition

O22wt -}- [1Wn q- (f12I -F O21)w 0,

which can never agree with the form (0.3) because from (3.12) and (3.15), we have

Q12A AQ12 (W1 + W2) 2L

Thus, Q12 does not compute with 3, and neither does Q21. Hence, Q21 cannot be a
constant operator.

An interesting question remains open" how to construct, if possible, an exponen-
tially stable semigroup from the regulator problem in a domain (fl, F0, F1) satisfying
the D-conditions?
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The author wishes to thank the referee for the suggestion to write this separate note and
to improve the earlier results. He would also like to thank Professor Walter Strauss for
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CONTROL AND STABILIZATION FOR THE WAVE EQUATION IN A
BOUNDED DOMAIN, PART II*

GOONG CHENt

Abstract. The present note makes a further study on the distributed parameter control and stabilization
for the wave equation in an earlier article (SIAM J. Control Optim., 17 (1979) pp. 66-81). Decay rates and
control time are improved by a new stabilization scheme of combined viscous damping and compensation. A
stabilizing control for a regulator problem is also derived.

Introduction. This note is a sequel to [2], where we began our study of the
distributed parameter controllability and stabilizability of the wave equation in a
bounded domain. Here we improve the main results of [2] as follows. We show a new
stabilization scheme including both viscous damping and compensation which leads to
arbitrarily large uniform energy decay rates. This is then used to establish instantaneous
distributed parameter exact controllability by feedback controls. Some other properties
of the feedback controls are also discussed. A natural consequence of [2] and the
present note is an exponentially stabilizing feedback from the regulator problem, which
leads to another stabilization scheme.

We will continue our study on the control and stabilization for the wave equation,
for the case of a domain with moving boundary, in Part III of this series of papers [12].

1. Stabilization with viscous damping and compensation. Instantaneous
controllability. Let lq be a bounded, open and connected domain with boundary
consisting of F0 t] F1 t] F2 [J" i] F,. Consider the equations

02w Ow
(1.1) -(x, t)+2ya-(x, t)+y2w(x, t)-Aw(x, t)=O,

w(x, O)= Wo(x),

tt
(x, O) Vo(X

(1.2) w(x, t)lro O;

aiw(x, t) + [3,n (X, t) It, O, 1,..’, n,

(1.3) 2 2
tTti ’0, /i0, Oi "’i 0.

The above in the form of a system is

[’J [ 0 ]["] ( [ 0 ]/[v(,t) A 3’2 2yl v(,t)
A+

--’)/2 -2yx v(,t)

The underlying space is

1-={(w, v)eH(lq)H(f)lw satisfies (1.2)in H1/2(F0)},
with A the wave operator, and

D(A)= 2={(w, v)H2(f)O)H(f)lw satisfies (1.2), (1.3)}.

* Received by the editors June 15, 1979, and in final revised form April 25, 1980.
t Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania, 16802.
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The domain f may be a polygon, with a mixed boundary condition on each side Fg.
In (1.1), the term 2] is viscous damping and the term ]/2w is dispersion.

Because of the similarity between (1.1) and a second order linear system

we call ]/2W the compensation term. When it was first introduced in [4], the authors
failed to realize that the energy decay rate of (1.1)-(1.3) can be made as large as desired
provided that ]/1 and ]/2 are chosen large enough.

TI-IEOREM 1.1. For any. k >0, let w(x, t) be the solution of (1.1)-(1.3) with

]/1 k(3+2k), ]/24k(1 +3k +4k2). Then the energy of the system decays uniformly
exponentially"

Io[ ] I1[ ]11
where C(k)= O(k3).

Proof. Again, we use the energy method [2], [11]. We first consider those
(Wo, Vo)e . Multiplying (1.1) by Ow/Ot and integrating by parts, we obtain

1 dI(0)2 IrOWOWd----2 dt
dx-

On Oti=1

+ ]Vw dx +27 dx+ dx=O.

With the boundary conditions (1.2), (1.3) taken into consideration, the above becomes

]1 d
iVw[2 low 2

w do" +2]/1 dx=O.(1.5) + + ]/2w
2 dx + Y Oli lOW

i#O i

Similarly, we use w as multiplier and obtain

Iw dx- dx + IVw dxA - lot
(1.6)

w do"+]/ldt w dx+]/2 w

Adding (1.5) and (1.6), we obtain

l d{I [(0)
2

0J iF 2 }+ IVwl2 + (2 + 217)w2 + 2yw dx + 2 w d
2 dt o, eoBi

+ (2v-a) +Vw +Avow dx+A

We write the above simply as

(1.7) -tP(t) + O(t) O.

E c/Ir w2 do"}=0.
/3i # 0 i

Our proof given here differs from the one in [2], [11] in that is not small; indeed, we
choose

=2k.
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Then with y k(3+ 2k), 2 =4k(1 + 3k /4k2), the inequalities

23/1-h >-k(l +h), i3/2 k(/ -[-- 3/2 -[- 213/1),

are satisfied so we have

>-2kP(t).

+ [VW + (A + 3/2 + 2A3/1)w 2 dx + ’, Oli

BiO i

Thus, from (1.7),

therefore,

d
P(t) + 2kP(t) <- -P(t) + Q(t) 0;

P(t) <- P(O) e -2k‘.

It is easy to verify that

P(t) >-- --On the other hand, from Poincar6’s inequality,

I Iw dx<-K IVw dx

and the trace theorem

ceiIF w2do’<=Kf[Vw[2dx, (K chosen => 1),

we see that

P(t) <-- 21---{ f [ (-)
2 -(w ]+ IVWI2 + (3/2 + 2A3/1)W 2

+2\ Ot ]
+ 2h 2W2 dx W

/3i #0 /Ji

I<= +[Vw +(4k +32k +24k3)w2
W

/3i #0 /.Ji

+ IVw 2 dx.

Hence,

+lVwl dx 4P(t)<=4P(O) e -2kt

<_C(k)e -2kt [v+lVwol2]dx=C(k) e-2’
I)o

where C(k)=-4K(2 +4k + 32k2 + 24k 3) O(k3).
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Remark. In [10], M. Slemrod generalizes a finite-dimensional stabilization
scheme" he considers

o
dtLv(. ,t)J

rw(.,0 1 two
Lv(’, O)J =Lvo]

v( t)
+ Bu(t),

1 =- H(I))H(I)),

D(A (He(n) Hao(a))H(),

It is shown that if B satisfies

dt>-6 some 6 > 0,
U DO Yt’l

where T*(t)= the group generated by A*( -A), and if we take

(1.9) =- -B*D-1 e-2tT T*,, De =- (- t)BB* (- t) dt,

then the semigroup $(t) generated by A +B satisfies

(1.10) IIS(t)ll<-_Me -’, (M depends on ,t),

where h can also be made as large as desired. In particular, if

U=I,

(1.11) B
0

then (1.8) becomes a special case of the observability theorem proved in [4, Thm. 2.3.4].
Since B* B, A + (-2y)BB* is the operator

A -23,

which has been discussed in detail in [2], and we understand that A + (-2T)BB* can
not generate a semigroup with arbitrarily large decay rates. Slemrod’s stabilization
scheme A+B with given as in (1.9) obviously produces a stronger result than
A / (- 2T)BB* does in [2].

If one looks into the proof of [10, Thm. 2.1] more carefully, using a simple
eigenfunction argument, one may find that the constant M in (1.10) is of the order of
magnitude O(x/) as , becomes large (with B =(1.11)). That is to say, A+BN
generates a semigroup $(t) satisfying

(1.12) [Is(t)ll_<_ Cx/’ e -At, h large.

Our result (1.4) in Theorem 1.1 works in the same direction as Slemrod’s [10, Thm.
2.1]. With A 2k, the decay rate (1.12) is faster than (1.4). But the stabilized equation
(1.1) is easier to construct and solve than (1.9).

As an immediate consequence, we have the following theorem of "the instan-
taneous controllability of the wave equation". It improves an earlier result in [2].
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THEOREM 1.2" Given any T > 0 and any initial and final states (Wo, Vo), (wl, vl)
there exists a control fT(X, t) C([0, T]; L2(f)) such that the solution of

92W
-:7-. (x, t)- Aw(x, t)=fT(X, t),
dr-

x61, t-->0,

w(x, 0)= wo(x),
OW
_-.(x, o)= vo(x),
dt

boundary conditions (1.2), (1.3),

satisfies w(x, T)= wl(x), Ow(x, T)/Ot Ol(X). In other words, the wave equation can be
controlled as fast as we wish by distributed parameter controls.

Proof. In order that this paper be sufficiently self-contained, we reproduce
Russell’s arguments presented in [2], [8].

Let fi be the solution of

0t---y-Aft Yl-- T2fi,

(1.13) r_’l[firS] el, (initialstate),

and let 3’1, 3’2 be large enough so that Theorem 1.1 applies to give the energy decay
result

where C(k) is O(k 3/2) according to Theorem 1.1. We choose k large enough so that

C (k) e-kT < 1.
Let be the solution of

A fi 3-t -[- 4fi, 3 > 0 "Y4 < 0,
Ot2

g( T) T)
el, (terminal state).

Reversing the time direction and choosing appropriate "/3, y4, we can also apply
Theorem 1.1 and have

Now we define

(1.16) f’(x, t)= -y,t (x, t)-y2fi(x, t),

(1.17) [(x, t) 3,3t’ (x, t) + V4(x, t),

and let r/-= fi -, f f-/ Then r/is the solution of

Ot2
An=f,

x l, O<-t<- T,
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with initial state (n(’,0), r(.,0))=(o-o, o-:o) and terminal state (ri(., T),
r(., T))= (0, 0). Since (o, (o) depends linearly on (o, o), we can write

(1.18)
(ro, o) F(o, o),
F" 1 --> I, IlSll<=[C(k) e-kT]2 < 1

SO

rio F)[o.(

The above relation is always solvable because IIFII<I. Letting (o,’o)
(I-F)-l(rio, o) (I-F)-(Wo, Vo), we have solved the controllability problem for any
T>0.

CorollAry 1.3. The controlf(x, t) in Theorem 1.2 satisfies the following proper-
ties"

(i) The controlled orbit {(w(., t), v( t))[O T} is compact in .
(1.19) (ii) lim lifT(’, T)IIL(a) O,

T0+

(1.20) lim sup [LfT(",
T$O [0,T]

Proof. (i) Returning tothe proof of Theorem 1.2, we see that for (rl0; (o)D(A)
(in (1.13)), the trajectory of {((., t), (., t))[0-<t_-< T} is compact in 1 because
D(A)= 2 is compact in 1. This property remains valid for (o, (0) o1 by the
diagonal process (cf. [5]). The same reasoning shows that {((., t), ((., t))10 <_- -<_ T} is
also compact in W1. Hence {(w(., t), v(., t))[0 <_- _-< T}, which is equal to the difference
of two compact trajectories, is compact.

(ii) Since f is equal to f-f, with (1.16), (1.17) we have

[If( , T)llz.(.)-< ]If’( , T)II + Ib#( ", T)l[

=:)by (1.14), (1.15), (1.16), (1.17) and Poincar6’s inequality

(M independent of k)

<-MC (k) e-’l](I-F)-’lle(<,el)
Vo

Now, we choose ")/1, ")/2, Y3, ’)/4 in the same fashion as in the proof of Theorem 1.1, we
have C(k)- O(k3/2) so

lim C(k) e-TII(I-F)-II[=O.
k

Hence (1.19) is proved.
Equation (1.20) is obvious since as the control time becomes smaller the gain must

become larger in order to reach X from x0.
Remark. From the corollary above, one easily sees that if a constraint

ess sup I[f(", t)ll C
Ot<=T
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is imposed on f, then one cannot obtain instantaneous controllability. Indeed, under this
constraint there will be a unique time-optimal, bang-bang control which satisfies the
controllability condition [7].

COROLLARY 1.4. For any two states (Wo, Vo), (wl, vl) and any T > O, there is a
unique distributed parameter[ C([0, T]; L2(fD) which is optimal in L2(f [0, T]) and
steers the system from (Wo, Vo) to (w, v) at t= T.

Proof. Let {j} be the set of complete eigenfunctions of (- A) in L2(fl) correspond-
ing to boundary conditions (1.2)-(1.3). Let {hi} be the associated positive eigenvalues
(h. may have multiplicity _-> 1). Let o. +/-/--.. Then the controllability problem

02W
-7W (x, t)-Aw(x, t)=]’(x, t), O<-t<-T, x,

w(x, 0) Wo(X),
OW

(x, o) vo(x),
Ot

w(x, T)= Wl(X),
OW
--7". (X, T)--
ot

(1.21)

is equivalent to the following abstract moment problem"
T

e tx) dx dt

Ia [Vl(X) e’r Wl(X)ooe’’r-vo(x) Wo(X)]j(X) dx,

for all ] 1, 2,. .. From the controllability Theorem 1.2, such a moment problem is
always solvable with f eC([0, T];L2(I’))). But C([0, T];L2()) can be naturally
embedded in LZ( x [0, T]), f e L2(1 x [0, T]). Let

Then

and

M--the closed linear span of {e+/-"&i(x)li- 1, 2,." ’} in L2(I[0, T]).

L2(n x [0, T])=M+/-(M,

f f +f2, fx M+/-, f2 M, fx, f2 unique.

Then fz is a solution of the abstract moment problem (1.21), and [[f2llL2mt0.T])is
minimal [9]. The fact that f2 C([0, T]; L2(lq)) is nontrivial. One must use a general-
ization of a finite-dimensional argument in [1]. The detail is omitted.

2. A regulator problem for the wave equation. We write the control system in
Theorem 1.2 as

(2.1) tt[W("t;;l]V(,t; =[OA ;][W("t;;l]+[]C(V(,t;
.,t)

v( ,t;

W(’, O,f)] e al.v( O,f)J Vo
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Consider

(2.2) inf Io w( t; f) w( t; f)
+(Uf( t), f( t))i2(a) dt,

feL2(O,oo;L2(.)) V( t; f) V( t;

where

W-a self-adjoint nonnegative linear transformation on 1, satisfying some
observability condition,

U a self-adjoint strictly positive linear transformation on L2(fD.
Since the system (2.1) is exponentially stabilizable with a feedback

i.e., A +BI generates a semigroup with an exponential decay rate, the regulator
problem (2.2) has a unique solution 1 in L2(0, c; L2(fD).

THEOREM 2.1. There exists a self-ad]oint linear operatorK on 1 such that the
unique optimal control minimizing (2.2) is obtained by use of the feedback relation

w(. ,t)]f( t)= U-B*Koo
v(,t)

Furthermore, A-BU-1B*Koo generates a semigroup with an exponential decay rate
provided that W is strictly positive.

Proof. The existence of K is clear from the proofs in [6]. It follows from
[6, Corollary 3.1] that A-BU-1B*Ko generates a semigroup exponentially stable
since hypothesis A in [6] is always satisfied by use of (2.3). !-I

Remarks.
(i) This stabilization scheme is different from those mentioned in 1.
(ii) In the proof of Theorem 2.1, we avoid using Ricatti’s equations for feedback

synthesis due to difficulties from regularity of solutions.

Acknowledgment. The author would like to thank Professor D. L. Russell for very
helpful discussions. He also thanks the referee for very constructive criticism.
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CONTROL AND STABILIZATION FOR THE WAVE EQUATION,
PART III: DOMAIN WITH MOVING BOUNDARY*

CLAUDE BARDOSt AND GOONG CHEN

Abstract. We use energy invariants to study the growth and decay estimates for solutions of the wave
equation in a domain with moving boundary. Sufficient conditions are formulated which insure the exact

(distributed-parameter) controllability of the wave equation.

Introduction. In three earlier papers [1], [2], [3], we have studied controllability,
stabilizability and observability theory for the wave equation in a bounded domain
lq _c [N. 11 was a fixed domain with the passage of time. In practical situations, many
processes evolve in domains whose boundary has moving parts. A simple model, e.g., is
a heat process in a combustion chamber where a piston is attached. Part of the boundary
moves with the motion of the piston. Partial differential equations in domains with
moving boundary have been studied in [4], [5], [6], [7], etc; see also the references
therein.

In this paper, we will be concerned with the distributed-parameter controllability
and stabilizability problems of the wave equation in a domain with moving boundary. In
particular, the domain is expanding following certain rules. As far as we know, the
present paper is the first attempt to resolve the questions above. We prove that (1) the
wave equation is stabilizable with the introduction, of viscous damping and compen-
sation, and (2) the wave equation is exactly controllable with distributed-parameter
controllers.

We first note that the energy of the wave equation increases as the domain expands
and decreases as the domain contracts. Therefore, no backward stabilizability [10] is
expected in an expanding domain as one reverses the sense of time. This causes some
complications to the study of controllability when one tries to apply Russell’s complete
stabilizability method 10]. Here we devise a scheme with high compensation, so that,
when combined with the energy method of Morawetz, it can provide us with an upper
bound for the energy growth during time reversal.

Basically, our assumptions are as follows. (A) The space dimension N 2. (B) The
domain rests still until To. (C) After To, the domain expands, but every point on the
domain lies within the distance Or, 0 < 0 < 1, of the origin at => To. (D) A geometrical
condition on the boundary which in the stationary case reduces to the star-shapedness
condition. Condition (A) is very restrictive. Condition (B) is probably redundant. Both
(B) and (D) ensure that the energy of the wave equation will not change too drastically
in the process of boundary deformation.

In 1, we start with some basic notation and the statement of the controllability
problem. The existence, uniqueness and continuity of solutions of wave equations is
stated without proof.

In 2, we derive the growth and decay estimates for the wave equation (without
control) in an expanding domain. It is important in itself as well as preparatory for the
material in 3.

* Received by the editors June 15, 1979 and in final revised form April 25, 1980. A preliminary version
of this paper has been published by INRIA, Res. Rep. # 12, Rocquencourt, France, March 1980.

" D6partement de math6matiques, Universit6 Paris-Nord, Paris, France.
$ IRIA-LABORIA, Rocquencourt, France. Now at Department of Mathematics, Pennsylvania State

University, University Park, Pennsylvania, 16802. This work was supported in part by the National Science
Foundation under grant MCS 7822830.
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In 3, the distributed-parameter exact controllability theorem is given.
We give an example of an expanding sphere in 4.

There are many control problems related to evolution equations in domains with
moving boundary which are yet to be studied:

(1) Boundary-value control for the wave equation.
(2) Distributed-parameter and boundary-value controls for the heat equation.
(3) Control problems for evolution equations in a domain with periodic moving

boundary.
We hope we can treat them in the future.

1. Notation. Statement of the problem. Points in the space [N are denoted as
X (X1, X2,""", XN). Also r2= Ixl=-- y x/, v (o/OXl,..., O/OXN), Vx.t-- (V, O/at) and
A a2/ax/. For _-> 0, we postulate bounded open sets f(t). Let

Q(tl, t2)=- [_J lq(t) {t}, E(tl, t2)= I,.J Ol’(t) {t},
t=tl t=tl

denote the space-time domain and the lateral surface from t to rE. In case tl O, we
simply denote Q(O, t2) and E(O, t2) as Q(t2) and E(t2), respectively. We assume that E(t)
is piecewise smooth for all > O. Let u (Ul, , Us, ’t)= (’x, t,t) be the unit outward
normal at (x, t) on E. Throughout this paper, we assume

(H0) (time likeness of E) I1<11 onE(T), foranyT>0.

From [6], we understand that (H0) holds if and only if each point on the boundary moves
in the normal direction at a speed less than one.

If u is a smooth function satisfying u 0 on Y_,, then all the tangential derivatives of
u are also vanishing on E. So,

Ot 0,/’it’ Vu ux, ur here
Ou Or Or,

The above remains valid in the sense of distributions if u has a well-defined trace.
For each >-O, HXo(f(t))O)H(l)(t)) denotes the Hilbert space equipped with the

norm

][(w, v)ll2 I. [IVwl= / v=] dx EI(W, V)= the energy of the state (w, v),
(t)

or an equivalent norm,

II(w, v)ll [Ivw /w / v] dx,
(t)

for any (w, v)H(f(t))H(f(t)).

(cs)

We are now in a position to pose the Exact Controllability Problem (ECP). Let

-(x, t)- Aw(x, t)=f(x, t), (x, t) Q(T),

0) Wo(X)] H(n(0))@H(lq(0))

(x,O)J [ vo(x)
wl.(= 0
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be a given distributed parameter control system governed by the wave equation. For
any initial state (Wo, Vo)Hlo(l)(O))H(lq(O)) and any preassigned state (wT-,
H(I)(T))H(f(T)), find an admissible control fL2(Q(T)) such that the solution
w(x, t) satisfies the preassigned terminal state (wT-, vT-) at T.

The theorem of existence, uniqueness and continuity of solutions is given below.
THEOREM 1.1. Consider the equations,

-(x, t)-Aw(x, t)=f(x, t), (x, t) Q(T), f L2(Q(T))

w(x, O) Wo(X) nol(fl(0)),
Ow
--(x, O) Vo(X) H(I)(0)),

wl()= 0,

in Q(T). Under the assumption (Ho), the solution w(x, t) exists and is unique, such that

w,--- e C([0, T]; H(f(t))H(f(t))).

Furthermore, if (Wo, Vo) [Hol(lq(0)) f’) H(Iq(0))]H(f(0)), then

w,-- C ([0, T]; H(tq(t))H(f(t)))

0 c([0, T]; [Ho(a(t)) 0 H(f(t))](R)H (f(t))).

The proof can be done by a local change of coordinates [4] and continuation by
a priori estimates, and then use of theorems in [8, Chapt. 3] to prove continuity.

2. Growth and decay estimates for the wave equation in an expanding domain. In
the sequel, we will need the following assumptions from time to time.

(H1) The space is not two-dimensional; i.e., N 2.
(H2) The domain f(0) rests still until To for some To > 0; i.e.,

l)(t) l’I(0) for 0 _-< <_- To.
(H3) For _-> To, the domain is expanding; i.e.,

and for any x e lq(t),

f(tl)
_

lq(t2) for To _-< tl -<_ t2,

r=lxlot,
for some 0.

In the proofs that follow, it is not difficult to see that (H2) can actually be relaxed to

the following:
(H) There exists To>0 such that for the domain f(t) undergoing boundary

deformations during 0 =< =< T, the condition

KIEI(Wo, Vo)-<-El(W(" To), v(’, To)) <- KE(wo, Vo)

is satisfied for some K1, K2 > 0, uniformly for all (Wo, Vo) H(I)(0))H(f(0)), where
(w(., t), v(., t)) is the solution to (WE) in Theorem 2.1.

Our first theorem, which is independent of the preceding hypotheses (H1)-(H3),
indicates that the energy of the wave grows and decays as the boundary shrinks and
expands.
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THEOREM 2.1. Let

02W
---Aw 0 inO(T),

(WE)
w(x, O)= Wo(X) H(f(0)),
Ow-- (x, O) Vo(X) e H(f(O)),

wl.( 0,

be a wave equation in O(T). Then the energy El(t) is nonincreasing if f(t) is expanding,
and Ea(t) is nondecreasing if lq(t) is contracting.

Proof. Let the motion of a point on Ofl(t) be given by x x(t). Then (dx/dt, 1) is
tangent to (T) at (x(t), t). Thus

(2.1) vx" -7+ vt 0.

Since the boundary Oil(t) of fl(t) is expanding outward, the component of dx/dt in the
direction of ux must be nonnegative; thus u. dx/dt is nonnegative. Hence, ut is
nonpositive.

Now writing

(2.2) l((Ow] Owv rv)0 =-,-0w{02W-Aw)= 0[\\--! +]Vwl2)]-div (--7
and integrating over Q(t), 0 =< t-< T, we obtain

1 2

(2.3) I(t)((.W) + Ivw I") dx

(2.4) -2

The second term is always nonpositive because vt is nonpositive and (Ho). Therefore
Ea(t) is nonincreasing.

On the other hand, if 01q(t) is contracting inward,/t is nonpositive. The second term
of (2.4) becomes nonnegative. Thus El(t) is nondecreasing. I-1

In what follows, we will use C. S. Morawetz’s energy invariants [9], [12] to study the
growth and decay estimates for the wave equation. They are

E=(t)=__ [t((Ow)2 ) 2rOWOW Owl(t)
-’l-[’rW[2 +

Or Ot
+ (N- 1)w-- dx,

E3(t) Ic [(r2+t2)((O_t)
2

) OwOw

_
2]/lVwl2 +4tr+2(N-1)tw -(N-1)w

(t) Ot Or
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LEMMA 2.2. For any domain f lV, N 2, we have

OXi

N -1) N 3 Ia w- d
r

(N 1)- Oww-t-
r Oxi 4

dx

-(N-1) Ia W2 dx- (N 1)(N 3) fn (re + t2) 2

4 re w dx,

provided that w 0 on Ofl.
Proof. The computations are straightforward. One need only note that the

singularity at r 0 does not make any contribution for N _-> 3.
THEOREM 2.3. Assume (Ha)-(H3). Let w(x, t) be the solution of (WE) in Q(T),

T>- To.
(i) If tvt+rvr=O on Of(t) for To<-t < T, then E2(t) is conserved during [To, T].

We have the energy decay

(1+ O)Tol
(2.5) Ea(t) <- /1 (0), t>0.

1-0
(ii) If

(H4) tut + rl,’r <= 0 on Of(t), To > O,

holds, then E2(t) is nonincreasing ]:or >= To, and (2.5) remains valid.
(iii) If tvt + fur >- 0 on Ol)(t) for >- To >= O, then Ez(t) is nondecreasing during

To, T] and

(2.6) EI(t)>-(I+O)TIE(O), t>-To.
(1 0)

Equivalently, there exists K > 0 independent of (Wo, Vo) such that

I +O KTo
(2.6’) E(t)>- El(0) t>=0.

-1-01+t

Proof. We know that

)(tOw OwN-l)0 2t--Aw +r--+ w
\ at Or 2

+lVwl= +2r----+(N-1)w
at Or at

-div 2tWVw+2(x.Vw)Vw+ x+(N-1)wVw-[VwlZx
ot

Integrating the above over Q(To, t), we obtain

(2.7)
E2(t’=E2(To’+I= {-[t((Ow)

e

) 2r
OwOw

w
ow]

(To, t) -- -["[VW[2 "q- ----+(N-orat
1)

at Jut
+ 2tOWVw+2(x Vw)Vw+ x

Ot

+(N-1)wVw-[Vw,2x] Vx} dm
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Using the relations (1.1), we can simplify the above boundary integral to

(11 t )[t’t + rr] do’.
(To,t)

From here one easily sees that the conservation of E2(t) is proved. Now, define

Ow N- 1 xi(2.9) hi=+ 2w.
Oxi 2 r

Then,
2

In { [(0W)
2

( N-1 xi )] 2rOwOw Ow
(t) --ff +2 ,

r
w + + (N- )w-ff

t) 2 Ot Or

(integration by parts once and simplification, using Lemma 2.2)

In [(0W)
2

) OW ] t(N-1)(N-3)In
2

(t) 4 (t) E

By (H3), r Ot on O(t), we have

(Ow2 )_-<o -+2a/
Therefore,

(2.10)

Substituting (2.9) back, using Lemma 2.2 and simplifying, we get

(2.11) In ((0w)
2

) (N-1)(N- 3)
Ot ln

2

(1 + O)t 77 + 17wl2 dx- -T dx
(t) 4 (o r

>-E2(t)>=(1-O)t +lVwl2 dx +
(0 4 (t) r

Combining the above inequalities with (2.7) and (2.8), we conclude that, for t-> To, if
tvt + rvr<-O on (T0, t), then E2(t)<-E2(To), so

(l+O)To -8-7- +17w[2 dx =>(1-O)t -0-7- +[Vw[2 dx.
(To) (t)

Hence (2.5) is proved because El(To)= El(0).
If tvt + rPr >= O on (To, t), then E2(t) >=E2(To); thus

(1- 0)T Ia ( (O--)
2

) In ((0-)
2

)+ IVwl2 dx <= (1 + O)t + IVwl= dx.
(To) (t)

So (2.6) is proved.
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Remark. The assumption (H4) is similar to the "pulse illumination" condition of
Cooper and Strauss [6]. For example, after To if x dO(t) moves according to the law
Ix[= Ot, 0 < 0 < 1, then (Ha) reduces to ut + 0ur-< 0. An example illustrating various
situations in Theorem 2.3 can be found in 4.

As for E3(t), we have the following theorem.
THEOREM 2.4. Assume (H0)-(H3). Let w(x, t) be the solution of (WE) in Q(T),

T >- To. Iffor some Tx, 0< To < T1 <- T, the condition (compare [5, p. 141])

(H5) (r2 + t2)w, + 2tru >- 0, x e Of(t), ->_ Tx

is satisfied, then ’3(t) is increasing during [Tx, T] and

1 (1-0)2T(2.12) El(t)->
1 + 02 1 /0 -EI(0), >- T1

or, equivalently,

(2.12’) El(t)>=-l+02 (0), t>0, forsomeK>O.

Remarks.
(i) (Hs) is satisfied provided that tu, + rur >- 0 is satisfied for _-> Tx, because we

have, with (H3),

(r2 + t2)pt -b 2tr,r >-_ (1 + O2)tut + 2tn’r
> 2tz t’t + 2trt, 2t(tut + rut) >-_ O.

(ii) The estimate (2.12) says that under (Hs), El(t) cannot decay with a rate faster
than 1/t2. This estimate does not seem to be too useful from the energy decay point of
view, because we already know that EI(t)<-EI(O). However, such an estimate is very
important in the controllability study in 3. Compare (3.5).

(iii) Assuming both (H4) and (Hs), we know from Theorems 2.3 and 2.4 that the
energy of the wave equation decays with a rate between 1/t and l/t:.

(iv) For a sphere expanding with a uniform speed 0 < 1, it is impossible to have

(r2 + t2)l,,t + 2trur <- 0 on aft(t),

for all t-> T1. Therefore, one in general cannot expect a result like (2.5) from E3.
Proof. We follow the same line of argument as in the proof of the preceding

theorem. It is known that

2

0=2 -- A (r:+t)-- +2trOw+(N-1)twOr
=t[(r2+t)((w) Ow Ow twOW+[Vw[2 +4tr+2(N-1) -(N-1)w

Ot Or Ot

2 div [ (r2 + t2) Ow w+t
2

x + 2t(x Vw)Vw- tlVwl2x +(N-1)twVw].
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Integrating over Q(T1, t), we obtain

E3(t)=E3(T1)+ 2 (r2+t)--Vw+ x +2t(x

(.1 + (N- 1)twVwI ux

OwOw Ow
+4tr+2(N- 1)tw

Ot Or Ot

-(N-1)w2] ut} do’.

Using (1.1), again we simplify the above boundary integral and get

OW2
(2 14) E3(t) E3(T1) + P )[(r2 + t2)t’t + 2trt,r] do..

(Tl,t)

Now we use (2.9) and integrate by parts; we get

Ic { [ Ow2 ] tow } (N-1)(N-3) I r2+t2
E3(t)= (r2+t2) ---+Eh/ +4---Exihi dx+ 2

For _-> To, r <-Ot on f(t), so

20 22tr <-i + 02(r + t2);
thus

Therefore

1+.1+02 (r2+t2) -- +EA/2 dx+ -----y--w2dx
(t) 4 (t) r

20 (r2+t2) +YX dx>= E3(t) _--> 1
1 (t)

+(N-1)(N-3)I. r2 + t2 2

4 (t) r2
W dx

_-> i+02
2 ( - +,A dx+

(t) 4 (t) r

Substituting (2.9) back and using Lemma 2.2, we obtain

(2.15)

Now,

(2.16) r2 + 2 _-< (1 + 02)t2,
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and combining (Hs), (2.14), (2.15) and (2.16), we obtain

(1 + 0)2t2 Ia ((0-)
2

)+lX7wl= dx >-_E3(t)>-_E3(T1)
(t)

+ 0---- r -ff + IVw
(T)

I+o’T +[Vwl dx.
(o)

So (2.12) is proved.
For the case N 2, the function w/r is not integrable in general due to the

singularity at x 0. In order to be able to derive some energy estimate, we must assume
that each fl(t) is of annular shape.

THZORZM 2.5. Assume that for each O, (t) is an annular region and its
boundary Off(t) consists of two parts Fox {t} and Ft. The interior part Fo is star-shaped
with respect to the origin. Fo is fixed, but the exterior part Ft may be moving. Assume (Ho),
(H), (H3) and (H4). Then E(t) is nonincreasing (t To) and for To,

(2.17) El(t)
1 0 W--dx<T I+OEI(To)+ ---dx.4 1-0 (,) r 1 0 1"0

Proof. It is the same as that of Theorem 2.3 except for some modifications. We
replace (2.7) and (2.8) by

Ez(t) E2(To)+ boundary integral over the exterior lateral surface of Q(To, t)

+2(t T0) Iv (x /,’x)(0x)2 do"

The last additional term is always nonpositive. So EE(t) is nonincreasing. Now the proof
of (2.17) follows immediately from (2.11). fi

3. Stabilizability and exact controllability. Our first theorem is a stabilizability
theorem. Here we obtain "forward" decay estimates by using high damping and
compensation. It is an analogue of [2, Thm. 4.1].

THEOREM 3.1. Let w(x, t) be the solution of

(E+)

02W OW

--0-- (x, 0) + 2yl--(x, t)- Aw(x, t) + yzW(X, t) O,

w(x, o) Wo(X) Hob(n(0)),
Ow
-(x, O) Vo(X) H(Y(O)),

w(x, t)[r.(,)= o.

(x,t)6Q(T),

Assume that the domain is expanding; i.e., f(t)
_

D,(t2) for 0 <= tl <= t2 <= T. For any e > O,
if yl -=A 1/2e, ’]/2 1/e 3, then

-I- ]VwI2-t- 2W2] dx <-
1 + e Ia [v + IVwl + Vw] dx.

1-e+2AT (o)
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Proof. We use aw/Ot as multiplier and obtain

(3.1)
aW 2

at

Integrating over Q(t), we obtain

a I (v2 + IVwl= + 2w2) dx+lVwl:+v:w &= 0

IG [(aw7 ) l((aw)
2

2 ) t] II (aw)
2

q- W Px q" IV W] q" 2 dr 2 dx dt.
(t) at " -- ]/2W I} --I

O(t’

The boundary integral is the same as that in (2.2); therefore it is nonpositive. The third
term on the right is always nonpositive. Therefore we conclude that

(t) - + lVw +3’2w dx

is nonincreasing as a function of t.
Now, using Aw as multiplier, we get

(3.3)

[aZw aw )0 Aw----aw + 2y1--+ yaw

=A w---+y2w -div(wVw)+lVw
at

((3.1)+(3.3) and integration over Q(T))

"+-[VW[2 q"aWq- q-A]/1 W
2 dx

(T) 3t

+ (negative term) d 1 IVwl2 + (2 a)
ow 2

+Ay2w dxdt.
(T) (T)

Hence, for every e > 0, we have

T

(t)
-" A ]/2 W2] dx dt
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We choose h "Y1 1/2e, 3’2 1/e 3 and use the decreasing property of (3.2) to get

l-e) Ill(T)[(-) 2+[VwIz+y2w2] dxIT+
2

(3.4) 2

N dx.
2 (o

+lVw +rw
So the proof is complete.

When we reverse the sense of time, an expanding domain becomes a contracting
one. Therefore by Theorem 2.1 we cannot expect "backward" decay as we had in [2],
[3], [10]. Instead, we use a scheme of high compensation in keeping with the compen-
sation we made in Theorem 3.1. Under the assumptions in 2, we derive the following
backward growth estimate.

LZMM 3.2. Assume that (H0)-(H3) and (H) hold. Let w(x, t) be the solution ofthe
backward e ,uation,

(x,t)-w(x,t)+Tw(x,t)=O, (x,t)O(T), 70,

w(x, T) w(x) H((T)),(E_)
0w
(x, T) v(x) H((T)),

w1( O.

Then the following inequality hoMs
2

(3.5
1 (1-)2TIn [(0w)

2

]+o 1+ (o
(x,O+[Vw(x,O)l+vw(x,O dx.

Proof. It is straightforward to verify that

o -+ (r+ )+t+(-tOr

= (r+t) +lVw +w +4tr--+2(g-1) -(g-1)
Ot Or Ot

2 div (r + )Vw + x + 2t(x. Vw)w tllax + (X- 1)t

ytw2x] 4ytw 2.
Integrating over Q(T1, T), we obtain

In [(rZ+TZ)((O__tt)
2

[2 2)OwOw TwOW 2]+[Vw +yw +4tr+2(N-1) -(N-1)w dx
(T) Ot Or Ot

2

=IO(T1)[(r2wT)(() +]WI2+TW2)
(3.6) OwOw ow ]+4Tr+2(N-1)Twot Or -(N-1)wa dx

+ integral over the boundary (T, T)+ o 4tw dx dr.
(T,T)
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The above boundary integral is the same as the one in (2.14) with T, so it is
nonnegative by (Hs). The very last integral over Q(T1, T) is always nonnegative.

Again using/i as defined in (2.9), with (H3), we obtain

(  o)i>-- 1-
1 +0

(r2+ +i --Tw
2 dx

(T1)

(N 1)(N 3) Io r) + T 2+
4 (TI) r2

w dx

1+02 T +A/2+w2 dx+
(rl) 4 (T) r

The rest of the proof follows from the same type of argument as in Theorem 2.4 and will
not be reproduced here. 71

LEMMA 3.3. Under the same assumptions as Theorem 3.1 and Lemma 3.2,
respectively,

(i) Let w(x,t) be the solution of (E/) with initial state (Wo, Vo). Let
/(t)" Ho(l)(0))@H(f(0))+ H(l)(t))@H(lq(t)) be the linear transformation defined

by

d+(t)((Wo, Vo))=--(w( t), tt (. t)).
Then +(t) is continuous for each [0, T].

(ii) Let w(x,t) be the solution of (E_) with terminal state (WT, Vr). Define
_(t)" H(f(T))@H(f(T))+ Ho(f(t))@H(lq(t)) to be the linear transformation

_(t)((WT, Vr))=--(W( t), t t)).
Then _(t) is also continuous for each [0, T].

Proof. We need only to prove (i), since (ii) will follow in a similar manner. Let
(Wo, VOW), (Wo2, Vo2) e no(lq(0))n(l(0)). Let w(x, t) be the solution of (E+) with initial
state (w-W2o, Vo-V2o). From (3.4)with T replaced by t, we have

At+

:Fhus,
1-e) Ia [(0__)2 12 2] l+e-- VW -}- "y2w dx <
2 (t) 2

+ [Vwl2+ y2w dx.

1-e 2 2 2 1 +e
at+

2 ]ll+(t)(w-w’ v-v)llv2<=
2

[l( w o- w o, v )ll 3/2.

The continuity of /(t) is clear. 1
THEOREM 3.4. (Exact controllability of the wave equation in an expanding

domain). Assume (Ho)-(H3) and (Hs). Assume furthermore that TI To in (Hs). Let
T > O. For any given initial state (Wo, Vo) H(fI(0)) 0)H(fl(0)) and any prescribedfinal
state (w, Vl) ttlo(f(T))H(lq(T)), there is a control f LE(Q(T)) which solves the
(ECP).

Proof. By ([2, Thm. 4.2]), we need only consider the case T _-> To. We first consider
the case of "controllability to zero", namely, (w, v) (0, 0). Let if(x, t) be the solution
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of
2~O w 05
--(x, t)-A(x, t)= -2y--(x, t)-y2(x, t), (x, t)e Q(T),

(k(x,O),(x,O))=(p(x),q(x)) H(D.(0))@H(D.(0)), y>O, y2>0.

The terminal state of ((x, t), (x, t)) at T is ((x, T), (x, T)), which is in
Ho(I)(T))@H(I)(T)). Let O(x, t) denote the solution of

Define

-(x, t)-AO(x, t)= -yzO(x, t), (x, t)e O(T),

tO(x, T), ,3(x, T))= -(&(x, T), (x, T))Ho(n(T))O)H((T)).

w(x, t)=-- (x, t)+ O(x, t), (x, t)6 Q(T),

f(x, t)= -2yx----y2[(x, t)+ O(x, t)].

Then w(x, t) satisfies the equation

oEw
(x, tl- Aw(x, tl f(x, t), (x, t) o(r),

Ot2

with the terminal state (w(x, T), v(x, T))- (0, 0). The initial state is

(w(x, o), v(x, 0))= ((x, 0), (x, 0))+ ((x, 0), (x, 0))

(3.7) (p(x), q(x))+_(O)+(T)[-(p(x), q(x))]

[I-_(O)+(T)](p(x), q(x)).

Now, choose yl A 1/2e, 2 1/e 3. By Theorem 3.1 and Lemma 3.2, we deduce that

2 /1 +0\2T2 1 +e
(3.8) I]-(0)+(T)[[2 <-- (1 + 0 )]-) T--o 1 e + 2A T"

Here the operator norm is relative to I1" IIv on H(I’(0))@H(fl) and H((T))@
H((T)). We choose e so small that the right-hand side of (3.6) is smaller than 1.
Therefore I-_(0)+(T) is an invertible linear transformation from Hol(l(0))0)
H(fl(0)) into itself. We choose

(p, q) {I- _(0)+(T)]-X(Wo, Vo).

Then f steers the system from (Wo, Vo) to (0, 0) at T.
For an arbitrarily prescribed final state (wl, Vl) e Ho(I(T))@H(I(T)), we first let

w-(x, t) be the solution of

02W
c3t (x, t) A w-(x, t) O,

[w-(x, T)] [wl(x)]v-(x, T) UI(X)J’

(x,t)O(T),

(terminal condition),
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and next let w+(x, t) be the solution of

02W +

Ot2
(x, t)-Aw+(x, t)=f(x, t), (x, t)6 Q(T),

v (x, O) vo-v-(x, O) J

where j is a control which steers the system from (Wo- w-(x, 0), Vo- v-(x, 0)) to (0, 0) at
T. Then w =- w + + w- satisfies the equation

02w
(x, t)- Aw(x, t)= f(x, t),

Ot2

with " steering the system from (Wo, Vo) to (Wl, Vl). I-]

Remark. The theorem above slightly generalizes Russell’s "controllability via
stabilizability" principle [10], in the sense that we do not need to have both forward
and backward decay. What is most important is to have [[-(0)+(T)II< 1, thereby
ensuring the invertibility of I- _(0)+(T).

In concluding this section, we would like to quote the following comment from the
referee. In reading 1 ], [2], and the present paper, one gets the impression that uniform
stabilizability and exact distributed controllability are opposite sides of the same coin.
While the stabilizability results certainly lead to controllability results, the latter can be
obtained independently of any energy estimates in a very simple way. For example, the
results of Theorem 3.4 may be obtained as follows: assume only (Ho) (this is a much
weaker hypothesis than appears in Theorem 3.4), and let T > 0. Let u be the unique
solution to (WE) guaranteed by Theorem 2.1. Let ar C() such that r(0)= 1,
cr(0)=cr(r)=cr(r)=0. Set w(x,t)=a(t)u(x,t) and f=-ce.u+2ce’ut. Then f
L(O(T)) is an admissible control, w satisfies (CS) and w(x, T)= v(x, T)= 0 in
One can even choose a control satisfying, e.g., Ibll(o(r-<_ C, where C > 0 is given a
priori, by choosing cr appropriately. Of course in this case T > 0 cannot be arbitrary but
must be greater than some positive number depending on C and u. This little trick can
obviously be extended to many other distributed control systems. The main advantage
of the control schemes in 3 is that they can be more easily implemented as feedback
controls.

4. Example. Let fI(0) be a sphere with radius ro in N, N 2. Let Q(T)=
LI o_-<t_<-r fl(t) {t}, where

D,(0), 0 -<_ -<_ To,
ff(t)

{z RNIz Elxl / o(t- To)]X/Ixl, x 0, x n(0), z 0 if x 0},

t>=To, O<O<l.

In other words, after time To, the boundary of f),(t) expands radially outward with a
velocity 0 < 1. Let

02
(4.1) W(x,t)-Axw(x,t)=O

0t2

be the wave equation in Q(T). One can, by making the global change of variable

1
y= x, t> Tol + O(t- To)

u(y, t)=- w(x, t) w([1 + O(t- To)]y, t),
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derive a time-dependent hyperbolic equation

(4.2)

02 20 rv 02 02
u(y, t)- u(y, t)+
Ot2 1 + O(t- To)i=1 YioyiOt [1 + O(t- To)]2

x 2 Yiy/u(y, t)+..,,, yiyioyioyiU(y, t) -[1 +O(t-- To)]
2Ayu(y’ t)=0,

on the fixed domain l)(0) for _-> To. It is easy to check that the symbol of the principal
part of (4.2), which is

p(t, y, )=
20

1 + o(t- To)
, y,oi +

02 1
[1 + O(t- To)]2 "’ YiYiii-[1 + O(t- To)]2 /y/2,t,l

always has two distinct real roots ofor p(y, :) 0with any given (t, y, :1, , n). Thus
the strict hyperbolicity is conserved.

On the boundary of the truncated cone O(To, T), let the motion of a point on
be given by x(t). Then,

dx(t) x v
d--T o ZI

Since

dx(t)
1| (Vx, vt)- 0 on (To, T),

dt I

we have

. Il =------, 0.IVx +vt =1, x/1+0 41+

Returning to Theorem 2.3, one easily verifies the following:
(i) If To ro/O, then r Ot and tvt + rut 0 on OD,(t) for _>- To. Hence, after To, EE(t) is

conserved. El(t) decays with a rate lit and Ea(t) grows with a rate t.
(ii) If To>ro/O, then r<Ot and tvt+rvr<O on Ol)(t) for t>=To. Hence, E2(t) is
decreasing after To, E(t) decays with a rate l/t, E3(t) is increasing after certain T > 0.
(iii) If To < to then tvt + fur >0 on Oil(t) for => To. Therefore, E2(t) is increasing
after To.

Suppose To satisfies the condition that

0
(4.3) ro -< To _-<

l_x/i 0
2r;

then

1 --x/l-- 02
<--_ Ot + (ro- OTo) Ix(t)l <-or on t>=To.

Thus,

vt 2tr 2tr
t- 2 2- 0+ 2 t2_->0, for allt->To,

t’r r +
so (H5) is satisfied with T1 To.
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Combining (4.3) and (ii) above, we see that if

ro/ 0 <- To <-_ Oro/[ 1 x/1 02],
then the assumptions (H0)-(H5) are all satisfied. By Theorem 3.3, the wave equation is
exactly controllable for any T > 0.
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THE INFINITE TIME QUADRATIC CONTROL PROBLEM FOR
LINEAR SYSTEMS WITH STATE AND CONTROL DELAYS:

AN EVOLUTION EQUATION APPROACH*

R. B. VINTER- AND R. H. KWONG

Abstract. We show how a linear differential delay equation with delays in the control can be refor-
mulated as an evolution equation with bounded input operator. As a simple application, we solve an infinite
time quadratic cost control problem for the delay differential equation. We also point out how our results,
even when specialized to the case where delays in the control disappear, extend results previously published in
the literature.

1. Introduction. We show that a linear delay differential equation with delays in
the control may be reformulated as an evolution equation on R L2,

(t) ;(t) + u(t),
dt

in which is a bounded linear operator. We proceed to obtain a solution, making the
usual stabilizability and detectability assumptions, to an infinite time quadratic cost
control problem for the delay differential equation. This is achieved, very simply, by
applying well known results on the quadratic cost control of evolution equations with
bounded input operators. It is shown that the optimal control may be expressed in
feedback form through a bounded linear operator which is the unique nonnegative,
self-adjoint solution to an "algebraic Riccati equation", and that the closed loop system
is stable. The class of problems considered is fairly general, but excludes "point delays"
in the controls.

Quadratic control problems for linear delay differential equations with delay in the
control have been studied by a number of authors [12], [13], [15]. Reference [15] alone
is concerned with the infinite time problem. (In fact the case when only point delays are
present in the control is treated, but the methods adapt to our problem.) In this paper
however the equations characterizing the optimal feedback operator are not shown to
have a unique solution, and the methods used are much more complicated than the ones
given here.

The idea of introducing an evolution equation to remove delays from the control is
not new. One approach has already been studied by Ichikawa [12], and applied to finite
time quadratic cost control problems involving delays in the control. This approach is
more general than ours since it admits point delays in the controls but, as regards our
application, it suffers from a number of disadvantages.

Most importantly, the evolution equation employed by Ichikawa involves an input
operator which has range space larger than the state space of the evolution equation
and mild solutions are defined not in a conventional sense, but using "extension by
continuity" arguments; that is the case even when point delays in the control are absent.
For such evolution equations a quadratic cost control theory is given in [12] for the finite
time problem (subject to certain technical conditions holding), but not for the infinite
time problem. By contrast our formulation introduces an evolution equation of a

* Received by the editors January 24, 1979, and in revised form March 13, 1980.

" Department of Computing and Control, Imperial College of Science and Technology, London SW7
2BZ, England.

: Department of Electrical Engineering, University of Toronto, Toronto, Canada M5S 1A4.
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standard form. This enables us to exploit simple, general results which are available for
the study of the infinite time problem.

A further disadvantage of Ichikawa’s approach (as applied to our problem) is that
the state space employed, lnL2L2, is larger than our state space, Rn L2. The
presence of the extra coordinate in the state results in a larger number of coupled
equations giving the kernels of the optimal feedback operator, than would occur if our
evolution equation were used to solve the finite time problem. The solution given in 12]
is therefore more complicated than ours.

The core of this paper is the reformulation of a linear differential equation with
delay in the control as an evolution equation. Instead of using the usual infinitesimal
generator associated with differential delay equations (see, for example, [21 ]) we use its
adjoint. Delfour-Lee-Manitius [9] made use of this adjoint operator in their study of
"state space reduction" for the operator Riccati equation; the novelty here is that we
draw attention to its significance in treatment of delays in the control. We examine one
application in which new results are simply obtained, and point out how our results,
even when specialized to the case where delays in the control disappear, extend
previously known results. We hope that the reformulation will have other applications
in the study of filtering and stochastic control problems, and in the study of structural
properties of systems with delays in the control.

2. Some remarks on notation. All spaces are real.
Spaces of functions on I-b, 0], where b is a positive number, will occur frequently

and, for simplicity, the domain I-b, 0] is often suppressed in our notation. Thus
L2(-b, 0; [") is written L2, etc. In such cases the range space of the functions is
determined by context.

(X, Y) denotes the space of bounded, linear operators mapping the Hilbert space
X into the Hilbert space Y. (X, X) is written (X).

The domain of a map M is written @{M}.
The adjoint of a densely defined linear operator G from one Hilbert space to

another is written G*.
The transpose of a matrix M is written M’.
XA denotes the indicator function for the set A.
W’2(I, ) is the space of absolutely continuous -valued functions on the

compact interval/, with square integrable derivatives.
Given an element h L2, h o ,, h (. L2 will denote the two coordinates

of h, thus h (h, h 1(. )). The inner product on R L2 will be denoted by ((.,.)). All
the other inner products will be denoted by (.,.), and the underlying space is
understood from context.

3. The delay differential equation. Let b be a positive number. The n-valued
function o’(. which carries -valued functions on I-b, 0] into R is defined as follows:

(h(. ))= Y’. Aih(Oi)+ Aol(O)h(O)dO.
i=0 b

Now suppose that the function r(. has domain [-b, oo). Then, for each
the function rt(" with domain I-b, 0] is defined as rt(O)=r(t+O). We shall be
interested in the delay differential equation:

o

(3 1) dx(t----)=.(xt(. ))+Bou(t)+f_ Bol(O)ut(O)dO,
dt b

(3.2) x(O)- o, X(O)- 1(0), U(O)- (0), 0 [-b, 0].
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In the foregoing, k is a positive integer and -b <- Ok Ok-1 " < 00 0o The Ai’s
are n n matrices. Bo is an n m matrix. Aox(’ ), Box(’ are functions on [-b, 0] taking
values respectively as n n and n m matrices; Aol(" is measurable and essentially
bounded and Box(" is square integrable.

(o, :1(. ), r/(. )) is an element in [" LE(-b, 0; Rn) LE(-b, 0; R"*), while u(. is
an element in Ll2oc(0, oo;

A solution to (3.1), (3.2) is a function x(. on I-b, oo), which is locally absolutely
continuous on [0, oo) and satisfies (3.1) a.e. on [0, oo), x(0) :o, x(O)= :1(0), -b -< 0 _-<

0, a.e.
The "inhomogeneous term" Bou(t)+bBol(O)ut(O) dO is locally square

integrable under our assumption; it follows from standard results [7] that there is a
unique solution to (3.1), (3.2).

4. An evolution equation. We define the linear operator M on
as follows:

Let Xi(O) Xco,.ol(O). @(M) denotes the collection of all (h, h 1(. )) R L2 for
which there exists an element z W1’2 with z(-b)= 0 such that

k

z(O) h 1(0)-- A,h. x,(O) a.e. 0 [-b, 0].
i=1

The operator M with domain @ (M) is now defined as

k

EsC(h hi(. 1)]o,= y Aiho+ z(O)
i=0

[d(h, h 1(. ))]1(0 Aol(0)hO_dz(O)
dO

-b<=O<-O a.e.

where

k

z(0)= hi(0) E Aihxi(O)
i=1

M is the infinitesimal generator of a strongly continuous semigroup on N"x L2

since it is the adjoint of an infinitesimal generator (see, for example, [4, pp. 45-52]).
Indeed M is the adjoint of M*, where M* is defined as follows"

(4.1)
{d*} {(h(0), h(. ))]h(. )6 wl’2},

M*(h, h 1(. )) (’(h 1(. )),- (.)

(see, for example, [21 ]). In (4.1),

’(h 1(. ))= Ah 1(0i)+ A;l(0)h 1(0) dO.
i=0 b

M* will be recognized as the infinitesimal generator of the semigroup of operators
associated with evolution of solution segments for the delay differential equation

(4.2) dx(t)

with initial data in " x L2 [21].

dt
’(x,(. )),
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We denote by {T(t)lt >-0} the semigroup generated by
Define the bounded linear map " I" I" L2 by

u (Bou, Bol(" )u), u

We shall be interested in the mild solution of the evolution equation

(4.3) d(t___) M(t) + Ydu(t),
dt

(4.4) (0) ,
for 7 i L2 and u(.) Ll2oc(0, oo; ’), where by the mild solution of (4.3), (4.4) we
mean the continuous function (. )’[0, oo) " L2 given by the variation of constants

formula
(t) T(t)7+ Io T(t-s)Ydu(s) ds.

5. Equivalence. We now relate the solution of the delay differential equation
(3.1), (3.2) to the mild solution of the evolution equation (4.3), (4.4) when the initial
condition on the evolution equation is appropriately chosen. For this purpose we
introduce the continuous, linear map M(., , )"

" x L2(-b, 0; ")"

M(h, h 1(. ), /2(. ))= (h, m(. )),
where

re(O)= Ah(O-O)x(O)+ Ao()h(a -0) d + Bo()v(a O) d,
i=1 b b

(recall that xi(O)"--,’[0i,0] (0)).
The range of M is written
We remark that our operator M can be expressed as

M(h,h v)=F(h,hl)+(O Kv)

for (h, h a, v) n xL2 xL2, where F is the "F-operator" introduced in Delfour-
Manitius [9] and K is given by

o

(Kv)(O)=I_ Boa(a)v(a-O)da, -b<-O<=O.
b

The properties of the F-operator are studied further in [9], [11] and [18].
THEOREM 5.1. Suppose that x(t), >= -b, is the solution to (3.1), (3.2) and that (t),

>- O, is the mild solution to (4.3), (.4.4) ]:or initial data 7(. M(sC, .a(. ), r/(. )). Then,
fort>O
(5.1) (t) M(x(t), x,(. ), u,(. )).

It is clear from Theorem 5.1 that, for initial data in , the mild solution of the
evolution equation (4.3), (4.4) evolves in /. This is true also for arbitrary initial
conditions, provided that we wait for the delay interval to elapse"

THEOREM 5.2. Let (t), >- O, be the mild solution to (4.3), (4.4) ]:or arbitrary initial
data 7(. i x L2. Then ]:or >- b,

(5.2) (t) M((t), o(. ), u(. )),

where (t) is the first component of (t).
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6. Proof of the theorems.
Proofof Theorems 5.1 and 5.2 To begin with, suppose that the initial data in (4.4)

lie in {} and that u (.) is a continuously differentiable function. With these assump-
tions it is known that the mild solution (t), => 0, to (4.3), (4.4) is a strong solution in the
sense that (t) @{1}, =>0, (.) is everywhere strongly differentiable and satisfies
(4.3) for each t.

We define z(t;. ) L2 in terms of (t) as follows"

k

(6.1) z(t; O)= (t; 0)- E A,(t) X,(0),
i=1

where we have used l(t; 0)to denote [x(t)](0). z(t;. )e{& e WX’2" b(-b)= 0} since
(t) @{1} for all 0, and because 2(. is strongly differentiable, the same is true of
{z(t;. )It _->0}.

Equation (4.3) may now be written as

kd o(t)= E Ai(t)+z(t;O)+Bou(t),(6.2) d-- i=0

and

(6.3)
d x(t" 0)=

d
d- -- z(t; O)+Aol(O)(t)+Bol(O)u(t).

Noting (6.1) we may write .(6.3) as an equation for z(t; 0)"

dz(t, 0)= dz(t," k dO(t)O+Aox(O)(t)- E mi xi(O)+Bol(O)u(t).
dt dO i=1 dt

Now z(t;. evolves in {& wl’214(-b) 0} which is the domain of the infinite-
simal generator, -(d/dO)(. ), of the semigroup of truncated right shifts on L2, {(t)
0}"

glO-t), -b<=O-t<-O,
(6.4) ((t)g(.))(0)=

0 otherwise,

-b -< 0 =< 0, for all g( e L2.
We may view z(t; .) therefore as a strong solution to an evolution equation; it is

then also a mild solution and we have the representation given by the variation of
constants formula

z(t; O)= (t)z(0; 0)

+ Io (t- s) -i=1Ai
dY.(s)
ds

/i(O) + A01(0)30(S) + Bol(O)u(s)] ds.

Using (6.4) then, and some routine manipulations, we obtain

z(t; O) z(O, 0 t) X[-b, o](0 t)
k

(6.5) + E A,(-(t) "/i(O) q- O(o)/i(O t) +(0 0 + t) Xco,.o,+tl(O))
i=1

+ (Aol(a)(t + a 0)+ Bol(a)u (t + a 0)) da.
ax{-b,O-t}
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Now suppose that -> b. Then it follows from (6.1) and (6.5) that

x (t; 0)= Ai(t+Oi-O) Xi(O)-- (Aol(a)(t+a-O)+Bo(a)u(t+a-O))d.,
i=1 b

which may be written as (5.2). Thus the conclusions of Theorem 5.2 hold when and
u(. are regular".

Now suppose that the initial data (o, (. ), r(. )) in (3.2) belong to the sub-
space O,

O={(h(O),h( ),v(. )) N xL xLlh( ),v(. ) W’},
and take =M(, (. ), r(. )). We have that @(s); indeed, this property is known
[11, Theorem 3.1] when Bo(’ )= 0, and the argument there adapts to the general
situation in an obvious manner.

For this choice of initial data we have, by (6.1),
k

z(0; O-t)= Y. A((t+O-O) X(0-t)-(0) x(O-t))
i=1

+I_ (A()(t+-O)+B()r(t+c-O)) d’

-b _-< 0- _-< 0, _-> 0. This expression for z(0;. may be substituted back into (6.5) to
give, for _-> 0,

k

z(t; 0) E Ai(-](t)Xi(O) + :1( -b Oi- 0)" Xi(O t) -1- (t q" Oi- 0)"/[oi,oi+t](O))
i=1

+ Ao(c)(t + c -0) d
ax{-b,O-t}

+ I_ A(c)(t + a 0) dc f-,o(t- 0)
b

0

+Im Bo(C)u (t + o O)do
ax{-b,O-t}

O-t

+ f_ Bol(a)u(t+-O) da X-b,o(t--O),
b

which may be written as

z(t; O) Y, Ai](t)xi(O) + Z Aixi(O)( + Oi O)
i=1 i=1

+ {Ao()2(t+-O)+Bo()u(t+-O)}do,
b

when we take (0) c1(0), u(O) rt (0), for 0 I-b, 0]. (1(0) o o(0), remember.)
It follows now from (6.2) that the locally absolutely continuous function on [-b, o)
defined to be cl(t), [-b, 0] and .f(t), [0, ), coincides with the solution x(t),
t->-b, to the delay differential equation (3.1), (3.2). Taking note of (6.1) we see that
(5.1) is satisfied.

The assertions of the theorems have been shown to be true under the additional
assumptions that u(. and the initial data are smooth. It remains to remove these
additional assumptions; this is done by using a simple extension by continuity argument.
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Choose t=>0. Let x(t) be the solution at time to (3.1), (3.2), in which the
control u(. is taken to be defined on [0, t].

The map

Sa :1" LZ(-b, 0; I") L-(-b, 0; I") Lz(0, t; I")

I" L2(-b, 0; I") LZ(-b, 0; I"),

$1(so, 1, r/(. ), u(" ))= (x(t), x,(" ), u,(" ))

is continuous. This is proved by obvious modifications of standard arguments giving
continuity of solutions to linear delay differential equations in the data (see, e.g., [7]).

Now let ;(. be the mild solution on [0, t] of (4.3), (4.4). Define the map

S3:R" x L-(-b, O; n) L2(O, t; m n X L2(-b, O; I"),

and also (in the case that _-> b) the map

S3" R X LZ(-b, 0; I") L(0, t; I’) I L2(-b, 0; I") x L-(-b, 0; ["),

by

S2(s, u(. ))= (t),

and

S3(, u()) (o(t), -ox, (’), u,(" )).

The two maps are readilyshown to be continuous.
Our conclusions so far may now be expressed in terms of $1, $2 and $3, thus"

(6.6) MSa(s, ’(. ), r/(. ), u(" ))= Sz( M(sc, 1(. ), "O(" )), U(" )),

for all (scl,:a(.), rt(’), u(’)) in the dense subset OxCa(0, t;l") of l"x
L2(-b, 0; in) x L2(-b, 0; R’) x L2(0, t; W"), and (when -> b)

(6.7) Sz(s u(" )) MS3(, u(" )),

for all (, u(. )) in the dense subset {4} x Ca(0, t; R") of R" x L2(-b, 0; I") x
L2(0, t; ’).

But the continuity of $1, $2, $3 (and M as a map from [" LZ(-b, 0; R")
L2(-b, 0; ") to " L2(-b, 0; I")) then assure that (6.6), (6.7) hold for arbitrary u(.
and initial data (:o, :a(. ), rt(" )), respectively. The theorems are proved.

We remark that the extension by continuity arguments featured in the above proof
has been used previously to obtain representations of solutions to linear functional
differential equations (see, e.g., [2]).

7. An infinite time quadratic cost control problem. We now apply the results of
the previous sections to the infinite time quadratic cost control problem associated with
(3.1), (3.2).

Let C be an r x n matrix, and let the initial data (o, 1(. ), rt(" )) l" x L2 x L2 be
given. Consider the following control problem ():

Minimize

o
{X’(t)C’Cx(t)+ u’(t)u(t)} dt

over u(. L2(0, o0; Rm), where x(. [-b, o) R" is the solution to (3.1), (3.2). (The
case where we have u’(t)Ru(t) with R a positive definite matrix can of course be readily
reduced to the above setup.)
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We shall show that the solution to this problem is characterized in terms of the
unique nonnegative, self-adjoint solution of an "operator algebraic Riccati equation"
when the system

dx t____) o

(x,( )) + Bou(t) + | Bo(O)u,(O) dO,
dt b

(7.1)
y(t)=Cx(t)

satisfies certain stabilizability and detectability assumptions. Stabilizability will be in the
sense that there exists an "L2-stabilizing control" for arbitrary initial data; detectability
will mean that a certain "transposed" system has the stabilizability property.

DEFINrnON 7.1. (i) The system (7.1) is stabilizable if, for each (:o, c(. ))e
R" x L2, there exists u e L2(0, 0o, R") such that the solution x(. to (3.1) with initial data
(:o, :(. ), 0) satisfies o x’(t)x(t) dt < 00.

(ii) The system (7.1) is detectable if the delay differential equation

dx(t)
-’(x,(. )) + C’u(t)

dt

(’(.) as given in 4) is stabilizable.
Define cg e o(R- L2, r.) as

’ C for (o, 271(. )).

Then, by Theorem 5.1, the control problem may be reformulated as follows:
Minimize

Io {ll(t)[[2 + u’(t)u(t)} dt

over u L2(0, c; m), where (t), >_-- 0, is the mild solution of (4.3), (4.4) for initial data= M(:0, 1(, ), T(" )),
We have now placed the problem in an abstract setting in which known results are

"almost" directly applicable to give a solution. There remains a difficulty: we need to
show that our definitions of stabilizability and detectability, chosen as natural in this
context, are adequate for application of the standard theory. This difficulty is removed
by the following proposition.

PROPOSITION 7.2. Referring to Definition 7.1 we have that (i) is equivalent to (i)’
and (ii) is equivalent to (ii)’, where:

(i)’ For each e n xL2, there exists some u( )e L2(0, CX3", "") such that the mild
solution (. to (4.3), (4.4) satisfies o II: (t)ll2 dt .

(ii)’ For each L2, there exists u( Lz(O, oo, N"’) such that the mild solution
Z(.) to

dZ(t)
M*(t) + Cg*u(t),

dt

(0)=
satisfies I l[(t)ll at < 00.

This result is not quite obvious. Consider stabilizability, for instance. The abstract
condition (i)’ requires that we can stabilize the evolution equation (4.3), (4.4) for all
initial data in N" x L2. This is seemingly stronger than our definition of stabilizability, in
which stabilization is required for initial data only in the subset c I"x L2 (it is
possible that is not even dense).
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Proof of Proposition 7.2. Suppose (i)’. Take (o, .1(. ), r/(. ))enL2 L2. Then
there exists u(. )e LZ(0, c; m) such that the mild solution (. to (4.3), (4.4) with
initial data 7= M(o, a(. ), rt(" )) satisfies o ily(t)ll2 dt <. But then IlY(t)ll2 dt <
oo. By the results of Theorem 5.1, yo(. is the solution to (3.1), (3.2). It follows that (i) is
true.

Now suppose (i). Take e"Lz. Notice first that, by Theorem 5.2, for u(. )e
Ll2oc(0, o; m) such that u(t) 0, for e [0, b], the mild solution (. to (4.3), (4.4)
satisfies

(b)= M((b), (. ), 0).

Now let iT(. LZ(b, c; ") be such that the solution x(t), >-_ b, to (3.1) with initial
data ((b), (. ), 0) (specified at t= b) satisfies I[x(t)[I2 dt <. Such a 7(. exists
by (i). Define u L2(0, cx3; [m) as

O<-_t<-b
u(t)

t(t), >- b.

By the "semigroup property" and Theorem 5.1, the mild solution 7(t), =>0, to (4.3),
(4.4) for this u(. satisfies

]lY(t)]lz dt <

By Theorem 5.2, however,

(t) M((t), t( ), ut(. )),

Using Fubini’s theorem and some standard estimates we show that a II;(t)ll= dt <. It follows that o II-(t)]l2 dt < o. We conclude (i)’.
Recall the interpretation of M* as the infinitesimal generator of the semigroup

describing evolution of trajectory segments in Nx L of (4.2), and note that *
(N; N’xL) is given by ’*u =(C’u, 0). Take u(. )e Loc(0, oe; N) and (0, :a(. ))
N L. By well-known results the mild solution (t), >_- 0, to

d(t)
M*;(t)+ CC*u(t),

dt

;(o) (o, ( )),

and the solution x(t), _->-b, to the delay differential equation

dx(t)
dt

t(Xt( )) + C’bl(t

with initial data (o, 1(. )) are related by

(t) (x(t), xt(. )).

(See, e.g., [1], [2] or [21]).
But again by Fubini’s theorem and standard estimates there exists a positive

number c such that, for all z(. ) LZ(-b, o; ),

It follows simply from these results that (ii) and (ii)’ are equivalent.
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The following solution to the control problem is now readily deduced from [5,
Chapter 4].

THEOREM 7.3. Suppose that the system (7.1) is stabilizable and detectable. Then
there exists a unique nonnegative, self-ad]oint operator e (R" Lz) satisfying

(7.2) ((4,

The unique solution to the control problem ( is given by u( L2(O, oo; Rm) satisfying

(7.3) u(t) -*(M(x(t), x,( ), u,( ))),

where x( is the solution of (3.1), (3.2). We have

(7.4)
((M(O, 1(. ), ,(. )), M(O, 1(. ), (. ))))

=min fo {x’(t)C’Cx(t)+u’(t)u(t)} dt.

Furthermore the "closed loop system" is exponentially stable in the sense that there exist
positive numbers a, to (which do not depend on the initial data) such that

IIx(t)ll <- e-"llM(, "(’ ), n(" ))11, t=>0.

We mention that the hypotheses of the theorem also assure exponential stability of
the closed loop system in the following stronger sense" there exist positive constants a, to

such that

[l(t; g)ll -< e-’llgll,

where (t; ) is the solution of the "closed loop evolution equation"

d(t__) (4- 3*)(t),
dt

(o) .
For the purposes of comparison with previously available results (see 8), we

observe that the standard theory [5, Chapter 4] applied to our reformulation of the
control problem also gives the operator of Theorem 7.3 as

(7.5) strong limit T(0),

where iT( )’[0, T]- R" x L2 is the unique solution, in the class of strongly continuous
functions such that ((, T(" ))7)) is absolutely continuous for all , 37 {}, of the
operator differential Riccati equation

dt
((, r(t))7))

(7.6)
((, r(t)))+((r(t), ))+((, [cg*cg r(t)*r(t)])7)),

for all , )7 {},

r(T) 0,
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associated with the "finite time" quadratic cost control problem on [0, T]. Note too that

(7.7)
({M(sC, a, r/), r(t)M(sC, , r/)))

T-t

min Io {x’(s)C’Cx(s)+ u’(s)u(s)} ds.

We have obtained a solution to the infinite time control problem in terms of the
unique, nonnegative, self-adjoint solution to (7.2). Detailed knowledge of the
structure of is therefore highly desirable. In the special case when Bol( 0, Kwong
[16] has shown:

THEOREM 7.4. Suppose that Bol(" )=0. Then the operator LP( L2) oj
Theorem 7.3 may be written as

o o

b b

in which PI(" and P2("," are continuous and piecewise continuously differentiable
functions of their arguments. The following differential equations characterize Po, PI("
and P2("," )"

k k

PoAo+A;Po+ Pl(Oi)Ai+ AP(0i)+ C’C-PoBB’Po
i=1 i=1

d
dO

.o o

+ I_ Pl(O)Aol(O) dO + I_ A)I(O)P(O) dO O,
b b

PI(0) =-(A-PoBB’)PI(0)- E AIP2(0,, 0)
i=1

A’ol(O)P2(O, O) dO
b

with boundary condition P1 (0) Po,

-+ P2(0, g)= P(0)BB’PI(0)

with boundary condition P2(0, 0)= PI(0), -b <= 0 <= O. Furthermore, we have the sym-
metry relations

Po P’ P2(0, .0)= P(0, 0)

8. Conditions for stabilizability and detectability. Here we give simple equivalent
conditions for stabilizability and detectability, the conditions under which our solution
to the control problem of 7 applies. Similar conditions have also been obtained by
Olbrot [19] from a very different point of view.

First recall that the adjoint M* of M is the infinitesimal generator associated with
the transposed delay equation (4.2). Also note that the adjoints * and (g* of the
operators Yd and (g introduced in 7 are given by

o

*(h, h a( )) Bh + f Bl(0)h 1(0) dO,
d--b

Cg*y (C’y, 0).
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We have:
PROPOSITION 8.1. Define

A(A Ai ex’ + A01(0) ex dO AL
i=0 b

and define E to be the setozeros of A(h in the closed right halplane. Then is known to
be a finite set. We have:

(i) The system (7.1) is stabilizable if and only i
o

(8.1) Rank [A(A) Bo+f_ Bol(0)ehdO]=n forallAeZ.
b

(ii) The system (7.1) is detectable i and only i

(8.2) Rank[(’)]=n forallE.

(8.3)

Proof. Taking transposes, we see that condition (8.1) is equivalent to the condition

Rank o =n for all1E,
B;+ B’ol(O) eX dO

b

where

A’(h)= E A’ e xi xo+ AI(0) e dO-hi.
i=O b

But it is known that (8.3) is equivalent to the condition that the transposed delay system

(8.4)

t(Xt( )),
dt

y(t) 3*(x(t), xt(" )),

is detectable. (Actually, the proofs in [20], [3] are concerned only with the case
BI( 0, but the arguments adapt easily to the case where BI( # 0.) This implies
that there exists an operator L(R", Rn L) such that 4" +L* generates an
exponentially stable semigroup on n L2. Since n L2 is reflexive, this last condition
is equivalent to the condition: there exists G(nL2,") such that 4+3G
generates an exponentially stable semigroup (see, e.g., [22]). But such a G exists if and
only if condition (i)’ of Proposition 7.2 is satisfied (this may be deduced from [6]). By
Proposition 7.2, then, (8.1) is equivalent to stabilizability of the system (7.1).

The equivalence of condition (8.2) to detectability has been shown in [20], [3].

9. Comparison with previously known results, when Bol(" ) 0o Since our results
obviously also apply to the case where there are no delays in the control, i.e., Bol(" 0,
a natural question to ask is: how do the results presented in this paper, when specialized
to the case where Bol( 0, compare with previously known results [8]? We shall show
that our results are in a sense slightly stronger than the known results.

Suppose then that Bol( 0. Under the hypothesis of Theorem 7.3, the standard
theory [5, Chapter 4] gives the solution of the infinite time quadratic cost control problem
as

u(t)=--]*(x(t), xt),
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where (n x L2) is the unique nonnegative, self-adjoint operator satisfying

(9.1) ((,37))+((,37))+((;,[*-*]37))=0 for all d, )T s @{}.

Equation (9.1) is the same as equation (7.2) with the exception that 4 is replaced
by the linear operator on [n L2. s(&o, & 1) ((c 1), (d,t 1/dO)(O)), @{s}
{(/ (0), (" ))" )(" G W1’2}.

It is known that

(9.2) strong limit T(0) ,
where T(" )"[0, T]-("L2) is the unique solution of the operator differential
Riccati equation

d
-d-- ((;’ a-(t))7)) ((f;, w(t))) + ((:w(t), f)) + ((;, (c8"c8 :(t)*a:(t))37)),

(9.3) for all , 37 e @{},
7-(T) =0,

in the class of strongly continuous functions with the property that ((, 7-(" )7)) is
absolutely continuous for all , )7 @{}. It is also known that

(9.4) (((o, 1), (0, 1))) min Io {x(t)C’Cx(t) + u’(t)u(t)} dt,

(9.5) (((o, 1), T(t)(:o, 1))) min Io {x’(s)C’Cx(s) + u’(s)u(s)} ds.

The relationships between and and between :(t) and T(t) are now evident
from (7.4) and (9.4), (7.7) and (9.5). Since these identities apply for arbitrary initial
conditions we conclude that the operators r(t) and may be factored as follows"

(9.6) T(t) M*v(t)M,

(9.7) M*M.

That :(t) may be factored as shown has been observed in [9]. But the factorization
(9.7) is apparently new, as is propert.y (7.5), which we now interpret as stating that the
middle term in the factorization of v(0) converges strongly to the middle term in the
factorization of ; this is a stronger property than (9.2) since M is not necessarily
continuously invertible.

We conclude the section by pointing out that our results relating and through
the factorization of clarify the relationship between two different characterizations of
the error covariance in the filtering problem for stochastic delay systems studied by
Vinter [23], and Kwong and Willsky [14]. In this problem the error covariance function
P(t, .,. is defined to be

P(t, 0, if)= E{e(t + OIt) e’(t + flit)}, -b <_- 0, if-<_ 0,

where e(t + Olt) is the estimation error at + 0, given observations up to t. We define the
"error covariance operator" II(t) on n L2 as

rio(t) 1-If(t)]II(t)=
IIl(t) H2(t)J’
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with H0(t) P(t, 0, 0), Hi(t) P(t,., 0), 1-I2(t)= P(t,. ,. ). Under stabilizability and
detectability hypotheses, Vinter [23] has shown, using techniques of "infinite dimen-
sional filtering", that

strong limit H(t) II,
t-cx3

where II is the steady state error covariance operator, and H is the unique nonnegative,
symmetric solution to an operator Riccati equation very similar to (7.2). On the other
hand, in the special case when A2, , Ak, A01(’ 0, Kwong and Willsky [14] have
shown by more direct arguments that

strong limit lI*II(t)lI ,
for some operator ,E which satisfies a Riccati-like equation very similar to (9.1). Here 1Q
is an operator of similar structure to the operator M in 5.

It is clear now what is going on. The hypotheses ensure not only"
(i) asymptotic convergence of the solution to the operator differential Riccati

equation (see (9.2)),
but the stronger property"

(ii) asymptotic convergence of the middle term in the factorization of the solution.
In the filtering context, the error covariance operator emerges as the middle term

in the factorization; it is hardly surprising then that Vinter [23], by using the stronger
property (ii), obtains convergence of the error covariance operator II(t), whereas
Kwong and Willsky [14], by using the weaker property (i), obtain merely convergence
of ll*H(t)l. We may also remark that the "kernels" associated with the steady state
error covariance operator II satisfy equations very similar to those given in Theorem
7.4. They may be formally obtained from the error covariance equations for P(t, 0, 0)
given in [14] by setting all derivatives with respect to to zero.

10. Some concluding remarks. In 4, we produced out of the blue an evolution
equation with certain useful properties, and gave no indication of its origin. Our choice
was motivated by the following ideas.

It was shown in [23] how a stochastic filtering problem involving delays in the
observations may be studied using an evolution equation approach. Since associated
with an infinite dimensional filtering problem is an equivalent control problem in
infinite dimensions, we may therefore associate the filtering problem with delays in the
observations with such an equivalent control problem, which we shall call the infinite
dimensional dual control problem. (Equivalence is understood in the sense that a
solution to one problem gives a solution to the other.) This infinite dimensional dual
control problem has "no delays in the control". Now the same filtering problem,
without being first reformulated into an evolution equation framework, is also
equivalent to a control problem with "delays in the control", which we term the natural
dual problem. This has been shown by Lindquist [17]. It turns out that the natural dual
control problem involves the delay differential equation with delays in the control
discussed in 3, while the infinite dimer:sional dual control problem involves an
evolution equation as given in 4. This suggests that the evolution equation is in some
sense equivalent to the delay differential equation. The precise equivalence has now
been established in 5.

Our results apply only when point delays in the control are absent. When point
delays are present, we may formally write the equivalent evolution equation as

(10.1) d(t__) M(t) + u(t),
dt
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where now maps into some space of distributions which strictly contains the state
space Rn L2. We may proceed to define mild solutions to (10.1) as in [12] using
appropriate extension arguments. The advantage of doing so is that we employ a state
space, R L2, which is smaller than the state space of the evolution equation in [12].
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INVARIANT STRUCTURES OF GENERAL DYNAMICAL SYSTEMS*

TOSHIO NOMURA" AND KATSUHISA FURUTA

Abstract. In the geometric approach to linear multivariable control theory, A-invariant subspaces and
(A,B)-invariant subspaces have key roles in the theoretical setting. However, it is not easy to generalize these
concepts to more general dynamical systems because of the nontrivial interaction between input and state
variables. This paper aims at providing a conceptual framework for several invariant structures of general
dynamical systems in a set-theoretical approach, and at clarifying their system-theoretical significance.
Roughly speaking, an invariant structure of a dynamical system is defined as an equivalence relation of the
state set whose equivalence classes are carried invariantly by the state transition function. Then, it is proved
that there exists a unique maximal indistinguishable structure realized by state feedback, and a simple
application of this property is performed to formally characterize the disturbance localization problem.

1. Introduction. Recently, many theoretical studies have been devoted to
nonlinear dynamical systems, using modern mathematical tools which try to extend
ideas in linear multivariable control theory. They are concerned with minimal realiza-
tion problems of nonlinear input-output functions, and with structural properties such
as controllability and observability by differential geometric methods. However, as far
as feedback control problems are concerned, there has not been much systematic
research reported (Brockett [1]). One of the reasons for this is the lack of useful
concepts to deal with them, as well as their mathematical difficulty.

In the modern feedback control theory of linear multivariable systems, several
methods such as linear algebraic, abstract algebraic and geometric approaches have
been used and have produced a number of successful results. Among them, the
geometric approach [7] has provided several key concepts which have enabled formal
characterizations of synthesis problems of linear systems to become more comprehen-
sive. However, it is not easy to apply the geometric concepts to more general (nonlinear)
dynamical systems, because the system-theoretic meanings of the concepts have not
been defined specifically enough to be generalized.

The purpose of the paper is to develop several ideas relating the invariant
subspaces of the geometric approach in a set-theoretic (formal) setting; the abstract
version of A-invariant subspaces and (A,B)-invariant subspaces and their relation to
state feedback actions are discussed. In [3], Ishijima attempted a generalization of
A-invariant subspaces and (A,B)-invariant subspaces by the Lie algebraic method, but
the system-theoretic significance was not made clear.

Because of the fact that the systems are not linear, we have to be concerned with all
the points of the state set of the system in order to consider an invariant structure.
Consequently, an invariant structure is defined as an equivalence relation (or a
partition) of the state set whose equivalence classes are carried invariantly by the state
transition function either for every input or for zero input. As one of the main results Of
the paper, we prove the existence of a unique maximal indistinguishable structure
realized by state feedback, which is a generalization of the linear theory. In the last
section of the paper, we consider the disturbance localization problem as a prominent
use of invariant structures.

* Received by the editors May 14, 1979, and in revised form April 16, 1980. A preliminary version of this
paper was presented at the Third International. Symposium on Mathematical Theory of Networks and
Systems, Delft, the Netherlands, 1979; see Ref. [6].

" Department of Systems Sciences, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo,
Japan.

Department of Control Engineering, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo,
Japan.
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In [4], Liepa and Wonham discuss the algebraic formulation of the solvability of
the disturbance containment and decoupling problems in a lattice-theoretic approach.
Theorem 6.2 of the present paper overlaps with one of their results (3.07), which is a
characterization of the solvability of the disturbance decoupling problem by state
feedback. However, the main purpose of this paper is to introduce and develop
generalized notions of A-invariant subspaces and (A,B)-invariant subspaces, which the
authors of [4] have not handled fully.

2. Basic notations and development. In this section, we explain basic notations of
dynamical system descriptions and of partitions of a state set. Then by introducing
additional properties such as a partial ordering and a binary operation between
partitions, we see that a set of partitions of the state set has the structure of a
lattice-ordered set. This structure is useful when we consider inclusion relations
between invariant structures defined by partitions in the later section of the paper.

Let T denote a time scale which is an additive group and a well-ordered set with a
smallest element 0, where a partially ordered set is said to be well-ordered if every
nonempty subset of it has a smallest element.

Remark. This time set T contains at least discrete time but not real time.
Intuitively, the structure of a total order is more suitable for the time scale, which
implies a well-ordered set. However, we do not have more powerful mathematical tools
than transfinite induction with which to prove the existence of the feedback loop
systems, etc., which will be treated in the later sections.

Let A be the input alphabet.with a zero element, and B be the output alphabet. Let
U be an input set which is a set of time functions A r {u lu T A}, and letX be a state
set and Y be an output set which is a subset of time functions Br= {yly: T B}. Let
Tn, {7"]7" E It, t’)}, Tt {7"17" -> t} and T’= {7"17" E [0, t)}; adopting the same idea for u 6 U,
let Utt’ U[ Ttt, and u’= u IT’, where u Tt,, is a restriction of u to Tt,,, and the like. The
concatenation of inputs is denoted by ut, u ,.

Next, we explain the description of a strongly causal, time-invariant dynamical
system [5] which is a pair of functions b and A. Namely, b is a state transition function
defined for t, t’ T and u U, by

(2.1)
,b,t,: x x u,,,-, x,

(Xo, Ut,’) x t’) 4,t’(Xo, IXtt’),

and an output function A defined by

A:X+B,
(2.2)

x(t)-- y(t)= A (x(t)).

Thus b is a mapping which sends a state x0 at to a new state x(t’) at t’ by applying an
input Utt’o AS is usual, b must satisfy the semigroup property,

)tt"(XO, Utt Ut’,") )t’t"()tt’(Xo, Utt’), Ut’t").

Since we will be concerned only with time-invariant systems, we choose the initial time
to be 0. The state transition function & is usually referred to by b0t for T.

Let us consider a set of partitions defined on the state set X and develop additional
structures for it.

DZFINITION 2.1. A partition of X is denoted by $ {$ili I}, where I is an index
set, satisfying

(i) X iiSi, Si ?k
(ii) (Vi, j I) (i # j ff Si 0 S/" ).
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Naturally, a partition S defines a mapping which tells where each x X belongs, by

(i) $ X =+ 9 (X),

(2.3) x - $(x) Si for some /,

where (X) is the power set of X, and it also defines an equivalence relation on X as a
subset of X X, by

(ii) for X and x2 in X,

(2.4) (Xl, Xz)S : S(Xl)=$(x2).

Then we write

(2.5) Y_, ={$[S is a partition of X}.

If we define an order relation < between partitions, Y,, becomes a complete lattice-
ordered set.

DEFINITION 2.2. For partitions $ and T in

(2.6) S < T , S T,

where c denotes a set inclusion on X x X. In other words, for $ ={Si[i el} and
T {Ti]/" J} in ,
(2.6)’ S < T : (/i 6 I) (::1/" J) (Sic T/),

where denotes a set inclusion on X.
PROPOSITION 2.1. Z is a complete lattice-ordered set with respect to the order

relation <.
Proof. It is obvious from Definition 2.2. 1-1
Next, we introduce a binary operation v for Y_, which gives a concrete construction

of joints of partitions.
DEFINITION 2.3. For $ and T in Y_,, a mapping

(2.7) S v T R:X-+ (X)

is defined for any x X by

Rx(x)= S(x)tJ T(x),

Ri(x) S(Ri-l(X)) T(Ri-(x)),

R(x)= lJ Ri(x),
i>o

where S(Ri_x(x))= [.J yRi-l(X)S(y), and so forth.
As a mapping:X + (X), S v T is well defined. Furthermore, the following pro-

position guarantees that it is also a partition on X.
PROPOSITION 2.2. The mapping S v T in Definition 2.3 defines a partition on X.
Proof. Since the relation T(S(x)) T(x) is always satisfied for any x X from

Definition 2.3, the following relations hold"

(2.8) X= [..J S(x) [A T(S(x))c tO (Sv T)(x)=X,
xX xX xX

which implies that {(S v T)(x)lx X} is a covering of X (condition i) of Definition 2.1).
Therefore, in order to prove that the mapping $ v T =R:X (X) defines a parti-
tion, we need only show that

(2.9) (tx,xzX) (g(x)R(x2)# zzR(Xl)-R(x2)),
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which is equivalent to saying that

(2.10) (lxl, x2X)(xlR(x:O:ff R(Xl)=R(x2)).

Notice first that

(2.11) R2=R,
as mappings :X (X). In fact, for any x X,

(2.12) R(g(x)) R(x).

Also, if x R(R(xo)) for x and Xo in X, there exists z R(x0) such that x R(z).
According to the definition of R, there exist sets of mappings: X- (X), Ri(i
1,...,n) and Ri(j=l,...,m) where Ri and R are either S or T, such that
x RI(... (Rn(z)" ") and z R(... (R(xo)." "). Therefore,

(2.13) x g(. .(Rn(R’I (... (R’(Xo) )))))c R(xo).

Hence, from (2.12) and (2.13), equality (2.11) is shown.
Let us prove (2.10) now. By applying R to both sides of Xl R (x2), we obtain

(2.14) R (xl) c g (R (x2)) R 2(x2) R (x2),

because of (2.11). Conversely, for any z R(x2) and since Xl R (x2), there exist sets of
mappings’X-(X), Ri(i 1,. ., n) and R}(j- 1,. ., m) where Ri and R are
either S or T, such that the following hold:

(2.15) z g(. .(R(x2) .)),

(2.16) x R (...(R(x2)...)).

Since R] are equivalence relations, which implies that y R] (Y2) iff Y2 E R] (y 1), (2.16)
yields

(2.17) XER’(. (R (x) .)).

By combining (2.15) and (2.17), we obtain

(2.18) z RI(’’’ (R,(R(... (R (Xl)’’ "))))) c g(xl).

Hence, (2.10) is proved from (2.14) and (2.18). Iq

The ordering relation < and the binary operation v are both useful for proving the
existence of a (unique) maximal partition which satisfies certain additional properties.
The following definition of a special kind of partition is given in order to deal with linear
systems.

DEFINITION 2.4. Let X be a linear space and L be a linear subspace of X. Then a
partition S is called affine if S consists of all affine subspaces of X whose standard
linear space is L, i.e.,

(2.19) S={L+ala X},

and, for X and x2 in X,

(2.20) (x,x:z)S :, (Xl-X2)L.

3. State |eedbaeks and invariant structures. In this section, we shall relate the set of
partitions ,v_, to the state transition function 4, the output function A, and state
feedbacks. When we are concerned with invariant structures of linear systems because
of the linearity between input and state variables in the state transition function, we will
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consider only subspaces of the state set and may not take into account whether external
input is being applied or not. However, in the case of more general (nonlinear) systems,
owing to the nontrivial interaction between input and state variables, we are compelled
to deal with both instances depending on whether the external input is available or not.
Thus, we introduce several definitions of invariant structures accordingly. In the last
part of this section, we verify whether the concepts of invariant structures thus defined
are actually generalizing those of A-invariant subspaces and (A,B)-invariant subspaces
in linear systems. Interrelations of those structures in general systems are discussed in
the following sections.

The following is a formal expression of applying a state feedback to a state
transition function. A state feedback is described by a mapping

(3.1) f:X x AI- A,

where A is another input alphabet which is isomorphic to A.(Generally speaking it is
not necessary to assume that A1 is isomorphic to A. However, to make it easier, we
make this assumption.) In particular, if, for any x in X, the restricted mapping

(3.2) f(x," ): A1 A

is invertible, f is called a regular state feedback. Also, a mapping ffis a natural extension
of f which is defined by

r:X x V-U,
(3.3) (x, v)-->u=(x, v),

d
u(t) =f(x, v)(t) =f(x(t), v(t)),

where V is a set of time functions A1= {vlv" T A1}. For a given pair (b, f), is it
possible to formally define a mapping br which is a state transition function after the
state feedback f is applied to the state transition function b ? (see Figs. 1 a and lb). This

x

a FIG.

question can be answered affirmatively, since our time scale is a well-ordered set. (We
don’t know the answer for a more general time scale in a set-theoretical approach.) First
let us summarize the theorem of transfinite induction in our setting (see [2]).

LEMMA. Let T be a well-ordered set and P(t) be a propositional function with a free
variable T. If the following statement is true for any T, then P(t) is true for all T:
"If P(-) is true for any " < t, then P(t) is true." F1

LEMMA 3.1. For qb and fas above, there exists a well-defined mapping which is a
state transition function after f is applied to b.

Proof. Since the time scale T is well ordered, we can use transfinite induction. For
any T, r 6[0, t), v V and xoX, let us assume that bto’X Vo-X is well
defined. Let us define its solution Xot 6Xot by Xtot(r)= cbto(Xo, Vo,), and generate an
input Uot Uot by Uot(r)=f(xtot(-), rot(r)); that is, Uot=(Xot, rot). Since originally
b is strongly causal (that is, (Vt)(Vu , u z U)(VXo)(uXlTot uZlTot Cbot(Xo, ut)
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(ot(Xo, U2ot))) it does depend only on past input. Therefore, the existence of bot is proved
by transfinite induction; it is defined by

(3.4) 4ot(Xo, Vo,)= Cbo,(Xo, Uot)= Cot(Xo, (Xot, Vo,)).

The mapping b is a typical case of the definition of the transfinite recursion
theorem.

In the following, we give definitions of several invariant structures.
DEFINITION 3.1.
(i) A partition S is invariant w.r.t. b (or b-invariant, or simply invariant if no

confusion occurs) if

(3.5) (/xl, x26X)(/u U)(/t6 T) ((Xl, X2)S Z(0t(Xl, UOt), (0t(X2, Uot))S).

(ii) A partition S is ]eedback invariant w.r.t. 4’ if there exists a regular state
feedback f such that S is invariant w.r.t. 4.
In the usual terms (3.5) says that, for any Xl and x2 in X, if xl and x2 are in an equivalence
class, then the pair of orbits from X and x2 for any u in U stays in the equivalence
relation for any in T. This implies that b-invariant S is a congruence relation on X with
respect to bot(’, Uot) for any and u.

Next, by adding an output mechanism h into consideration, let us define more
structured invariant structures.

DEFINITION 3.2.
(i) A partition $ is invariant w.r.t. (4, h) (or (b, A)-invariant) if S is invariant

w.r.t. b and, for any x and x2 in X, (x 1, x2) $ implies (xl) (x2).
(ii) A partition $ is feedback invariant w.r.t. (b, ) if there exists a regular state

feedback ]" such that $ is invariant w.r.t. (b, A ).
When $ is feedback invariant w.r.t. (b, ,), it can also be said that $ is an indistinguish-
able structure (by state feedback in a natural sense of terminology). Next, invariant
structures which include those of Definition 3.1 are useful when closed loop systems
with no external input are concerned.

DEFINITION 3.3.
(i) A partition $ is zero-invariant w.r.t. b if

(3.6) (IXl, X2 X)(Vt T)((Xl, x2) S :: ((0t(Xl, 0), ot(X2, 0)) S),

where 0(t) is the zero element of A for any t.
(ii) A partition $ is feedback zero-invariant w.r.t. b if there exists a state feedback

f such that S is zero-invariant w.r.t. b.
Remark. In the case of a feedback zero-invariant structure, since the external input

is always zero, the state feedback is just a mapping" X A.
The invariant structures defined above are meant to be the generalizations and
verifications of A-invariant subspaces and their relation to the state feedback. The
following are expected to correspond to (A,B)-invariant subspaces.

DEFINITION 3.4.
(i) A partition $ is control invariant w.r.t. b (or control b-invariant) if

(3.7) (lxl, xzX)(/u U)(Zlu2 U)(It 6 T)

((XI, X2) G S (/ot(X1, U,), /0,(X2, Ut)) S).

(ii) A partition S is uni-control invariant w.r.t. b if, for any x X, there exists
u U and, for any of (xl, u xl) and (x2, u x2) in a set of such pairs {(x, u)}x, (xl, xz) S
implies that (b0,(Xl, Uo ), Co,(X2, Uot )) S for any t.
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In the usual terms, (3.7) says that, for any X and X2 in X, and U in U, if x and X2 are in
an equivalence class, then there exists an input u 2 in U which enables the pair of
resulting orbits to stay in the equivalence relation for any t.

In the rest of this section, we consider a special case where the dynamical system
(b, h) is a linear system and the partition S is affine. Therefore, b is expressed by

(3.8) ot(Xo, got) tot(Xo, O) -- tot(O UO,) tlot(Xo) -- t2ot(Uo,),where 4 and bz are linear and the output function h is linear. A state feedback [ is
expressed, for any t, by

(3.9) u(t) [(x(t), v(t)) Fx(t)+ Gv(t),

where F and G are matrices with det G 0. Let L be a linear subspace of a linear space
X which is a standard linear space for S. Then, several invariant structures turn out to be
mutually equivalent for linear systems as follows:

PROPOSITION 3.1. If (C, A is a linear system and S is affine with a standard space L,
the following statements are equivalent:

(i) S in invariant w.r.t.
(ii) S is zero-invariant w.r.t.
(iii) L is A-invariant;

d
(,(Vx L)(Vt T) ()ot(X, O) ) 10t(X L).)

Proof. (i) :::), (ii).
(i) :> (ii). (Vxl, x26X)(Vu)(Vt)((x,x2)S=>(Cbo(X, Uo), bot(X2, Uot))S). Be-

cause of the linearity of &, Cot(xl, uot)-&ot(X2, Uot)=4ot(xl, 0)-cbot(X2,0)=
4,t(Xl)-Ct(x2) L, which is equivalent to (ii).

(ii) :ff (iii). For any x X, a X and T, if x L, then it follows that (bolt (x +
a), caot(a))S since (x +a, a)S. Therefore, c,(x +a)-lo,(a)=ct(x)6L, which is
(iii).

(iii) =), (ii). For any x and xe X such that (x, x2) S, there exist ll and l such that
x l +a and xz= l:+a for some a X. Therefore, it follows that r(xl)-rt(x:)=
bolt (/1 + a) $olt (12 + a) ,;bot (/1 --/2)

PROPOSITION 3.2. If (ok, h is a linear system and S is affine with a standard linear
space L, the following statements are equivalent:

(i) S is control invariant w.r.t.
(ii) S is uni-control invariant w.r.t. 4).
(iii) L is (A,B)-invariant.

d
(:> (Vx L)(::Iu U)(Vt T) ()ot(X, UOt) L).)

Proof. (i):ff (ii). This is obvious from the definitions.
(ii) =) (iii). Since(/+a, a)S for any 6L anda X, there exist u andu in Usuch

that (4ot(l + a, Uot), 4ot(a, Uo,)) S for any t. Hence, it follows that Cot(l + a, Uot)-
q0t(a, ulot)=qbot(l, (u ul)o,) G L. Therefore, for any eL, if we choose an input to be
u-u as above, the condition (iii) is satisfied.

(iii) :ff (i). For any X and x2 X such that (x l, x.) S, there exist la and 12 which
satisfy xa + a and x 12 + a. Since L is (A,B)-invariant, there exist v U(i 1, 2)
such that Cot(li, Vt) L, for 1, 2. Therefore, for any Xl and x2 X, and any u U, if
we choose an input to be u+v v, it follows that ot(Xx, Uot)-4o,(xz,
(U + U 2- O 1)0t) t0t(/1 + a, Uot)- tot(/2 + a, (u + v 2-/) 1)0t) b0t(/1, /-)01t)- t0t(/2, O02t)
itl __i L, where qbot(li, v or) Z. [
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Let us consider an example of linear systems which are described by

x(t+ 1)=Ax(t)+biu(t), t=0,1,..., i= 1,2,

where xER2’uERa’ A=[10 ]’ bl=[1]1 and b2=[10]. Let us take a subspace

L [10] } as an invariant subspace of the matrix A. Since the pair (A, bl) iscontroll-

able, it is easy to see that, except for two trivial partitions, {R 2} and {x [x E R }, the only
possible invariant structure including L is as shown in Fig. 2a, which is affine with the
standard linear space L. However, since the pair (A, b2) is not controllable, the structure

of allowable invariant partitions is relaxed in the uncontrollable direction [01] }, and
Figs. 2b and 2c as well as Fig. 2a can be other examples of invariant structures for
(A, b2). Thus, we can see that some sort of controllability criteria are to be concerned
with invariant structures, and that affine structures are not only the case for linear
systems. We will not treat this kind of finer discussion here, but leave it for a later
paper.

L L L

b
FIG. 2

4. Relations between invariant structures. I. In this section, we examine relations
between feedback invariant structures and control invariant structures. Although we
have not obtained conditions which specify when these two structures become
equivalent as in linear systems, we prove the following.

THEOREM 4.1. For a given dynamical system (q5, ), there exists a unique maximal
partition which is feedback invariant w.r.t. (4, ).

Remark. In other words, this theorem guarantees the existence of a unique
maximal indistinguishable structure for (b, ) attained by feedback.

In order to prove the theorem above, we need the following three lemmas, which
are interesting by themselves.

LEMMA 4.1. If a partition S is feedback invariant w.r.t, cb, then S is control invariant
w.r.t.

Proof. Since S is feedback invariant w.r.t. 4, there exists a regular state feedback
f: X AIA, where A is isomorphic to A, and f(x,. ): AIA is invertible for any
x EX. Let x(t)=qbot(xl, ut) for any Xl EX, uaE U and tE T. Then, since f is regular,
there exists Vote Vo, such that ulot(7")=f(x(7"),Vot(’r)) for any z E[0, t); that is,
qbot(X,Vot)=Cot(Xa, U,). For such Vo let us define UtEUot by u20t(z)
f(qbto,(X2, Vow), Vot(z)). Then, because (btot(xl, rot), qbot(X2, Vot)ES, it follows that
(o,(xl, uo,), o,(X, uo,)) S.

LEMMA 4.2. If a partition S is control invariant w.r.t. 4, then there exists a state
feedback f such that S is invariant w.r.t. &r.

Remark. This lemma does not imply that the feedback f thus existing is regular (see
the example at the end of this section.)



162 TOSHIO NOMURA AND KATSUHISA FURUTA

Proof. Let S {Sili E I}, and let {Si}iE I be a choice set of the family of sets {Si}iEI, and
c: {Si}ii X be its choice function. Since $ is control invariant, for any Xo {si}i and
x S(xo) and u U, there exists u U such that (qbot(Xo, Uo,), qbot(X, u ot)) S for any t.
Let us denote this correspondence by gs(xo) S(xo) U - U, (x, u) gs(xo) (x, u) u 1.

Furthermore, by using the choice function c let us define a mapping g:X U U by
(x,u)-g(x,u)=gscx))(x,u). Let a mapping pr" UA be a projection defined
by upr(u)=u(O), and (idxpr):XxU-XxA be defined by (x,u)--
(idx pr)(x, u) (x, pr(u)). Let us define g’ :X U A by g’ =pr g, where means a
composite mapping. Since (idx pr) is surjective, and g’(x, u)= g’(x, u’) whenever
u(0) u’(0) for any x E X and u and u’ U, there exists a mapping go:X A - A which
satisfies g’ go (idx pr). Meanwhile, let h:A A be the isomorphism between two
alphabets and let us define (idx h) X A -X A by (x, a) (x, h (a 1)). At the end,
let us define a state feedback f: X A A by f go (idx h). Now, we have to prove
that S becomes actually bt-invariant by using the feedback f thus constructed. Let us
define

(4.1) ro min {- Tl(borT (xl, voT), bor (x2, Vo)) S},
(x,x2)S

which exists because T is well-ordered, and let the arguments be 1, . and t7 which
realize the minimum ’o. If there exists an element ’1 in {’10 -< " < to} which differs from
0, then a set of arguments, bo1(1, o1), bo(2, oT) and t1, where t71 is a shift of
defined by tTq(t) tT(t + rl), realizes condition (4.1) with the shorter time ’o- ’1 which
contradicts the definition of ’o. Therefore, the set {-]0 -< -< ’o} contains only one
element 0. If we set t(0)=f(i, tTOo(0)) for i= 1,2, it follows that ]i(’o)
----d brO.o(, tTO.o)= 4rO.o(/, t;Oo(0))= &Oo(/, /(0)) for i= 1,2, since there are no time
elements in {’]0-< " < ’} except 0. However, from the construction method of f, h i(0)
are such that (71(-o), ]2(-o)) S, which violates the definition in (4.1). Therefore, there
does not exist any time which satisfies (4.1). [3

LEMMA 4.3. Ifany two partitions S and Tare feedback invariant w.r.t, qb (or (c, A )),
then the partition S v T is also feedback invariant w.r.t. 4 (or (, ;t )).

Proof. The idea of the proof is to show that the feedback which can be constructed
by the method of Lemma 4.2 for the partition S v T becomes regular, by using the fact
that S v T is control invariant, and $ and T are feedback invariant. Let R S v T, and fs
and fr be regular feedbacks for S and T, respectively; let {ri}Et be a choice set of the
partition R, and c be its choice function. Because of the construction method of R (i.e.,
Definition 2.3), for any Xo {ri}ii and x E R (Xo) there exists an integer n such that it is
possible to express

(4.2) XRl(" "(R.(xo)" "))

for the proper choice of Ri, where R(i 1 n) are either S or T. Since S2= S and
T2= T as mappings (see (2.11)), by subtracting those trivial repetitions, we can
express (4.2) by using the minimal integer, which we use in the rest of the proof. Hence,
there exist xiR(xo)(i= 1,... ,n-l) such that xlRl(xo),x2R2(xl),’" and x
R,(x,_l). Let f (either fs or fT-) be a state feedback corresponding to Ri (either S or T),
(i= 1,.." ,n). For any uE U and t T, let xO(t)=tot(Xo, blt), and determine
v V so that the equality Uot(-)=]:l(X(r), Vo,(-)) (V-6[0, t)) is satisfied. This is
possible since f(x(-),-)’AI-A is invertible. Let us define ut by uolt(’)
fl(hro(xl, v,), Vo,(-)). Then, let us denote this correspondence by gl.x" {x} U- U,
(x, u)-- u 1, and let (]l.x gl.,) {x} U--R (Xo) U be defined by (x, u)-
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(xl, gl.x(x,u)). Furthermore, recursively, for uieU(i=l,...,n-1), let us
define xi(t)=cbo,(Xi, Uo,), and determine v e V so that the equality Uot

(-)) (/z e [0, t)) is satisfied. This is possible because of the invertibility offi+l(xi(z),Vot
(z)). Then, let usi+1A+(x (), -)" A A. Let us define

denote this correspondence by gi+.’R(Xo)x U U, (xi, u)u+, and let (]+.x x
gi+.x) R (Xo) x U R (Xo) x U be defined by (xi, ui)(xi+, gi+.x(Xi, ui)). By collecting
all these, let gx’{X} x U U be defined by g g,. (],-l,x x g,_,)o o(h.x x g,),
(x, u)g(x, u) u". By using a similar idea, it is possible to construct a mapping

d

gso)" S(xo) x U U, by (x, u) gs<xo)(X, u) g (x, u). Furthermore, by using the
choice function c, let us define a mapping g’XxU U by (x, u) g(x,u)=
gs)(x, u), and as in the proof of Lemma 4.3, let us define a mapping go’X x A A by
(x, u(0)) go(x, u(0))= g(x, )(0) for any ao such that (0)= u(0). On the other
hand, let h’AA be the isomorphism between two alphabets and let us define
(idx x h)"X x A X xA by (x, a)
A A is defined by f go (idx x h). It is possible to prove that R becomes
invariant for this feedback [, by using the same method as in the proof of Lemma 4.2.
Therefore, in order to complete the proof, we have to show that this is a regular
feedback. In fact, since [i(i 1, , n) are regular, go(x," )" A A becomes invertible
for any x X. Moreover, h is isomorphic. Therefore the feedback f thus constructed is
invertible for any x s X. As for the feedback invariance w.r.t. (&, A), by using the
expression (4.2) we can write any x sR(xo) as xR(xo), x=sR=(x),.., and x
R,(x_) for some xiX(i=l,...,n-l). Since S and T are feedback invariant
w.r.t. (&, A), it follows that A (xo) A (x), ., A (x_) A (x); that is, A (Xo) A (x) for
any x sR(Xo). Therefore, it is easy to see that, for any x and x in X, if (x, x)sR, it
follows that A (x) A (x).

Proo[ o Theorem 4.1. For a given dynamical system (&, A), a set of partitions
which is feedback invariant w.r.t. (&, A) is not empty, because a trivial partition
S {xlx X} is always feedback invariant w.r.t. (&, A) for a zero feedback. And any
chain of partitions Si which is feedback invariant w.r.t. (&, A) is always bounded from
above, that is, by v iSi, with respect to the ordering <. Therefore, there exists at least
one maximal partition which is feedback invariant w.r.t. (&, X), by Zorn’s lemma.
Moreover, it is unique, because, if M and M2 are maximal feedback invariant w.r.t.
(&, X), then M v M2 is also feedback invariant w.r.t. (d, A), from Lemma 4.3, which
contains M and M2. Hence there exists a unique maximal partition which is feedback
invariant w.r.t. (&, X).

Example. Let us consider an example to see the difference between control
invariant structure and feedback invariant structure. Let the time scale be T=
{0, 1,2,...}, the input alphabet be A={u , u, u 3} and the state set be X=
{Xo, X, X2, Y0, Y, Y2}. The state transition function 6 is defined in Fig. 3a. We consider a
partition defined by S {Sill 0, 1, 2} where Si {xi, yi}, 0, 1, 2. Then it is easy to
see that this partition S is control &-invariant. In fact, when initial states are in So we
may select the correspondence of inputs, (Xo;U , U 2, U3)(y0; U , u 2, u ) and
(y0; u , u =, u3) (Xo; u , u 2, u 2) so that condition (3.7) is satisfied, and when initial
states are in S or $2, there is an obvious correspondence of inputs. According to
Lemma 4.2, there must be a feedback [ so that S becomes &-invariant. As its candidate
we choose a feedback[ as in Fig. 3b where another input alphabet is A {v , v, v3}. In

This holds because the set of equivalence classes on X is a complete lattice.
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this case f is not regular since f(y0, -)" A -’ A is not invertible. And it is readily seen
that there is no regular feedback f’ which makes S be br-invariant.

3 X0U X

UII3u
2U" / U

Zl !13

YoU

X U

21 1’12

Y2) u3

a. The state transition function .
1)

Xo Yo xl yl x2 Y2

U U U U U U

U U U U U U

U U U U U U

b. The state feedback f: X x A A.

FIG, 3

5. Relations between invariant structures. II. In this section, we prove the
equivalence between a feedback zero-invariant structure and a uni-control invariant
structure.

THEOREM 5.1. A partition S is feedback zero-invariant w.r.t. b if and only if S is
uni-control invariant w.r.t. b.

Proof. It is easy to prove the "only if" part, since a set of control inputs for the
uni-control invariant structure (Definition 3.4ii) can be generated by the feedback
structure. The proof of the "if" part is similar to the one of Lemma 4.2. Let
E {(x, uX)}xX be a set which is a subset of X U satisfying the condition Definition
3.4ii. Let us define a state feedback f:XA by x--f(x)=uX(O), where (x, uX)E.
Then S actually becomes zero-invariant w.r.t. br by using this f. Define

(5.1) ro min {re Tl(4ro,(X, 0o), tfo(X2, Oor))(S},
(X1,X2)S

and let the arguments be.gl and 32 which realize the minimum to. Then, by the same
reasoning as in the proof of Lemma 4.2, the set {rl0 <_- r < to} contains only one element

0. From the definition of f, it follows that Ti(ro __d &O,o(i, 0O,o)
4’Oo(.i, f(i, 0(0))) &O,o(2i, Ue’(0)), (i 1, 2), implies that (xl(ro), x2(ro)) e S, which
contradicts the definition of to. [3

Owing to this theorelaa, when we consider a problem relating to zero-invariant
structures, we need not deal with the exact form of the feedback, but only with a
uni-control invariant structure, which is a usual situation in the linear theory. However,
a set of partitions which is feedback zero-invariant cannot always be shown to be closed
under the binary operation v, except for linear systems; this is unfortunate since we
cannot prove the existence of a unique maximal feedback zero-invariant partition
satisfying certain additional properties, although the existence of several of those
maximal partitions can be guaranteed by means of Zorn’s lemma. This fact causes
inconvenience when we use zero-invariant structures for feedback systems with no



INVARIANT STRUCTURES OF GENERAL DYNAMICAL SYSTEMS 165

external input. However, we summarize this as a theorem which is comparable to
Theorem 4.1.

THEOREM 5.2. For a given dynamical system (qb, h ), there exist maximal partitions
which are feedback zero-invariant w.r.t. (c, h ).

Remark. In other words, it can be said that, for (b, h), there exist maximal
partitions which are uni-control invariant w.r.t. (b, h).

Proof. The proof is the same as the "former part" of Theorem 4.1. [3

6. Disturbance localization. In this section, we characterize the disturbance local-
ization problem, which is a typiCal example where the invariant concepts introduced in
the previous sections are useful.

Let us consider an extended state transition function b which is defined for any in
Tby

(6.1) bo," X Uo, Wot --> X,

where W is a set of disturbance inputs. In particular, it satisfies

d

cot(Xo, uo,, 0o,) =o,(Xo, Uo,).

In the rest of this section, we fix the initial state to be Xo.
DEFINITION 6.1.
(i) A dynamical system (b, A) is disturbance-localized if

(6.2) (/u E U)(IW 2w W)(Vt T) (Ao )o,(Xo, Uo,, w,) 1 (#ot(Xo, Uot, wt)).

(ii) A dynamical system (b, h) is disturbance-localizable by state feedback if there
exists a regular state feedback f: X A --> A such that the dynamical system (b, A) is
disturbance-localized.

The above Definition 6.1 says that, when a dynamical system is disturbance-
localized, the response of the system is not influenced by any disturbance input w for
any control input u. If we consider a special case when the disturbance is constantly
zero, a feedback (b, A)-invariant structure has to exist in order to be disturbance-
localizable. This observation suggests a formal characterization of the disturbance
localization by state feedback.

THEOREM 6.1. A dynamical system (b,h) is disturbance-localizable by state

feedback ifand only if the unique maximalfeedback invariant structure Srna w.r.t. (b, A
is disturbance invariant w.r.t. , where f is a state feedback which realizes Smax, and Smax
is disturbance invariant w.r.t, fr if

(/) ( V)(w 1, w2( W)(Vt T) (([ot(Xo, DOt, Wt), [ot(Xo, l)Ot, W2ot))ESmax).

Proof. Sufficiency is obvious from Definition 6.1. The following is the proof of
necessity. Let us assume that the system is disturbance-localized by a properly chosen
regular feedback ’. Let us define a subset Sv.t of X by

Sv,,--{X C Xlx [O’t(Xo, )0’, Wo’; W C W},

and define a family of subsets of X by

S {Sv,t[I) V, T}.

By S, we mean the smallest partition which is generated from $. Then from the way S is
defined S becomes a (4’, A )-invariant structure which is realized by a regular feedback
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f’; that is, it is feedback (, h)-invariant. In fact, any Xl Su, has an expression

 ot,

for some w W. And for any v’ V and t’ T,

d
x’ 0o ,)

&o.t+t’(Xo, Vot t’,

holds because of the semigroup property of df’, where denotes the concatenation of
inputs, and t(v) denotes the time shift of the input v defined by

’(v)(z)=v(t+z).

Therefore, we get

(6.3) x’

In general, if (Xl, X:)S then there exist an integer n, yX, v V and t T,
1, , n, such that y x and y, x2, and

yg and yg+x

Therefore, together with (6.3), for any v V and T, we get

&’t(Yg, rot) and &’t(yi+l, rot) Sv,,’(v),t+t, 1,..., n 1,

and hence, we can derive

Vo,), s.
Therefore S is r-invariant. Further, since the system (f’, A) is disturbance-localized
from the assumption, S is (r, h)-invariant as well. On the other hand, from the
definition of S, S is disturbance-invariant w.r.t. 6r. Let us denote the maximal feedback
invariant structure w.r.t. (&, A) by Sma, and assume that the regular feedback f is
realizing Smax. Since S < Smax and S is disturbance invariant w.r.t. r, it follows that
Sm is disturbance invariant w.r.t. and hence the system is disturbance-localizable
by state feedback for such Sm and f.

This theorem asserts that, in order to check whether (6, A) is disturbance-
localizable, we may first find the unique maximal partition Smax, and then, examine
whether Smax is disturbance invariant w.r.t. .

In an analogous way, we can characterize the disturbance localization problem
where the external input is set to be zero after the closed loop is made. Accordingly, the
part of the input u in Definition 6.1 has to be altered to be 0 in the definition of the
disturbance localization.

THOnM 6.2. A dynamical system (&, A) is disturbance-localizable by state

feedback with the external input zero if and only if there exists a maximal partition Sm
which is feedback zero-invariant w.r.t. (, h such that Smax is disturbance zero-invariant
w.r.t. , where f is a state feedback which realizes Smax, and Smax is disturbance
zero-invariant w.r.t. if

(Vw 1, w z w)(vt 0,

7. Conclusion. In this paper, we introduced several invariant structures for general
(nonlinear) dynamical systems in a set-theoretical setting, which generalized A-invari-
ant subspaces and (A,B)-invariant subspaces, and developed the interrelations
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between them. In particular, we proved an important property, that there exists a
unique maximal indistinguishable structure by state feedback. This enabled us to
formally characterize the disturbance localization problem in 6. An analogous
discussion is possible in order to formulate the model-matching problem, decoupling
control, etc., where algebraic structural properties are the only concern and stability is
not. If we assume more structures such a linearity, finiteness, continuity, differen-
tiability, etc., depending on the system’s attributes, we believe that more concrete
discussions on control problems are possible by verifying the invariant concepts.

It is very interesting next to construct a generalized version of poles or pole-
assignability in a set-theoreticd plus topological setting, in order to formalize and
characterize many other control problems for general dynamical systems.
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A NOTE ON ASYMPTOTICALLY EFFICIENT ESTIMATES OF
PARAMETERS IN CONTINUOUS-TIME DYNAMICAL SYSTEMS*

ARUNABHA BAGCHI

Abstract. Maximum likelihood estimation of parameters in continuous-time stochastic linear dynamical
systems has recently been shown to be consistent under certain sufficient conditions. The purpose of this note
is to prove that these estimates are asymptotically efficient.

1. Introduction. It has been shown recently in [1] that a maximum likelihood
estimate of parameters in continuous-time linear dynamical systems yields strongly
consistent estimates of the unknown system parameters. This extends corresponding
results for discrete-time linear dynamical systems [2], [3]. It is known that in the
discrete-time case, the maximum likelihood estimate is also asymptotically efficient [4].
The purpose of this note is to prove this result in the continuous-time situation.

2. Problem statement. Let (f, , P) be the basic probability space. Consider the
following continuous-time linear stochastic dynamical system:

(2.1) x(t; to) Io Ax(s;to)dS+IoBU(s)ds+IoFdWl(S;to),
(2.2) Y(t; )= I0 Cx(s; o) dS + fo G dW2(s; o),

where u(t) is a p-dimensional "input" function; x(t; to) and y(t; to) are n- and
m-dimensional "state" and "output" functions respectively; A, B and C are respec-
tively n n, n p and m n constant but partially unknown matrices; Wl(t; to) and
W2(t; to) are n 1 and m 1 independent Wiener processes, and F, G are respectively
n n, m m constant but partially unknown matrices with GG* having an inverse,
where * denotes the transpose. We assume that GG* is completely known. There is no
loss of generality in assuming that GG* I, the identity matrix.

We assume that the pair (C, A) is completely observable, and that the system has
reached the steady state. Working with the steady state is no restriction, since we are
concerned only with asymptotic properties in the sequel.

Let 0 denote the vector of all the unknown system parameters, with 0o denoting
their true values. Let fiT(to) be a maximum likelihood estimate of 00 based on Y(t; to),
0 =< =< T. T(to) is thus a minimum, in a sufficiently small neighborhood of 00, of the
log-likelihood functional, as given in [5].

We introduce some notation to express this log-likelihood functional in a compact
form. Let

(2.3) m(O.; t)= C exp [A(t-s)]Bu(s) ds

and let (0) be the Volterra operator

(2.4) (O)f =g; g(t) C fo exp [(A-PC*C)(t-s)]PC*f(s) ds,

* Received by the editors April 17, 1979, and in revised form April 28, 1980.
+ Department of Applied Mathematics, Twente University of Technology, Enschede, the Netherlands.
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where P satisfies the algebraic Riccati equation

(2.5) AP /PA* /FF* PCC*P O.

We also use the notation

(2.4’) [(O)dr(. to)](t) CJo exp[(A-PC*C)(t-s)]PC* dr(s;w).

Finally, for two square integrable vector-valued functions f(. and g(. in [0, T],
we use

T

(2.6) If(’ )’ g(" )] Io If(t), g(t)] dt, with I1 (’)11= (.)],

T

(2.6’) [/(.), dY(. w)] Jo If(t), dY(t; o9)].

Then the log-likelihood functional for the problem can be expressed as

q(O; Y(. ;w); T)=--{llm(O; .)+(O)(dY(. o)-m(0;

(2.7)
-2[m(0; .) +(O)(dY(. o)-m(0; .)),dY(. w)]}.

Furthermore, if Y[(O)f g, g(t)= C exp (A(t-s))PC*f(s) ds, then (I +Y[(O))-i (0), and

(2.8) dY(t; w)- m(0o; t) dt [(I + Y/’(0o)) dZo(. w)](t),

where Zo(" ;w), the so called "innovation process", is a Wiener process with identity
covariance. These results have been proved in [5].

Let 0 denote the ith component of 0 and let Voq(O; Y(" ;w); T) be the gradient
vector with the ith component q(O; Y(. w); T). Let Q(O; Y(. w); T) be the matrix
with ijth component

02

qi(O; Y(. ;o); T)=q(O; Y(. ;o9); T).
0 0;

We write

q(O; T)= Eq(O; Y(. ;0); T), q(0) Tlirn q(O; T),

and use similar notations for V0q and Q.
These limits exist under the following regularity conditions"

Condition A. For fixed 0, assume that A is stable.
Condition B. For fixed 0, assume that the pair (C, A) is completely observable.
Condition C. We assume that the input u (.) is such that

lim
1 fo

r

o
Ilu(t)ll2 dt < c (exists and is finite),

and

r(t)= lim
1 fo

r

7-,oo - u(s)u(s + t)* ds

is a continuous function of in every finite interval.
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LEMMA 1. q(O; Y(’; w); T) is almost surely (a.s.) differentiable with respect to
(w.r.t.) Oi, and qi(O; Y(. w); T) may be obtained by bringing the differentiation operation
under the integral signs. A similar conclusion holds for qj(O; Y( w); T).

Proof. We have only to justify this interchange of operations for the stochastic
integral terms in q(O; Y(. ;w); T). In fact, we have two types of stochastic integral
terms appearing in q; namely,

T

L(t, O) dZo(s; to),S;

and
,T

where L(t, s; O) is continuously differentiable with respect to and s; M(t; O) and
N(t; O) are continuously differentiable with respect to t; and L, M, N have partial
derivatives with respect to 0 existing for all orders. We begin with the first type of
stochastic integral. For fixed 0,

Io
7" IoT" OL s; O zo s to)ds a.s.(.) L(t, s; O) dZo(s; to)= L(t, T; O)Zo(T; to)-

Os

But the right-hand side is defined a.s. in to for all O. The right-hand side is, therefore, a
version of the stochastic integral on the left-hand side of (,), and we work with this
version now. This version is clearly a.s. differentiable w.r.t. Oi, and

[ foTOL(t, S; O)Z0(s; to)ds]0 L(t, T; O)Zo(T’, to)-
30i OS

00L(t, s; O)_OL(t, T; O)Zo(T" to) Zo(s to) ds
OOi OS OOi

the expression on the right is a version of the stochastic integral

rOL(t, s; O)
dZo(s to).

0 OOi

We now consider the second type of stochastic integral. For fixed 0, we use an
identity for Ito integrals ([5, p. 96]):

T

+ Io [N(t; O)* Io M(S; O)* dZ(s; to)’ dZ(t; to)]
=[J’o N(s; O) dZ(s; to)’ fo M(s; O)* dZo(s; to)]

T

-I0 Tr N(t; O)M(t; O) dt.

The right-hand side has a version which is defined a.s. in to for all O, and furthermore,
this version is a.s. differentiable w.r.t. 0. By symmetry, each stochastic integral on the
left-hand side has a version that is defined a.s. in to for all O. These versions are also a.s.
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differentiable w.r.t. Oi. Since in the right-hand side of (**), partial differentiation may be
brought under the integral sign, the same holds for the a.s. differentiable version of

T

If 7-(to) is an unbiased estimate of 0o based on Y(t; ca), 0 =< -< T, we can extend the
Cramgr-Rao inequality to show that the variance of Or(to) must satisfy

(2.9) E[(7.(to)-Oo)(7.(to)-Oo)*]>-[TO(Oo; T)]-1,
where A =>B means that the matrix A-B is nonnegative definite. Q(0o; T) is thus the
Fisher information matrix for the system under study. It follows from (2.9) that

40(Oo; T)4’((o)- Oo)

always has zero mean and variance =>L This motivates the following:
DEFINITION. A function {T(to)}, (T > 0) of estimates is said to be asymptotically

efficient if 4o(o )4Tr(  -0o)converges in distribution as T c to N(0; I), where
N(0; I) stands for normal distribution with zero mean and identity variance.

If Q(Oo) is positive definite, there exists a compact neighborhood W(Oo) of 0o in
which no other value of 0 except 00 yields an output coinciding a.s. with the actual
output Y(t; to), 0 <- <-_ T (see [5, pp. 210-212]). It has been shown in [1] that if Q(Oo) is
positive definite and the regularity conditions A, B, C mentioned before hold for all 0 in
W(00), there exists a root of Voq(O; Y(" ;to); T)=.0 that is strongly consistent in the
sense that this root ffT-(to) 0o a.s. T . We prove in this article that under these
conditions, {ffT-(to)} is also asymptotically efficient.

3. Proof of asymptotic etticiency. The proof is based on two lemmas.
LEMMA 2. Let Q(Oo) be positive definite and conditions A, B, C hold for all 0 in

,V(0o). Let OT(to) be a random vector converging in probability to 0o. Then
pr

Q(OT(to); Y(’;to); T) Q(Oo) as T-oo.

Proof. Since OT(to) converges in probability to 0o, given e > 0 there exists T(e) such
that for T > T(e),

It is easy to see that O(O) is continuous in 0 for 0 in aV’(00). Let qii(Oo) and qii(Oo) be the
1.u.b. and g.l.b, of the ifth component qi(O) of O(O) for 0 in

(0o) {0 Ill0 0oll < } (0o).

From [5, Thm. 8.2] we know that under the conditions of the lemma,

Elqii(O; Y(. ;to); T)-qii(O)]2O as Too,

uniformly for 0 in aV (0o). This implies that, for an arbitrary e’> 0, a Ti(e’) exists such
that for T> Tii(e’), and for any 0 in aV,(0o),

P(q(Oo)-e’<qg(O; Y(. ;o); T)<q.(Oo)+e’)

>-P(qj(O)-e’ <qj(O; Y(. ;to); T)<qj(O)+e’)

1
>= 1---Elqg(o; Y(" ;to); T)-q(O)[

E
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For any T> max [(T(e), Tj(e’)], 1 -< i, j <_- r), for any 0 in W,(Oo), let

ET {,.,, IlffT (,.,,)- 0oll < ,, q.(Oo)- e’

<qij(O; Y(" ;to); T)<q.(Oo)+e’, l <-i,j<-r}.

Then, P(Er) > 1- e ra

Any w s Er satisfies

(3.1) qu(Oo)-e <qii(ffr(w); Y(" ;o); T)<qu(Oo)+e l<=i,j<=r.

Hence for T>max[(T(e), T0.(e’)], l=<i, j<-_r, the probability that (3.1)is satisfied
exceedsl e rae, 1 <= i, j _-_ r. But since e and e are arbitrarily small, and since O(0) is
continuous in (0o), q.(0o)- qu(Oo) and qii(Oo)-q.(Oo) can be made arbitrarily small.
Hence, qu(Or(w); Y(" ;o); T) converges in probability to qii(Oo), for 1_-<i, j<-r. This
proves the lemma, fi

LEMMA 3. Suppose that O(0o) is positive definite and let

(3.2) Yr =-(40(O’o))-/rVoq(Oo; Y(" ;w); T).

Then Yr converges in distribution to a normal random vector with zero mean and identity
variance.

Proof. By Lemma 1, we can obtain from (2.7)

here

qi(Oo; Y(" ;to); T)= -- [f(t; to), dZo(t; co)];

fi(t; w) [(I (Oo))m,(Oo; + i(Oo)(I + /’(0o)) dZo(" w)](t),

where the suffix appearing in the right-hand side means partial differentiation with
respect to the ith component O of O, 1 <_- =< r. In particular, (0) refers to the Volterra
operator

(3.3) (O)f g; g(t) "[C exp {(A PC*C)(t- s)IPC*]f(s) ds.

From the expression for f(t; w), we can readily obtain, using properties of Ito
integrals, that

T t’T

E Jo [f,(t; o), .(t; co)] dt Jo ))(t),

(3.4) ((t- (Oo))mj(Oo; ))(t)] at

"" [i(O0)(Z + ,.br(00)), /(O0)(I "+" ,.’br(00))]

Tqu(Oo; T),

where, for Volterra operators K1 and K2 with kernels Kl(t, s) and K2(t, s), we have used
the notation

T

[gl, g2] Io Io Tr gl(,, s)g2(t, s)g ds dt.
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The second equality in (3.4) can be established by straightforward calculations using
Lemma 1 for calculating qij(Oo; Y(" 0); T) and then using properties of Ito integrals
while taking the expectation. Both the terms in the middle expression for (3.4) tend to
infinity as T o, under the regularity conditions A, B, C at 0o. It is easy to see from
(3.4) that

Io"- E [fi(t; to), f.(t; to)] dt qii(Oo) as T m.

We now prove that

1;oT pr

[fi(t; to), f’(t; to)] dt qij(Oo) as To.

To prove this assertion, note that-- [fi(t; to), f.(t; to)] dt - [ki(t), ki(t)] dt +-- [ki(t), Li(t; to)] dt

+ [ki(t), Li(t; to)] dt +- [ti(t; to), Li(t; to)] dt,

where

and

Let

Then

ki(t) [(I--v(Oo))mi(Oo; )](t)

Li(t; to)= [Li(Oo)(I + ff/’(0o)) dZo(" to)](t).

Rj(t-s)=E(Li(t; to)Li(s; to)*).

E --f [ki(t), Li(t; to)] d - [ki(t), Ri(t- s)ki(s)] ds dt

1oNA(T) [Iki(t)l[2 dt,

where hi(T) is the largest eigenvalue of the operator

T

Rj(T)f=g; g(t)=Io Ri(t-s)f(s)ds, O<-t<-T,

and is a nonnegative definite operator. Now, for an appropriate dimensional vector-
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valued function k, I[k ll-- 1,

l
[Ri(T)k, k]=

l foW lor- - [R(t-s)k(s), k(t)] ds dt- Pi(f) [ei2"t-’k(s), k(t)] ds dt df

(Pi(f) is the spectral density of Ri(T))

implying that

1Ai(T) _< stp Iln ( )ll- 0 as T
T -T

Since limw- liT oTIIk(t)]] dt exists and is finite (from regularity conditions A, B, C,
see [5] for details):

1 fo
r

pr

T
[ki(t) Li(t" to)]dt--0 as T.

The expected value of the square of this expression is

IIoTIoTT-- {E([L(t; to), L.(t; to)][L(s; to), L.(s; to)])

-E([Li(t; to), L(t; to)])E([Li(s; to), Li(s; to)])} ds dt.

Let us consider the case when Li, L. are one-dimensional. By rules for calculating four
products of Gaussians,

E(L(t; to)L(t; to)L(s; to)L.(s; to))-E(Li(t; to)L(t; to))E(L(s; to)Li(s; to))

E(Li(t; to)Li(s to))E(L(t; to)Li(s; to))

+E(L,(t; to)L,(s; to))E(Li(t; to)Li(s; to)).

In the vector case, we have a finite number of such expressions. Let

Rii(t-s)=E(Li(t; to)L.(s; to)*).

Then

and

lim lfoTIoTT--, - Rii(t- s)Rii(s t) ds dt

lim lfoTIoTT-,oo - Ri(t- s)R(t- s) ds dt

exist and are finite (from regularity conditions A, B, C). Hence, the result follows.
Once (3.5) is established, it follows from Taraskin [6, Thm. 5] that

4Voq(Oo; r(. ;to); T)

converges in distribution to a normal random vector with zero mean and covariance
Q(0o). This proves the lemma.
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We now come to our main result.
THEOREM. ZT x/Q(oo)X/(r- 0o) converges in distribution to a normal random

vector with zero mean and identity variance, under the assumption that Q(Oo) is positive
definite and regularity conditions A, B, C hold in JV’(Oo).

Proof. Expanding Voq(O; Y(" ;to); T) in a Taylor series about 0o, we obtain

Voq(O; Y(. ;to); T)=Voq(Oo; Y(. ;to); T)+O(O*; Y(. ;to); T)(O-Oo),

where

II0" 0oll < ]1o 0o11.
Q(Oo) is strictly positive definite, and hence, putting 0=r and multiplying by
(x/Q(00))-lx/ we get

O=(x/Q(Oo))-’x/rVoq(Oo; r(. ;o); T)

+(40(Oo))-"]--TO(T; Y(" ;to); T)(T--Oo),
where

0oll < 0o11,
Since & 00 a.s. and therefore in probability, as T c, and with II&- 0oll < Ilff - 0o11,
it follows with appropriate modification from Wilks ([7, p. 104]) that 0r(to) also
converges in probability to 00. This gives us, from Lemma 2, that

Vr (40(Oo))-O(; r(" ;o); T)(4-O(Oo))--> I
in probability as T o. Note that Zr in the theorem may be defined by

VTZT YT)

where Yr has been defined in Lemma 3. The result now follows by extension of Cram6r
18, Thm. 20.6] to the vector case (Slutsky’s theorem). I"1

4. Conclusion. We consider only the case when the observation noise covariance is
completely known. When the observation noise covariance has unknown components,
a modified likelihood functional suggested in [9], gives consistent estimates of the
unknown parameters. The proof that the estimates are asymptotically efficient can be
done using the method proposed in 3 without any alteration.
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DYNAMICAL REALIZATIONS OF FINITE VOLTERRA SERIES*

P. E. CROUCH

Abstract. In this paper, realizations of finite Volterra series are viewed as nonlinear analytic input-output
systems, with state space described by an analytic manifold. For a minimal realization guaranteed by H. J.
Sussmann, the state space, which is unique up to diffeomorphism, is shown to have the homogeneous space
structure of a nilmanifold, the quotient of two nilpotent Lie groups. The structure of nilmanifolds as described
by A. Malcev is used to show that for these systems, the state space has a vector space structure. As a
consequence of this result, it is shown that a minimal realization of a finite Volterra series can be described as a
cascade of linear subsystems with polynomial link maps, in which the dimension of each linear subsystem is
independent of the realization considered.

1. Introduction. In the last few years, there have been considerable advances in the
theory of nonlinear input-output systems. In this paper, this theory is applied to
nonlinear systems admitting input-output maps described by finite Volterra series, in
order to identify the natural structure exhibited by these systems. It is shown that much
of the structure and theory of linear systems generalizes directly to this class of
nonlinear system.

The paper is divided into three main sections, 2, 3 and 4. In the second section, the
systems and Volterra series considered in the paper are introduced, and some important
results from the existing nonlinear systems theory are presented. The class of system
considered is determined to a large extent by the manner in which the system structure
is determined. In this paper, the structural identification problem is treated as a
nonlinear realization problem; that is, given a class of input-output map, determine the
common structure that exists between suitable realizations of these maps. To formulate
this problem unambiguously, a class of system has to be identified within which
realizations are essentially unique. The systems considered in this paper are therefore
chosen to satisfy the hypotheses of Sussmann’s existence and uniqueness theorem for
minimal realizations [20]. One of the most significant restrictions that this imposes on
the systems considered is the analyticity of the data, another is the completeness of
certain vector fields associated with the system. A less important restriction is the
linearity of the controls in the dynamics of the system. This restriction is introduced to
simplify the structure of the input-output map. In particular, this enables the results of
Krener and Lesiak [15] to be applied, giving a convenient coordinate-free represen-
tation of the Volterra kernels in terms of the system data.

Section 3 deals with the natural structure of the state space of a realization of a
finite Volterra series, perhaps the fundamental question in a nonlinear realization
problem. It is evident from many earlier works that most of the difficulty in analyzing
these systems comes from fixing coordinate systems in which to express them. In this
paper, the system is treated in a coordinate-free way, although the geometry of the
system does allow convenient coordinate systems to be chosen. The state space is
characterized in two stages. Firstly, the natural properties of the Lie algebra of the
system allow the state space to be formulated as a homogeneous space of nilpotent Lie
groups. The second stage involves considering the structure of these spaces, as first
investigated by Malcev [17], in conjunction with the restrictions imposed due to the
finiteness of the Volterra series. It is shown that the state space is homeomorphic to a
Cartesian space, a far more profound result than that of its linear counterpart.

* Received by the editors June 28, 1979 and in final revised form April 29, 1980.
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Section 4 is concerned with finding natural coordinate systems in which to display
the structure of these systems most effectively. As a consequence, it is shown that the
state space has a natural vector space structure. A finer structure is also identified which
shows that these systems are cascades of linear systems with polynomial link maps. The
dimensions of these linear subsystems are invariant integers associated with the
input-output map, which can be identified directly from the Volterra kernels. In the
special case where only one term appears in the Volterra series, the minimal realization
is shown to exhibit further structure with interesting consequences.

2. Preliminary results and definitions.
2.1. The class of system considered is defined by the following equations:

A -f(x)+ Y uigi(x), X(0) Xo, X EMn,
i=:1

y h(x),

where the associated vector fields f + "im=l aigi for any (O am)E Rm, are complete
analytic vector fields on Mn, an n-dimensional real analytic connected manifold, and h
is an Rq-valued analytic function on M, with components hi, 1 q. The vector with
components ui, 1 m will be denoted by u.

Since the associated vector fields are complete, solutions to the above equations
are defined on [0, T] for all piecewise constant controls u on [0, T] and all positive times
T. Standard arguments allow us to extend this class of controls to include measurable
controls on suitable intervals and taking values in a given constraint set f c ".

2.2. The input-output map described by the above system can be written as a
convergent Volterra series, as shown in Brockett [2], Brockett and Gilbert [3], and
Krener and Lesiak [15]. The formal series will be written as

y(t) Wo(t) + Io Wl(t, O’l)(U(O’l)) do’l

q- W2(t o’1, o’2)(u(o’l))(u(iT2)) dO’l dcr2 +"..

A series terminating with the term involving the pth kernel will be called a Volterra
series of length p. Since each initial state obviously defines an input-output map, the
dependence of the kernels on the initial state is included where it is significant.

The Volterra kernels Wn(t,rl’"r,,x) are multilinear maps for each
t, 0"1’’" O’n,X e"+IM,

Wn(t o-1... O’n, X) m X xm --) Rq,

the components of which will be denoted by

Wiil"’ (t, rl o’., x), 1 < ]o < q, l <=jk <=m, l <=k <-n.

For convenience, the kernel Wn(t, 0"1 O’n, X) will often be identified with a single
component, since in most of the analysis, the distinction between different components
involves only indices.

Let V(M), Z(M) and C(M) denote the linear spaces of analytic vector fields,
covector fields and functions on M, respectively. If a V (M), z C(M) and hence,
d" Z (M), then the Lie derivative of z [dr] by a, will be denoted by La(z)[La(dz)].
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The following identities are standard’

dz(a)=La(z)=a(),

La(dz)=d(a(z)).

If a V (M) is a complete vector field, its corresponding flow /a :R M M
satisfies the differential equation

d
d-- y(t)x a(ya(t)x), ya(O)x X.

In Krener and Lesiak [15] (see also Crouch [8]), the kernels are shown to be given
inductively by the equations

Wio (t, x) hi(yr(t)x),

(1) wJJl""J’(t,.. 0"1 O’n, X)-" ]/f(--O’n)$gj.(q/f(O’n)X)( ‘l]’jjl"’’jE-lvv n_l (t, crx O’n-1, ))

Thus, by simple manipulation,

WJ’"’(t, o’1’., o’n, x)= g.(yr(trn)x)(g._l(yr(r_l-r,)" )(’" ho(yr(t-rl). )... )).

In particular,

(2) W,(t-s, rl-s, or, -s, Vr(s)x)= Wn(t, era"" or,, x).

2.3. In describing the main results for nonlinear control systems, we shall use the
terminology of Sussmann [20] as far as possible. Thus, an analytic system as described
above is minimal if and only if it is orbit minimal and observable. For analytic systems,
orbit minimality is equivalent to accessibility; that is, the reachable set from any point in
the state space M has nonempty interior in M.

Two states Xo, x M are said to be indistinguishable if the input-output maps they
define, as initial states of a system, are identical. A system is observable if any pair of
indistinguishable states x0 and X satisfy x0=x; for analytic systems, indis-
tinguishability is an equivalence relation on M.

A system which has a given input-output is called a realization of that input-output
map. The main theorem in Sussmann [20] guarantees the existence and uniqueness of
minimal realizations of an input-output map. That is, given an analytic realization of an
input-output map, there exists a minimal realization of the same input-output map, and
if

3i fi(xi)’+" ujgji(Xi), xi(O) xOi xi MT’,
j=l

(3) y--hi(xi)

are two minimal analytic realizations "-i, 1, 2 of the same input-output map, then
there exists a unique analytic ditteomorphism :M M2 satisfying

(4) ,f, f2 , ,gl g2 , h ho , (x) x.
2.4. The accessibility property does not rule out an implicit time dependency in the

autonomous system of 2.1, since time-varying systems can fit the definition by a

standard addition to the state equations. The property is therefore strengthened to

strong accessibility; that is, from any point x in the state space M there exists a time
T (x), 0 < T < ee such that the reachable set from x at time T, R (T, x), has nonempty
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interior in M. Both accessibility properties have algebraic characterizations as given in
Sussman [22].

The linear space of vector fields V (M) becomes a Lie algebra under the bracket
operation

[a, b](z)- a(b(z))-b(a(z)),

for a, b V(M) and C (M). Let denote the Lie subalgebra of vector fields
generated by f and gl g, and let 5 denote the ideal in generated by gl g,.

The analytic system is accessible if and only if

TxM (x) {a (x); a } Vx M

where TxM is the tangent space to M at x. The analytic system is strongly accessible if
and only if

TxM (x) {a(x); a 5} x M.

In this case, R (T, x) has nonempty interior in M for all T > 0.
An important example of a strongly accessible system is an accessible stationary

system, that is, an autonomous system in which f(Xo)= 0. It is easily deduced from (2)
that if a system is stationary, then the Volterra kernels and series are stationary, in the
sense that

Wn(t, TI Tn, Xo)-- Wn(t-S, O’l-S, (Tn --S, XO).

2.5. The concept of weak observability was introduced by Krener and Hermann
[14], and for analytic systems is a useful weakening of the concept of observability. A
system is weakly observable if for all states x0 M there exists a neighborhood U of Xo,

such that if Xl U is indistinguishable from Xo, then Xo X l. Clearly, if a system is
observable then it is weakly observable.

Let denote the smallest linear subspace of C(M) containing the functions
hi, 1 q and closed under Lie differentiation by elements of. Thus, o consists of
all linear combinations of the functions

L(L(. (L.(hi)" ))), ai .
In Krener and Hermann 14], it is shown that an accessible system is weakly observable
if and only if

T,M* d(x) {d’c(x); z s o} ’Vx M,

where TxM* is the cotangent space to M at x.
Assume the systems ’-’1, .’2 as defined in (3) are such that ’2 is a minimal realization

of an input-output map and E1 is an accessible weakly observable realization. As in
Sussmann [20] the canonical map r’ M1 M1/R is closed and regular, where R is the
equivalence relation of indistinguishability, and Ma/R inherits a minimal system with
the same input-output map as Z2. Moreover r’ satisfies relations like (4). Since minimal
realizations are isomorphic, there exists an analytic map 7r’M1--)ME satisfying the
relations (4). The following result is a slight adaptation of a theorem in Sussmann [21],
using a technique due to Krener [16].

LEMMA 2.1. M’ is a covering manifold ofM and 7r is the covering profection.
Proof. Since ,E is weakly observable if x M2, then 7r-l(x) is a discrete subset of

M1. Thus, it is sufficient to show that if x M2, then there is a neighborhood U of x such
that U zr- (x) is diffeomorphic to zr- (U).
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Let y e zr-l(x). As in Krener [16], the accessibility of ,--,1 implies that there are n
associated vector fields ai with flows yi, and a neighborhood V of 0 s [" such that the
map tr,

($1 Sn) "- ’)/1(S1)o...o /n(Sn)y,

is a diffeomorphism of V onto some open neighborhood S of y.
Since r, TyMI TxM2, by restricting V if necessary, it can be assumed that zr maps

S diffeomorphically onto a neighborhood U of x.
Let p U -> V be the inverse of
Since the vector fields ai are complete, the following maps 4’, b V x MI M are

analytic, where

t(S1 Sn, U)"-" 1($1) "yn(Sn)U,

6(s s,, u)= ,,(-s,)o v(-s)u.

A simple consequence of indistinguishability shows that $ V x --(x) 7’/’-l(u),
and so the following maps are analytic and inverses of each other.

t U x T x .- Ti. u ’ 7.1. u .- U x T.t. x

where

(z, u) (p (z), u), E(v)= (’rr(v), (p "rr(v), v)). Q.E.D.

Conversely, if ,-,2 is a minimal realization of an input-output map with state space
M2, we can construct an accessible weakly observable realization of the input-output
map on any covering manifold M1 of ME. This is done in a manner analogous to the
construction of an accessible weakly observable realization, on the simply connected
cover of ME in Krener [13]. (See also Crouch [8]). This system, called the simply
connected cover of the minimal system, is used extensively in the following section. The
preceding remarks yield the final result of the section.

THEOREM 2.2. The accessible weakly observable analytic realizations of an input-
output map are in one-to-one correspondence with the covering manifolds of the state
space of a minimal realization.

3. The state space.
3.1. In this section, the Lie algebra of a strongly accessible weakly observable

realization of a finite Volterra series is characterized. From 2.5, it is clear that this Lie
algebra is isomorphic to the Lie algebra of a minimal realization.

In this paper, the Campbell-Baker-Hausdorff formula is used repeatedly. It states
that for a, b V(M)

S
y,(-s),b(y,(s)x) 1 adia(b)(x)’

i=

where adia (b) adi-aa ([a, b]), ada (b) b, and this series converges for s in some
neighborhood of 0 R. From the kernel structure equations (1), it is now clear that the
kernel components are analytic in all their arguments.

Let denote the subspace of 5e and spanned by the vector fields adgf(gj) for
_-> 0 and 1 -</’ -< m. It is clear that adf: g is a linear endomorphism, and that

generates the subalgebra 6e of . The following lemma describes some important
properties of the kernels.
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LEMMA 3.1. Given a strongly accessible realization of a finite Volterra series of
length p:

a) The Volterra series has length p when evaluated at any point in the state space M.
b) The kernel Wp depends only on the time parameters t, trl trp, not on the state

Proof. That the Volterra series has length p, implies that Wp+i(t, trl cry+i, Xo) =- 0
for a fixed initial condition Xo and _-> 1. The formulas for the kernels for 1 give

"yf(- o’p+ l),gi(’yf(o’p+ l)xo)( Wp(t o’1’’’ o’p, )) 0.

Differentiating with respect to cr,+l repeatedly yields

LaWp(t, o’1 o-p, Xo) 0,

where a is any vector field in .
Similarly, for => 1,

LalLaa LaiWp(t rl rp, Xo)- 0,

where aj, 1 =< j -< are any vector fields in
Using the identity

LaLb(’)-LbLa(z) L[a. hi(7"),

and taking suitable linear combinations of the above equations, give

(5) LalLaz’’" La, Wp(t, crl"’" o’p, Xo) 0, i->l,

where aj, 1 =< j -< are any vector fields in O.
By strong accessibility there exist vector fields a a, 6e which span TxoM; and

so if yg is the flow of ai, (sl. s,) yl(Sl) y(s,)xomaps a neighborhood of0 t"
onto some neighborhood of x0 M. It follows from (5) that all derivatives of the map
(Sl s,)- Wp(t, r r,, yl(Sl) y,(s,)xo), vanish at 0 R". By the analytic
dependence of W, on the state, it follows that Wpdoes not depend on the state and
thereby proves part b). To prove part a) the above procedure is repeated for Wp/i, >= 1,
to show that these kernels also do not depend on the state. Since they are identically
zero at Xo, part a) follows immediately. Q.E.D.

Using the information above, the Lie algebra is characterized, including a result
already obtained in Brockett [2] for bilinear realizations.

THEOREM 3.2. Given a strongly accessible weakly observable realization of a finite
Volterra series of length p, if’ is a nilpotent Lie algebra, with a descending central series of
langth less than or equal to p, and the Lie algebra . is solvable.

Proof. By Lemma 3.1 the kernels Wp/i, => 1 are identically zero on M. Therefore,
proceeding as in Lemma 3.1 gives

LalLa2 Lao+l(hk yr(t)x)---O,

where ai, 1 <= j =< p + 1 are vector fields in
Differentiating repeatedly with respect to and taking more linear combinations

gives the following results:

(6) LaiLaz...Lao+Lb,...Lbj(hk)=O, /=>0,

where at, 1 =< =< p + 1 and bi are vector fields in if’ and , respectively.
By definition of W, this can be rewritten as

(7) La,Laz’" Lap+(’r) O,
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where al, 1 =< -<_ p + are vector fields in
Defining 5i= [5, 5g-1], 1= 5, the descending central series of 5, yields that

L(7")=O=d’(a),

for arbitrary a
By weak observability, it follows immediately that 5t’/ {0}. Thus, 5 is nilpotent

with a descending central series of length less than or equal to p.
Defining o9(i) [,:,9(i-1), ,(/-1)],,(1) the derived series, makes it clear that

(/+1) C:oQ(i), SO that O(p+2) C:,.(p+I) C: ,2P {0}. is therefore a solvable Lie
algebra. Q.E.D.

The following minimal systems have Volterra series of length p for any p _-> 1, but
all have a descending central series of length one.

=u, x(0) 0, x,
y=xp.

The next result shows that is in fact finite dimensional. This result is implied by a
result in Brockett [2] for stationary finite Volterra series, which shows that such a
Volterra series has a finite dimensional analytic realization if and only if it has a finite
dimensional bilinear realization. The Lie algebra of a finite dimensional bilinear
realization is obviously finite dimensional.

LEMMA 3.3. A strongly accessible weakly observable realization of a finite Volterra
series has a finite dimensional Lie algebra.

Proof. By Theorem 3.2, 5 is nilpotent with a descending central series of length at
most p. Thus, if a 5, ada :5--> 5 is a nilpotent endomorphism of 5 satisfying
adP+a 0. By strong accessibility 5(Xo)= TxoM, so there exists vector fields ai
such that a (Xo) a, (Xo) span TxoM, and there exists neighborhoods U of Xo and V of
0 s Rn, such that the map

Sl Sn -’> "tal(Sl) ,ttan (Sn)Xo

is a diffeomorphism of V onto U. Denote this map by s (S)Xo and let (-s) be the
inverse of the diffeomorphism (s). By the Campbell-Baker-Hausdorff formula and
the nilpotence of

(-s),a((S)Xo)= pg(s)ag(xo), a 5,
i=1

where pg(s) are polynomials in the finite number of variables sl sn and of order at
most p in each variable. Thus on U, each a 5 can be written as

a(dP(S)Xo)= pi(s)tYP(s),ai(xo).
i=l

However, the linear space of polynomials of order less than or equal to p in the finite
number of variables s...sn is finite dimensional, so that restricted to U is
finite dimensional. Analyticity shows that St’ is finite dimensional on M, and is finite
dimensional since 5e has at most codimension 1 in . Q.E.D.

If the system is not strongly accessible this result does not follow, as the following
example illustrates"

2o=1, ic= u/(l +xo).
In the following section, these results are used to formulate state spaces as homo-
geneous spaces.
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3.2. It is first noted that a strongly accessible weakly observable realization of a
finite Volterra series has a finite dimensional Lie algebra , by Lemma 3.3, which by
assumption is generated by a finite number of complete vector fields. A theorem from
Palais [19] shows that these are sufficient conditions for to consist of complete vector
fields.

Consider a strongly accessible weakly observable realization of a finite Volterra
series with state space M. Let G’ be the group of diffeomorphisms of M generated by
the flows of the (complete) vector fields in .

G’ acts naturally on M as a transformation group:

(P" G’ x M--) M, g, x )-) g x.

If G’ can be given a (connected) Lie group structure, and then denoted by G such
that (P is analytic, then G is called a connected Lie transformation group. The following
result from Palais [19] is central to the problem formulation. Every finite dimensional
Lie algebra of complete vector fields on a manifoldM is isomorphic to the Lie algebra
of a unique connected Lie transformation group G onM such that the flow of any a
is given by

(t, x) -) exp ta’. x,

where a’ is the unique element of L(G), the Lie algebra of G, corresponding to a, and
exp L (G) - G is the exponential map. This shows that G’ is the underlying space for a
unique connected Lie transformation group G. L (G) and are henceforth identified.

Since the system is orbit minimal (analytic and accessible), G acts transitively on M.
By a standard result (Hochschild 11 ]), M is therefore analytically diffeomorphic to the
homogeneous space G/Go where Gxo is the isotropy group

Gxo {g’ g G, g x0 Xo}.

Moreover, the action of G on M is effective (g x x, ’x eM g identity) so
that Gxo is a closed Lie subgroup of G containing no nontrivial normal subgroups of G.

In fact, since the system is strongly accessible, the connected Lie subgroup N of G,
corresponding to 5:, also acts transitively on M, and so M can also be expressed as a
homogeneous space N/Nxo.

In the next section, this formulation is extended with particular reference to the
simply connected cover of a minimal realization of a finite Volterra series.

3.3. Consider an observable strongly accessible realization of a finite Volterra
series and its simply connected cover, with state spaces M and//, respectively, and let. r-.)M be the covering projection. Let G and be the corresponding connected
Lie transformation groups, with natural actions defined by the maps and , respec-
tively. Since the Lie algebr.as of G and ( are isomorphic to , the simply connected
covering groups of G and G are isomorphic and will be identified and denoted by G*.
Letting II’ G* G and I’I’ G* ( be the covering homomorphisms, transitive actions
of G* are obtained on M and Ar in the following ways’

(8) G* x M--) M, (g*, x)-)&(II(g*), x),

(9) G* xr r, (g*, ;)- d; (l’I(g*), ).

These actions are related by the identity

(10) fro 4; (l’I(g*), .g)= 4, (II(g*), rr(.)).
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Since G acts effectively on M, the above identity shows that Ker I’I = Ker H. Since
Ker II and Ker l’I are closed discrete central subgroups of G* such that

G G*/Ker II,

it follows that

G d/(Ker II/Ker l’I).
Thus G is a covering group of G with an associated transitive action on M given by

(11) dxMM, (, x)- b (II’(), x),

where H" G G is the covering homomorphism and

(12) zro 4’(g, d) 4, (1-I’(), 7r(d)).

If Xl e r-l(x0) is set as an initial state for the simply connected cover, the transitive
actions (8), (9) and (11) impart the following alternative homogeneous space structures
for M and M;

*M G*/ G*xo, 1Q G*/Gxl,

Since r is simply connected G* is connected, (Chevalley [6, Corollary 1 p. 59])X1

Identity (10) shows that G*xo G*I, and so Gx*o/G*xl is isomorphic to the
fundamental group of M.

In the next section, some relations between these structures are explored.

3.4. A strongly accessible realization guarantees the existence of a vector field
a0 such that (ao +f)(xo)= 0, since 5(x0)= T,oM. can therefore be viewed as the
semidirect product of the one-dimensional space spanned by ao +f and . Correspond-
ingly G* can be considered as the semidirect product V’N*, where V* is the
one-dimensional Lie subgroup of G* with generator ao +f and N* is the subgroup of
G* corresponding to . In fact, in Chevalley [7] it is shown that a connected Lie
subgroup of a simply connected, connected solvable Lie group is closed and simply
connected. By Theorem 3.2, and hence, G and G* are solvable, so that V* and N*
are both closed and simply connected.

Noting the actions of G* onM andr makes it clear that both G*o and G* contain
V*, so that

ax*o Ox*o), O*x a’x, ).

It is now clear that since N* is nilpotent M and ]t are nilmanifolds, or homogeneous
spaces of nilpotent Lie groups,

M N*/N*  x*o, N*/N*
To relate the structure of / as a homogeneous space of both t and G*, the

following preliminary results are needed.
LEMMA 3.4. IfD is a discrete central subgroup of G* contained in G*xl then D f-) N*

is the trivial group {e}.
Proof. Assume to the contrary that e deD and d e D f’lN*. Since N* is a

connected and simply connected nilpotent Lie group, the center of N* is connected and
the exponential map is bijective (Hochschild 11 ]). Thus, there exists a vector field a
such that exp a -d and a belongs to the center of 6e. Thus, the connected subgroup
N* f’l Gx*l of N* contains the central one-parameter subgroup of N* with generator a.
However, since G and hence, N, acts effectively on M, N* acts almost effectively on
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and so N* f) Gx*l contains at most a discrete normal subgroup of N*. This contradicts
the fact that a # 0, and so D f-)N* {e}. Q.E.D.

THEOREM 3.5. IfD is a nontrivial discrete central subgroup of G* contained in G*I,
then there exists ao so that D c V*, where V* is the one-parameter subgroup of G*
with generator ao + f.

Proof. By Chevalley [7], if D is a discrete central subgroup of a simply connected,
connected solvable Lie group G*, then there exists a basis a a, for the Lie algebra
of G*, such that every element of G* has one and only one representation of the form

exp tlal exp than, ti R,

and each element of D has one and only one representation of the form

exp n a exp tlrar, ni ., 1 <= <= r <= n, where [ai, aj] 0,

for 1 -< i, j -< r. In particular if R represents the vector group {exp tlal exp trar, ti
R, 1 --< --< r}, then RID is a compact Abelian subgroup of G*/D. In the given situation
each ai can be expressed in the form air + bi where b 6e and 0 # ag e N; otherwise
exp nibi D f’) N*, which contradicts Lemma 3.4. If r 1, there is nothing left to prove,
so assume r > 1. Since RID is compact, the adjoint representation of RID is semi-
simple. In this representation, the one-parameter subgroups Vi/Di, where Vi
{expti(aif+bi); ti} and Di={expni(aif+bi); ni;}, are mapped into the one-
parameter groups V/* of automorphisms of the Lie algebra of G*/D given by

V/* {exp ad(af+ bi); }.

Note that ad(agf+ bi) leaves 6ei invariant for 1 _-<] _-< p (p is the length of the descending
central series of 6e) and induces endomorphisms on 6e/6e’+l, 1 _-<]_-<p-1 and ’/6el
which are equal to the endormorphisms induced by adaf. It follows that since the
representation of R/D is semisimple, it is equivalent to the induced representation on

/Se1(R)sex/se2(R)... (R) ff*-/Se- (R)

in which V/* is the group of automorphisms induced by {exp tada.f, [}. In particular,
f+ bi/cei =f+ci, 1 =<i<= r, where bi cioli belongs to the center of . Since G’x, is
connected, f+bi/aiL(G* ), so by the linear independence of al’" ar, O# ci-clX1

L(G*x) for 2 <= j =< r belong to the center of . Since G* acts almost effectively on M,
this is a contradiction and r 1. Q.E.D.

Since M has the two representations

if D is the discrete central subgroup of G* such that G*/D (, then D c G*,, and so
by Theorem 3.5 there exists a0 such that D V*.

Hence, ( I7" where N* and "" V*/D.
It is now possible to view M and//as homogeneous,spaces of , the connected,

simply connected nilpotent Lie transformation group of M with Lie algebra 6e. Write

3.5. In this section, the structure theorems of nilmanifolds as in Malcev [17] and
Matsushima [18] are applied to the above situation. It will be assumed that M is not
simply connected, so that M and its simply connected cover M do not coincide.

Proceedingas in Matsushima [18-1, notice that N is the connected compon.ent of the
identity in N and, in particular, normal in o. Let R be the normalizer of Nxl in , so
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that R is connected and/xo c R. Now

where R/lxl S is a connected simply connected nilpotent Lie group and xo/l D’
is a discrete subgroup of S.

Applying Matsushima [18, Theorem 1] to S and D’ shows that there exists a
basis a l* a* of L (S) with the properties

Sp {aL a} is an ideal of Sp {aa+a a},

and hence, every element of S may be expressed uniquely in the form

exp ta exp t,a*n, ti .
There exists an integer m, 1 m n, such that every element of D’ may be

expressed uniquely in the form

g ...g si,

where g exp a , m k n.
Let be the Lie algebra of and let g, m k n be representatives in R for the

elements g. If a is such that exp a g, then exp (a +)= g, and by the
bijectiveness of the exponential map for a simply connected nilpotent Lie group,
S,a+=a.

In particular, if a+’"a,+s is a basis for ,Sp{ai+l... a,+s} is an ideal in
Sp {aiai+ a,+} for m n 1. Let be the Lie algebra Sp {a a,+s}, and U
the corresponding connected simply connected Lie subgroup of N. Then every element
of U can be written uniquely in the form

exp ta ..exp t,+a,+, ti .
Moreover, every element in o can be written uniquely in the form

exp Smam exp sa, exp t+a+l exp t+sa+,

where si , ti , and is obtained by setting si 0 for m n.
Now if U is a subgroup of a connected nilpotent Lie group N, then U is properly

contained in the normalizer of U in N, and if U is connected its normalizer is connected.
Thus, the basis of can be completed to a basis of Sp {a a a a,+s}
such that Sp {ai+l a,+} is an ideal in Sp {aiai+ a+s}, and hence, every element
of can be expressed uniquely in the form

exp tla exp t,+a+s, tiE.

It is now clear that /x=VlXV:x... x V,, where =
{exp tai; s }. Thus, the state space of the simply connected cover is homeomorphic to
a Cartesian space.

Moreover,

VlX... 

As in Matsushima [18, Theorem 2] and also Malcev [17], U/o is a compact
nilmanifold, and so the state space of the minimal system is homeomorphic to the
product of a Cartesian space and a compact nilmanifold.

3.6. In this section, the preceding results are combined to characterize the structure
of the state space of a strongly accessible observable realization of a finite Volterra
series.
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The basis for 6e constructed in 3.5 and the corresponding vector fields on 57/yield
the differentiable homeomorphism ’ R M given by

(I9(t1 tn)= "Yax(tl)o...o "Ya,, (tn)Xl.

If ( is the linear space of functions on M describing local observability for the minimal
system, then *g {z w;’z 6 g} describes the corresponding space of functions
on for the simply connected cover, as is easily verified from the results of 2.5.

PROPOSITION 3.6. The [unctions , are polynomials and there exist n
functions such that (0. tO. O) are nonconstant polynomials in t for
lin.

Proof. Consider the derivatives for g k p + m"

Lk.Lk k.
, t. o

where L[ represents k repeated Lie differentiations by a. However, by (7), this
expression is identically zero for all m > 0. Since all functions are analytic, it is
deduced that they are polynomials.

Assume now that for all

then

0= --0 + (0, ti 0) Iti=O,"

0 ro ya,(ti)xllt,=o- drc(ai)(Xl).
c3t

However, by construction of the basis vectors aA; for 1-< i-< n, so that a(xl) 0.
Thus, 0= da(xl),Which contradicts the weak observability of the simply connected
cover. Thus, there exists ?i g such that "g (0,.. t 0) is a nonconstant poly-
nomial in t, since it contains a term ati with O 0o Q.E.D.

The main theorem can now be stated.
THEOREM 3.7. A strongly accessible observable realization of a finite Volterra series

has a state space which is homeomorphic to a Cartesian space.
Proof. From 3.5, if the minimal system has a state space which is not simply

connected, then it is homeomorphic to the product of a Cartesian space and a compact
nilmanifold, so it is sufficient to show that the compact component reduces to a single
point.

Assume to the converse that the covering projection 7r’M-M is not trivial;
then by (12)

q’/" t(g, X1) X0,

for all g /xo. Thus,

r *(0.. 0 s,, s,) x0,

for all si E, m _-< _-< n.
In particular, for - r Yg,

: (0. 0s,,.. s,) ’(Xo) 0.

Thus, by Proposition 3.6, for all i, m -<_ -<_ n,

:ri (0. Oti O)-’i(Xo)
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are nonconstant polynomials with an infinite number of zeros si Z. This is clearly a
contradiction, showing that M is homeomorphic to a Cartesian space. Q.E.D.

COROLLARY 3.8. A strongly accessible analytic realization ofa finite Volterra series
is observable iff it is weakly observable. In particular, an analytic realization of a finite
Volterra series is strongly accessible and observable iff, for all x M,

TxM (x), TxM* d(x).

Proof. It is sufficient to show that a weakly observable strongly accessible system
is observable. However, by Lemma 2.1, such a system has a state space M1 which is a
covering space of the state space M2 of a minimal strongly accessible realization ,v_,2. By
Theorem 3.7, M2 is simply connected so that the covering projection is a ditteomor-
phism, and it is concluded that $-,2 is isomorphic to ,$,1 and hence observable. Q.E.D.

This corollary shows that just as in the linear time-invariant case, minimality is
specified by a set of algebraic conditions. Of course, to apply the conditions a
coordinate system has to be used. A convenient coordinate system will be introduced in
the next section.

THEOREM 3.9. The connected Lie transformation group G of a strongly accessible,
observable realization of a finite Volterra series has a decomposition as the semidirect
product VN, where N is the connected simply connected nilpotent Lie group with Lie
algebra , and V is a one-parameter subgroup with generator ao + f, ao 6, such that the
isotropy subgroup ofG is VN’, where N’ is a connected subgroup ofN. In particular, G has
a faithful matrix representation.

Proof. The decomposition of G follows from the fact that the simply connected
cover and minimal systems are isomorphic, as proved in Theorem 3.7, and the
properties of ( derived in 3.4. That G has a faithful matrix representation follows
from Hochschild [11, Theorem 3.2, p. 220], since the commutator group G’= [G, G]
is a closed subgroup of N G which contains no nontrivial compact subgroups
(Hochschild [11, Theorem 2.3, p. 138]). Q.E.D.

4. System structure.
4.1. Canonical realizations. In this section, canonical coordinate charts are chosen

to express minimal realizations of finite Volterra series using the theory developed in
the preceding sections and a generalization of the methods of Chan [5] and Krener
[13] for decomposing systems of differential equations with nilpotent Lie algebra.

The coordinate charts are constructed from the flows of vector fields selected from
the following sequence of subalgebras of 6e, where Az is the subalgebra of 6e consisting of
those vector fields which vanish at Xo:

It is easily checked that each 6t’i + A; is a subalgebra of 6e since [6eJ, oQpi] C: ,.Itgi+] i.
It is convenient to define a sequence of subspaces of

Obviously, is the linear subspace of S/’ spanned by brackets of length i. It is clear that

6 + 5e/, 6e

Thus, given a basis for 6ei+ + A;, this can be completed to a basis for 6e + A; with
vector field lying in i. In this way, a basis for 5e is constructed so that

(13) y,i+AZ=Sp{ar,...ar,+l...a,p...a,an+l.., an+s},

where a,, ar,/l- i and A; Sp {a,+
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As in 3.6, the following map provides a homeomorphism from R to the state
space M of a minimal realization of a finite Volterra series, where yi(ti)= ya,(ti) and

cI)(tl.. tn)= yl(tl)o...o y,(t,)Xo.

LEMMA 4.1. d R M is a diffeomorphism.
Proof. It is sufficient to show that . has full rank at each (tl tn) [". Note

that the map b(t):M-M defined by

cb(t)x yl(tl)

is a diffeomorphism so that c(t)-a:T.(,)M- TxoM is an isomorphism. The problem,
therefore, reduces to showing that the vectors c(t),a(O/Oti)(t), 1 <-_ <-_ n, span TxoM.
Now,

b(t), -Ty(t) y.(- t.), yi(- ti),ai(yi(ti) y,(tn)xo).

Noting that [i, J]ci+j c]9i+j --[-V and making use of the Campbell-Baker-
Hausdorf formula, shows that this expression can be written in the form

c(t). i (t) ai(xo)+ ai(xolai(t),
i=i+1

where a.(.) are polynomials in the components of t. By construction,
Sp{al(xo)"" a,(x0)} ToM, so that it is easily concluded that the vectors
b(t) (O/Oti)(t), 1 <-_ <- n, do span ToM. Q.E.D.

This result shows that in fact (cI)-1, M) provides a global coordinate system for M,
for each choice of basis for 5e constructed in the manner described, and hence
strengthens the result provided in Theorem 3.7.

THEOREM 4.2. The state spaceMofa strongly accessible observable realization of a
finite Volterra series initialized at Xo can be identified diffeomorphically with the vector
space TxoM.

Proof. The map M ToM given by the composition of the maps below is a

ditteomorphism"

x cI)-a(x)= (tl, t2, , t,),

(tl, t2,"’’, t)-)(tlal(xo), t.a.(xo)). Q. E.D.

Before writing the system in terms of these coordinate charts, we make additional
observations. By Theorem 3.9, there is a decomposition of G VN, where V is the
ote-parameter subgroup with generator f+ ao, such that (f+ ao)(Xo)= 0. It is easily
seen that adf:61i--.> ,o is a linear endomorphism for each and that also ada:,i-->
i/ c g for any a . Moreover, ad (f+ ao) Ac--> Ac since consists of vector fields
which vanish at Xo. It is concluded that

ad (f + ao) i+ ..[_ v ---) i+ ._d
is also a linear endomorphism for each i, and in particular induces representations of
ad (f+ ao) on

(,.,,Qoi ..[_,/)/(,./+1 q.. v//,) ? _{_ (,_i+1 q_,/)/(,./+l _[_d)i/i ,] (,.i+1
THEOREM 4.3. Any strongly accessible observable realization of a finite Volterra
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series of length p has an isomorphic realization of the form
l--AlZl+dl

2-Azz2+d(zx)

Apzp + do(z" Zp-x)

y c(z.. z.)

(14)

bil,

bi2(Zl),
"k- Ui

i+1

bip(Zl"’" Zp-1),

ZI(0) 0,

z(O) =0,

where bii, di and c are vector-valued polynomials in the components of the vectors
Zieni, E_ ni n being the dimension of the state space, and hi-
dim i/i (i+ + f), depends only on the input-output map.

Proof. Using the basis for previously described with the properties defined by
(13), let s r+ 1, and define inductively

(15) Vk(t) Ys (--X (t)) rk (--Xrk (t))Vk-l(t),

where Vo(t)= x(t) is the solution of the system equations f(x)+ i%1 uigi(x), x(O)=
Xo. Let Zk be the vector with components (Xr Xs). It is proved by induction that if
the vectors z...zg_ satisfy equations with the form of the first k-1 differential
equations in (14), then Vk-1 satisfies a differential equation of the form

-l=(+ao)(V-)+ i(z" z-)+ 2 ui(z" z-) ai(v-l),
i=rk ]=

Dk-l(O) XO,

where , are polynomials in z... z_.
Now -a0, g have the following expansions relative to the given basis for "

n+s +s

-ao= E aa, g E Oag.
i=1 i=1

The system equations can now be written as

o + ao)(vo) + + u a(vo), vo( O xo.
i=1

Setting k 1 in (16) shows that the induction statement is true for k 1. If it is assumed
true for k 1, a differential equation for v can be developed by differentiating (15) and
substituting for

_
from (16). By the Campbell-Baker-Hausdorff formula

, 3% (-xk), 3% (--Xrk),6t,---2skask (vt,)

2rk exp xsk ad ask (’’" exp Xrk ad ark(ark)’’"

Noting the identity [5ek, J] 6ek +j shows that this can be rewritten in the form

Sk +s

(17) 6k=Ysk(--Xsk),’’" ’’rk(--Xrk),)k--1 E fciai(vk)+ E "rli(zk,k)ai(vk),
rk rk+l

where ’Yi is linear in 2 and polynomial in z
Consider the first term sr in this expression, and substitute from (16) for 6_a and set

l.)k-1 rk (Xrk) Sk (Xsk))k
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in the resulting expression. Thus r can be split into two terms, the first being

"Ys, (-Xs,), ’Yrk (--Xn,),Qf + ao)(Trk (Xrk) "Ys, (Xsk)Vk).
The Campbell-Baker-Hausdorff formula shows that this term can be rewritten in the
form

Sk nq-S

(f+ao)(V)- E xiad(f +ao)(ai)(Vk)+ E ,(Zk)ai(Vk),
rk rk

where it is noted that ad (f+ ao)" yk _.> yk and r/[ are polynomials in Zk. Now the second
term in this expression can be rewritten using the expansion

Sk +S

-ad(f+ ao)(ai) , Aiiai + Y. Aiiai,
j=rk j-’- rk+l

where the matrix Aji], rk <=A <-& is the matrix representation of -ad(f+ao) on
/ (++) relative to the chosen basis. Finally it is seen that the first term in r

has the form

Sk n+s

(18) (f+ao)(Vk)+ E Aiixiai(vk)-b E 7q(Zk)ai(Vk),
rk rk

for polynomials rt" inzk.
The second term in r involves terms of the form

Vsk (--Xsk)g rrk (--Xrk)*ak(rrk (Xrk) "Ys (Xsk)l)k),
where ak sk+Ac. Again using the Campbell-Baker-Hausdorff formula, it is easily
deduced that this term can be rewritten in the form

n+s

(19) ak(Vk)+

_
i(Zk)ai(IAk),

i=rk+l

for polynomials /in Zk.
It is now clear from (18) and (19) that (17) can be rewritten in the form

n+s

Ok-"ff-[-ao)(IAk) -" [’Oi(Zk,k)""Ol’( Zk) q- U][3’i(Zl zk)]ai(1)k)
(20) i=rk+l i=1

sk Sk
r" [--:i-[- AiiXi+OQ(ZI’’" Zk-X)-[- Uilii(Zl’’" Zk-X)]ai(Vk),

i=rk ]=rk ]=1

where a and/3ii are polynomials in Zl Zk. By equating coefficients of terms, on the
right-hand side of this equation, involving the vector fields ai, rk <--i <-_ Sk, to zero, an
equation with the form of the kth equation in (14) is obtained. If the expression for7k
thus obtained is substituted back into (20), the resultant equation has the form

n+s

{)k if’q- aO)(Vk) "b [0 (Zl Zk) "0- E Uil]t;(Zl Zk)]ai(Vk).
i=rk+l 1=1

Setting Zk(0)=0 shows that this equation has initial conditions Vk(O)=Xo, which
completes the induction, once it is noted that a’ and/,’.’ are polynomial in z... Zk.

To complete the proof note that by construction the differential equation for Vp+
obtained in the above process involves only vector fields vanishing at Xo, so that
Vp+l(t)--Xo. Thus, from (15),

x(t) y(x(t))o V,(x,(t))Xo,
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and x(t) satisfies the system equations if and only if zl(t)’" Zp(t) satisfy a set of
equations of the form given in (14). Note also that the output can now be written as
y h(x)= C(Zl." zn). However, as in Proposition 3.6, it is easily seen that c is a
polynomial in the components of the vectors Zg, 1 <- -< n. Q.E.D.

This result applies trivially to the linear input-output map, showing that there
exists a coordinate system in which any nonlinear realization of the linear input-output
map becomes linear (cf. Krener [12]).

Write system (14) as

(21)
. =F(z)+ uiGi(z),z(O)--O, z ERn,

i=1

y H(z).

Obviously, the map ’ Rn_.>M of Lemma 4.1 is an isomorphism of systems
satisfying the relations

d,F f d, d,Gi gi dp, H h (0), (0) Xo.

In order to characterize the general form of a minimal realization of a finite
Volterra series of length p, the structure of the polynomials in (14) must be determined.

Write the vector space " as a direct product
p

n= () n,,
i=1

where any z E n has components zg Rn, as in Theorem 4.3. For any A >0, let. n --> , be the diffeomorphism of n given by

A(Z)-’(IZl,’"’ , PZp).

LEMMA 4.4. The realization of Theorem 4.3 can be written as

p p p. E Fg(z)+ E E u,Gj,(z), Y= E Hi(z), z(0)=0,
i=0 i=1 /’=1 i=0

where A iF/o tA 8A Fi, A ia]i 8x 8x Gii Hi 8x A iHi.
Proof. The proof consists of repeating Theorem 4.3 for a one-parameter family of

bases for 6. In particular, if the basis used in Theorem 4.3 is given by

arl aslar2 arp asoan+l an+s,

consider the one-parameter family of bases for A > 0 given by

(22) Aar," AasA 2ar2" A Parp A Pas,an+l"’’an+s.
This in turn induces a one-parameter family of diffeomorphisms of M which is

easily seen to correspond to 8x in the coordinate system given by . Thus, by computing
the canonical realization from the bases (22), the following systems are obtained.

i, F, (zx) + bliGih (Zx), Zx (0) 0,
i=1

y =H,(z,),

Fx 8- F 8, Gix 8-1 Gi 8x, HA H 8x.

From the construction of the canonical realization, it is now readily observed that there
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exist vectors F, Gi. such that

and which satisfy the statement of the lemma.
It remains to prove the decomposition for H. However,

0kl+"’+k"
Ox’ Ox" H(x x,) O,

1 xnO

if k +. +k +2k+. + 2k +. +pk > p by (6) and the properties of the vector
fields chosen for the basis of . Thus, H can be expanded in the form H =o H,
where

H 8 H. Q.E.D.

This lemma can now be used to obtain the composition of the polynomials in (14) as
follows:

i--1

d(z. z_)= d(z. z)+ d,(z. z_),
=0

where

d(Zz z) d(z z),

d,(Zz -z_) d,(z z_),

and

i-1

b(z. z_)= b(z. z),

where

b(Zz z) b(z z).
Conversely, from these relationships it is easily checked that any system of

equations of the type given in (14), satisfying the properties of Lemma 4.4, has a finite
Volterra series of length p and a finite dimensional Lie algebra as specified in Theorem
3.2. These (not necessarily minimal) systems are said to be in canonical form, and
provide the natural class of systems admitting finite Volterra series, replacing the linear
system. Theorem 4.3 and Lemma 4.4 show that minimal realizations can be obtained
from these while remaining in the same class of system.

4.2. Stability. As a simple application of the canonical realization developed
above, the asymptotic stability of a canonical realization of a stationary finite Volterra
series is investigated.

The stationary system in canonical form,

=F(z)+ uO(z), z(0)=0, F(0)=0, z
i=1

is asymptotically stable at 0 if and only if for all z ", lim T(t)z 0. Note that for
stationary systems, the vector field ao in Theorem 4.3 can be set to zero and so the
matrices A are representations of -adF on /(+W), where of course
-adF :W W. Moreover, the action of -adF on induces a matrix representation A of



DYNAMICAL REALIZATIONS OF FINITE VOLTERRA SERIES 195

-adF on 6e/Ac with respect to the same basis as used in Theorem 4.3. Now A is the
lower block diagonal with diagonal blocks Ai, so that the characteristic polynomial of A
is the product of the characteristic polynomials of the matrices Ai.

THEOREM 4.5. A stationary realization ofa finite Volterra series, in canonicalform,
is asymptotically stable ifand only if the matrix representation of-adFon b"/Ac has all its
eigenvalues in the left half of the complex plane, or equivalently, the matrices Ai have all
their eigenvalues in the left half of the complex plane.

Proof. By the introductory remarks, it is sufficient to show that a canonical
realization is asymptotically stable at 0 R if and only if the matrices Ai have all their
eigenvalues in the left half of the complex plane. However, this is a straightforward
exercise. See Crouch 18] for details. Q.E.D.

4.3. Structural invariants. From Theorem 4.3, it is seen that the state space
dimension and subsystem dimensions in a canonical realization of a finite Volterra
series depend only on the input-output map. In this section, it is shown how these
structural invariants can be determined directly from the Volterra kernels.

Some important subspaces of are introduced and new terminology introduced.
Let gl be the smallest linear subspace of C (M) containing the functions

(23) adk’f (g,)( (adkf (g)(f (h(" ))" ))’" ),

for i->_ l_-> 0 and arbitrary integers ki and m. Notice that if r 1 and a ,, then
a (r) WI. Moreover, wo W, as is easily verified. Let -,1 be the smallest linear subspace
of art spanned by the functions in (23) for I. It follows that

ol 1 .+. V,ql+l.

The following result establishes some simple facts and relations between the
subspaees i(x) and i(x).

POVOSITION .6. In a strongly accessible locally observable realization of a finite
Volterra series of length p, 5v(x) and di(x) are constant dimensional subspaces of
Y’(x) TxM and d(x) *=TxM, respectively. Moreover, dtP-i(x)ri+J(x)--O and
dP-i(x)S/’i+l(x)=O on M, for O<=i<=p-1 and]>O.

Proof. By orbit minimality (analyticity and strong accessibility), it is sufficient to
prove that dim ’ (x) dim 6e (y), where x ya (t)y for any a and R. Noting that
6ei is an ideal in makes it clear that the proof of Sussmann [22, Lemma 3.5] applies in
this case also. Similarly, the proof that dim dgi(x)=dim di(y) follows that of
Hermann and Krener [12], since La(d’) dLa(’r) cd for arbitrary a A and - i.
The space of functions d?P-i+ f>0, 0 < <p- 1 is spanned by functions in
Formula (6) shows that these are zero functions on M for /’0. Since d
d7-i +d7v-i+1 +. +d7 and 5i+1 i+l+i++... +v, it follows that
dV-i(x)Sv+l(x)=Ofor xM,O=i=p-1. O.E.D.

Now define a bracket operation on the Volterra kernels by setting

o-,,)

W coil ik (tlrl cTj(:rj+l o’k)--W "i(t, o’1’’’ o’]+1o’]"""

Similarly, define by induction

W ""*’+1 (t, o’1... [o’jo’j+l[’’’ o’j+l]’’" ]o’j+/+l O’k)ikoil
W tit ikoi, "’*j+t (t, 0"1 O’j[O’j+l[ O’j+l]’’" ]0"]+1+1 O’k)

w)i’"ii+l’"ii+tij’"ik(t, O’1’"" [o’j+l[O’]+2 O’j+l] O’jO’j+l+l O’k).
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Moreover, any nested expression of skew symmetric brackets (obeying the Jacobi
identity), can be expressed as sums of brackets of the above form; but this generaliza-
tion will not be utilized here.

Considering a strongly accessible observable realization of a finite Volterra series
makes it clear from the above definition and the kernel structure equations (1) that

(24)
WSk’"siq’"*(totl //’[0"1[0"2"’" O’k]’"" ], X)

drSsls’(totl tj)a (O’1 O’k)(X),

for k + ] -< p and is identically zero for k + ] > p, where r ?J and a k, and the images
of the analytic maps

totl.’, ti- drSsJ(to ti)(x),

O’l crk ar’’’rk(crl crk)(x

contain spanning sets for dti(x) and k(x), respectively. Further, considering a basis
for TxoM" and a dual basis for TxoM"* shows that there exist analytic vectors

h’"J(to i) R"* and v rl’’" r(trl crk) e ["

such that
So sirWk+ (to’’’tj[O’x[’’’O’k]’’’],Xo),

h"’’(to ti)vrl""’(trl crk)= k +j <=p,
LO, k+f>-_p.

By rearranging the set of indexes So si, rl rk designating the components of
each kernel in some fixed order, the kernels can be "factored" into products of matrices,

[Wk+i(to’’" t’[o’[’’’ trk]’’" ]),
/"/’(to tj)Gg(trl... O’k)=

0,

and in particular, the matrix of kernels V(t, tr) given by

(to[o’,[’’’crp]’’’]) Wp-l(to[O’["’ro-1]’"])
0 Wp(totl[Crl[’’" o’-1]’"" ])

0 0

can be factored through R" into the product

j+k<-_p,

]+k>p.

W/(to[o’l["’o’i]’" ])

Wp(to’’’ tp-i
[,[... ,]... ])

With these preliminary observations, the main result can be stated.
THEOREM 4.7. Consider a strongly accessible observable realization of a finite

Volterra series of length p. Let ni be the minimal dimension .through which the matrix
V,.(t, tr) can be factored analytically into the form Vi(t, tr)= Iti(t)Gi(tr). Then if Ni
n- ni+, 1 <-_ <- p 1, N =np, N is the dimension of the ith subsystem in any minimal
canonical realization of the Volterra series. In particular, n n is the dimension of its
state space.

Proof. By the preceding observations, n _-< n. Let n dim 6e(Xo). By (24), it is
evident that the matrix V,. (t, tr) is constructed from vectors a (x0) e k(Xo) (z ,.i (Xo), p -->

V /-)o(to) ]H(t)G,(r) =] l,(toh) [p(r,... o’p)l,p_l(iT1.., o’p-1)""" i(ITI""" 0"i)].
L/-)-i(to’"’ t-i)
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k _-> and vectors d’,(Xo) ?J (Xo), k +/’ p. It is therefore clear that the decomposition
can take place in n. It is now shown that n is the minimal dimension through which
the factorization can take place. By Proposition 4.6, S/’i(Xo)*cdt(Xo)+...+
d?P-(Xo), and the image of the analytic maps to"" tjd’S’"sJ(to ti)(Xo),
p i, contains a spanning set fordtT(Xo) +... +dp-i (Xo). Moreover, the image of the
analytic maps or1 trk a’l""’k(trl trk)(Xo), p >= k >= i, contains a spanning set for
6e(xo). The minimality of n is now clear, and it follows that

dim 9i (Xo) dim (6t/St f’l ).

However, in any canonical realization, the dimension of the ith subsystem

Ni dim (St +)/(6e+ +)

dim [(6e +)/]/[(Se’+1 +)/] dim (6e +)/-dim (6e+1 +)/
=dim i/(i fq )-dim 9i+/(i+ fq)= ni-ni+l.

Clearly, n n since (Xo)= ToM. Q.E.D.
COROLLARY 4.8. If Wk+i(to’’" ti[crl[’’’ trk]’’’ ])------0 for k and satisfying

p >= k >-_ + 1 and 0 <-_ k + <- p, then only the first subsystems in any canonical realization
of the Volterra series are nontrivial.

Proof. The dimensions nk, + 1 <-_ k <-p are all zero in Theorem 4.7. Q.E.D.
Example 4.7. Consider the following system written in canonical form:

=u, x(0) 0,

: x +x + u, x(0) 0,

y x2 + x2.

Thus, f=(x+x)O/Ox2, g=O/Ox+O/Ox2,[f,g]=(2xl+l)O/Ox2 and [g,[f,g]]=
20/0x2, and all other brackets are zero. The system is therefore strongly accessible.
Moreover, dh 2xl dxl + dx2, d[f, g](h 2dxl, so the system is weakly observable and
hence observable by Corollary 3.8. The Volterra series for this system is given by

y(t) 2 Io f/3-1 (t-trl +l)u(o’l)U(Cr2)dtrl dtr2 + Io (t- trl + 1)u(o-1)do-1.

Thus,

and

Hence,

and

W2(t, trl, or2)= 2(t- o’1 + 1), W1 (t, try) (t or1 + 1)

[ W2(to, [o’1, cr2])
l o

Wl(to, O"1) ] [2(trE--trl)
w (tO; t o

(to-o’l + 1)]
2(to- tl + 1)J"

V2(t, tr) 1.2(tr2 trl)

V,(t, tr)= O1 2(to-tl + 1) [ 0

are minimal factorizations from which it is deduced that n2 1, n 2, so that n2 N2
1, n n2 N1 1 and n N2 + N1 2. This obviously agrees with the minimal system
above.
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Finally, it should be noted that these methods are similar to those employed in the
bilinear case as studied in [1].

4.4. Homogeneous Volterra series. In this section, the special structure and
properties of a canonical realization of a Volterra series described by a single Volterra
kernel Wp (homogeneous Volterra series of degree p) is examined. Thus, realizations
of the following input-output map are examined:

/o four1 f crp)(U(O’l)’’ u(o’p))dcrl "dcrp.
Crp

y(t, u) Wp(t, crl
a0

By Lemma 3.1(b) the last kernel Wp is independent of state in a strongly accessible
realization, and so by the identity (2), it is seen that the kernel Wp is stationary. It
follows that there is no loss of generality in studying only stationary kernels Wp and
hence, stationary minima realizations.

Let Y/" denote the subspace of d consisting of one of the forms which vanishes at
Xo (cf. W is the subspace of 5 consisting of vector fields which vanish at Xo).

PROPOSITION 4.9. In a strongly accessible observable realization of a homogeneous
Volterra series of degree p, the pairing between the spaces d(P-k(Xo), k(Xo) is
nondegenerate, 1 <- k <-_ p and

k CI (k+ +W) k YlW, dk CI (dk+l + r{) dk f3
p--1In particular, TxoM* i=o d7 (Xo), TxoM O)-=1 i(xo), are internal direct sums.

Proof. As in the proof of Theorem 4.7, the functions comprising
W,(to, tl’" t,-k[trl[""" irk]""’ ]) have the form

d’r(totl tp_k)a(tr trk)(Xo),

where dr Edp-k, a Ek, and since there is only one kernel, it follows that
d(p-k (Xo) k+i(Xo) 0, for/’ 0. Since the realization is strongly accessible and weakly
observable, it follows that the pairing between the spaces drp-k (Xo) and k (Xo) must be
nondegenerate.

Now if a k (9k /1 + W), then drffp-k (Xo)a (Xo) 0, SO by the nondegeneracy of
the pairing between the spaces d’-k (Xo) and 5 k (Xo), it follows that a (Xo)- 0. Thus,

k (’) (,_,k+l "[-,J) k (")v/. Similarly, d(k (d,k-l +,.) d(k [") ffff. Now,
(k+l-bJV’) C kf’Jk f’),C#k+l v/. Thus, k f-)] W for kS] and

k (Xo) f3 i(Xo) {0} for k # ]. The decomposition of TxoM* follows
similarly. Q.E.D.

Consider a strongly accessible observable realization of a homogeneous Volterra
series of degree p. Then the map

a i(xo) --> A iai(xo)
for a iE i induces a linear isomorphism of TxoM for h O, by the preceding
proposition. Consider the following system"

(25)
,,x--f(xx)q- E uiAgi(xX),Xx EM, xA(O)--Xo,

i=1

y h(xx).

For h 1 the original dynamics are obtained. Clearly, /(f(xo)) =/(0)-0 since the
system is stationary, and l(gi(xo))=hgi(xo). Moreover, l([a, aE](xo))=[, dE](X0),
where if a l, a2c#, tl, t2 are the corresponding vector fields in the Lie algebra
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generated by f and Agl. Ag,,. These are the precise conditions on under which
Krener [12, Theorem 1] holds. Since the state space M is simply connected, it is
concluded that there exists a diffeomorphism ba ofM such that ba (Xl(t)) xa (t), where
xa (t) is a solution curve of the above equation. In the next theorem, it is shown that a
basis of can be chosen so that the diffeomorphism da is in fact given by 8 in the
coordinates of the canonical realization determined by the chosen basis.

THEOREM 4.10. Given a realizable stationary homogeneous Volterra series ofdegree
p, there exists a minimal canonical realization obtained by setting A 1 in the equations

2, F (za) + uiAGi(zx), zx (0) O, F(O) O, zx Rn,
i=1

y =H(z,),

which satisfy

zx 8x (Zl), 8x F F x, 8x Gi AGi 8x, A PH n
Proof. The proof proceeds by constructing a minimal canonical realization as in

Theorem 4.3, using some additional observations based on Proposition 4.9. In parti-
cular, k fq (6t,k/l +r) =rfq implies that 6e +N//1+V-/ k. Thus,
any basis for i ,V=Sp{b,;... bs;} can be completed to a basis for i=
Sp {an... as,bn b;}, such that the vector fields ar,"’as, complete any basis of
i/ + to a basis for 6e + V. Of course, in general ( ) (J ) # {0}, # ], so
that the vector fields bi... bn are not linearly independent. However,
(/ +r) (q 2 , so that (2 +6e/)ida= /fqr+/ r, which shows that
V=Sp{bl... b}.

The canonical realization is now constructed from the vector fields

ax’"aar:."a’., a,,bx...bs,b,:.., b,.

Although these vector fields which span 6e are not linearly independent, the linear
relations are confined to . Thus it is readily observed that the system construction
employed in Theorem 4.3 proceeds by using the vector fields a,., a,b,.,,. b,, as a
basis for g and computing the constants in the canonical realization from the identities
if, i]c ?i. [i j].c

Moreover, if the construction is repeated for the system (25) using the vector fields

Aa. AalA2a,_ APaspAb Abs,iA2br,2 APbs,p,
it is observed that the constants in the canonical realization are independent of A.
Therefore, as in Lemma 4.4, the following systems in canonical form are obtained for
h>0.

F(zx) + Y uiGi(zx), zx (0) 0, zx E In,
i=1

y Hx (zx),
-1where F ., F , Gi AS-1 Gi x and HA H

This proves the first two identities of the theorem. The third identity follows simply
from the homogeneity of the Volterra series, i.e., y(t, hu)= h y(t, u). O.E.D.

Notice that the relations given in this result pick out the leading terms in the
expansions of Lemma 4.4. It is interesting to compare these results and those of 4.1
with existing literature on the structure of nilpotent Lie groups and algebras (see for
example Goodman [10]).
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As an application of the above result, a topological property of the reachable set for
these systems is identified. In general, given a system, define R (T, K) to be the set of
states reachable from the initial state at time T by controls ui satisfying lui(t)l <- K,
[0, T], i= 1... m.

COROLLARY 4.1.1. A minimal realization of a stationary homogeneous Volterra
series has a contractible reachable set R T, K) for all T, K > O.

Proof. Since contractibility is a homeomorphism invariant, it is sufficient to
consider the reachable set of the canonical realization constructed in Theorem 4.10.
Here, the solutions z (t) satisfy z (t) 8 (z(t)) for controls ui satisfying lui(t)l <-_K,
[0, T], 1 m. In particular, fAun(t)[ _-< K for 0 _<- =< 1. Thus, if z R (T, K), 8 (z)
also belongs to R (T, K). Consider the map C’ [0, 1 x [" " given by (h, z) 8 (z).
By the above, C restricts to a smooth map

C "[0, 1] R (T, K)- R (T, K).

It is therefore evident that C defines a smooth contraction of R(T, K) to {0}
R (T, K). Q.E.D.

The special structure exhibited by the dynamics of a canonical realization of a
homogeneous Volterra series is due to the relations k CI (k/ + g.) CI k, 1 <_-- k <_-

p. It is possible to construct a strongly accessible canonical realization with this special
structure for any realizable finite Volterra series, by lifting the dynamics to a suitable
Lie group.

Given a strongly accessible observable realization of a finite Volterra series with
Lie algebra generated by f and gi, 1 m. Construct an abstract Lie algebra ’from by discarding the linear relations between elements of distinct subspaces .
(This does not affect the validity of the Jacobi relation.) The map l"’ given on
generators by f’ - f, g - gi, is a homomorphism, and since &v is finite dimensional, is
finite dimensional and so w, is also finite dimensional. By Hochschild [11, Theorem 1.1,
p. 133], there is a simply connected Lie group G’ whose algebra is given by ’. The map
therefore extends to a homomorphism l’ of G’ onto G, the connected Lie trans-

formation group of the minimal system. An accessible system with the same input-
output map can now be given as

3 f’(x’) + uig (X’), x’(O) e, x’ G’,
i=1

y h qb(l’(x’), Xo)= h’(x’),

where b is the natural action of G onM. By noting that h’(exp t(f’+ a)) h’(e), where
l(a’o) ao is the vector field selected in Theorem 4.3, and for this system c
0, f’) {0}, ], the procedure of Theorem 4.10 can be followed to obtain the
required strongly accessible canonical realization.

The failure of a minimal system to satisfy the relations k CI (6ek +1 + g’) k CI V,
can therefore be viewed as the result of a lack of observability in a strongly accessible
system which does. Notice that this realization has the structure of that constructed in
Gilbert [9]. This section is concluded by giving an example of this lifting procedure.

Example 4.12. Consider the following system in canonical form"

Z’I U, Zl(0) 0,

,2-’ZI-["U, Z2(0) 0,

3 z, z3(0) 0,
2

y=Z3+Z2+Z1.
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Notice that the dynamics of this system has the special form of Theorem 4.10, since
6a (z)= (Azl, hz2, h 2z3) satisfies

(/1) --U,

(/2) (/,Z 1) -+" (/U ),

(/ 23) (/Z1)2.
For this system f’=zlO/Ozz+zO/Oz3, g’=O/OZx+O/OZ2, [ff, g’]=O/OZ2+2ZxO/OZ3,
[g’, [if, g’]]= 20/0z3, and all other brackets are zero, so that the system is strongly
accessible. However, this system is obviously not observable. Note also that f3 Y 2

{0} and {0}, so Y 71 (y2 +) aY Y 1.
A minimal system with the same input-output map is given by the system in

Example 4.7. In this system,

1 0
[f, g]-- [g, [f, g]]= ZXl ,

Ox2

so that 2Y {0}, fq {0}, and the condition fq (2 +;) ; fq is not
satisfied.

5. Conclusions. The work presented here not only answers a basic question
concerning the natural state space for realizations of finite Volterra series, but also
provides a unifying approach for the study of these systems.

In the last section of the paper, some of the more interesting features of the theory
of canonical realizations have been developed, emphasizing the manner in which they
generalize the linear theory.

Some obvious omissions include a generalization of the rank conditions in the
linear theory, for the minimality of canonical systems and a specific representation for
the isomorphism between two minimal canonical realizations of the same input-output
map. Another omission is the study of minimal realizations of finite Volterra series
which are not strongly accessible, or in other words, systems which are intrinsically time
varying. Some work on this has been presented in Crouch [8].

In 4.3, an algorithm is developed to compute the important structural invariants
in a canonical realization of a finite Volterra series.

In future papers, an algorithm will be given which constructs a minimal canonical
realization from the Volterra kernels, expanding on similar constructions in the bilinear
cases 1 ], [2].

Finally, it is evident that many of the techniques employed in this paper can be
applied to systems with solvable Lie algebra (see Crouch [8]).

Acknowledgment, The author would like to thank Professor R. W. Brockett for his
encouragement and helpful suggestions while the material for this paper was being
prepared.
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PERTURBATIONS OF NONLINEAR CONTROLLABLE SYSTEMS*

KEVIN A. GRASSE"

Abstract. In the class of nonlinear, nonautonomous control systems we consider the property of
controllability to a compact set on a fixed time interval, and we give a sufficient condition for this property to
be preserved under small perturbations of the control system. Our results are formulated in terms of control
vector fields on a differentiable manifold.

1. Introduction. In this paper, we will be concerned with the effect of small
perturbations on a certain controllability property of nonlinear control systems. More
specifically, let f: n , -. [n be a mapping satisfying appropriate regularity
conditions (e.g., f is C 1) and consider the control system

(1) f(t, x, w),

where the controls are taken from some "admissible" subclass of the set of measurable
mappings of into ’. We can pose the following general problem. If the control
system (1) has a certain controllability property, then under what conditions does the
perturbed control system

f(t, x, w) + g(t, x, w),

for sufficiently "small" mappings g, also share this controllability property?
The following two definitions will serve to illustrate typical controllability proper-

ties. Let [to, tl] be a compact interval with t > to. The control system (1) is said to be
strongly controllable from (to, Xo) to a subset C at time ta, if for every x in C
there exist an admissible control u and an absolutely continuous solution q of the
differential equation =f(t, x, u(t)) satisfying q(to)=Xo and O(tl)= x. The control
system (1) is said to be completely controllable on [to, t] if for every x in " it is strongly
controllable from (to, x) to all of R" at time ta. One can also formulate weaker notions of
controllability by, for example, relaxing the requirement that all points be reached at
the same time.

There are two reasons why it is important to obtain results that guarantee the
persistence of controllability properties under small perturbations of the control
system. First, any such result can be interpreted as giving information about the
well-posedness (or structural stability) of the controllability property in question, and
such information has obvious physical significance. Second, if the results are formulated
in a sufficiently constructive manner, then one can produce new examples of control
systems having a given controllability property via perturbations of systems already
known to have the property. Since our results and methods of proof are rather
nonconstructive, we offer the first reason as the primary motivation for our work.

This type of problem has received a considerable amount of attention, and we will
briefly mention some of the relevant literature. Nonlinear perturbations of linear
control systems,

(2) : A(t)x + B(t)w,

have been studied by Aronsson [3], Dauer [7] and Lukes [16]. The essence of their
results is that the complete controllability of (2) on the interval [to, tl] implies the
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complete controllability of the perturbed system

A(t)x + B(t)w + g(t, x, w),

on the interval [to, tl], provided that the mapping g is globally bounded or satisfies a
"less-than-linear" growth condition in its last two variables. Dauer [8], [9], [10] has
obtained similar results for nonlinear perturbations of nonlinear control systems having
any one of the following three forms:

(3) k A(t)x + h(t, w),

(4) A(t, x, w)x + B(t, x, w)w,

2=h(t,x)+B(t,x)w.

It should be pointed out that the results pertaining to the systems (4) and (5) require
some restrictive assumptions on the right-hand sides of the differential equations
defining the control systems. We will not elaborate on these assumptions here. In [5],
Brunovsky and Lobry consider time-invariant control systems of the form 2 H(x)w,
where H is a smooth (n x m)-matrix-valued function of x, and they show that, for a
large class of such systems, variable-endtime controllability to a compact set is
preserved under sufficiently small nonlinear perturbations. Finally, in a more geometric
context, Sussmann [17] has proved that the set of k-tuples (k -> 2) of C vector fields on
a differentiable manifold that are globally controllable (in variable endtime) is an open
subset of the set of all k-.tuples of C vector fields in the fine C topology. In other
words, controllability of a finite system of vector fields is preserved under sufficiently
small C perturbations. A finite set of vector fields on Rn, when viewed as a control
system, corresponds to the system (1), where the controls are taken to be piecewise
constant with values in some fixed, finite subset of R".

Our subject of study here is the property of strong controllability to a compact set
in nonlinear, nonautonomous control systems. The main theorem of this paper (see 4)
gives a sufficient condition for this property to be stable under small perturbations. This
result is in much the same spirit as a related result of Brunovsky and Lobry [5, Prop.
111-6]. We note that some of our methods of proof are adaptations of their techniques,
which in turn can be traced back to the paper of Aronsson [3].

We have decided to adopt a geometric point of view and phrase our results in terms
of control vector fields on a differentiable manifold. The paper of Brockett [4] contains
several examples which provide some justification and motivation for allowing the state
space to be a manifold.

The remainder of this paper is organized as follows. In 2, we recall some
definitions and outline the basic properties of a control vector field. Section 3 contains a
topological covering theorem which is a modest extension of a lemma of Brunovsky
and Lobry [5, Lemma I-1 ]. This covering theorem is an essential tool in the proof of our
main theorem in 4. The main theorem is formulated with a certain technical
hypothesis (the existence of "normal values") and we discuss this hypothesis in greater
detail in 5. Finally, in 6, we illustrate our results with two examples.

2. Preliminaries. Our purpose in this section is to define the flow of a control vector
field and establish its basic properties. For reasons of spatial economy, we will omit the
proofs of the results contained in this section and direct the reader to [11, Chap. III] for
the details. Some of these results can actually be regarded as standard and the others can
be proved by routine, although sometimes lengthy, arguments. We begin by introducing
some notation and definitions.
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The term measure will always refer to Lebesgue measure on the real line R. We
reserve the letter J to stand for an interval in g which is not necessarily open or closed
and contains more than one point. The notation L(RP; q) denotes the vector space of
linear mappings of [P into q, and we equip L(RP; I) with the usual operator norm.
Let V be an open subset of Rn and let f: J x V x" n be a mapping such that for
every in J the mapping (x, w)--f(t, x, w) is of class C 1. We let Dzf:J Vx
L(R; ) and D3f:J V L( [) denote the partial derivatives of f with
respect to its second and third variables, respectively. The notation

Df:Jx wxRmL(nxrn;n)

will stand for the partial derivative of f with respect to the pair of variables (x, w). The
higher partial derivatives of f with respect to (x, w) are denoted by 5if (i > 1); by
convention,/f f and

DEFINITION 2.1. Let J and V be as above. A mapping f: J V " R" is said to
be quasi-C (1 _-< r <) if the following conditions are satisfied"

(i) for every in J the mapping (x, w)--f(t, x, w) is of class Cr;
(ii) for each 0, 1, , r the mapping ESif is locally bounded on J V Rm;
(iii) for every (x, w) in V" and each i=0, 1,...,r the mapping t--

if(t, x, w) is measurable.
The mapping f is said to be quasi-C if it is quasi-C for each positive integer r.
Remark 2.2. If f: J x V [" - [n is a quasi-C mapping, then the mean-value

theorem and the local boundedness of Df imply that f satisfies a local Lipschitz
condition in the variables (x, w). From this fact, one can further conclude that the
mapping f satisfies a Lipschitz condition in the variables (x, w) on every compact subset
ofJx V [".

In order to formulate our results in a coordinate-free manner, we will assume that
the state space of the control system is a ditterentiable manifold. The following
paragraph contains some relevant conventions and definitions.

Differentiable manifolds 2.3.
(i) Unless stated otherwise, M will denote a finite-dimensional, second-count-

able, Hausdorff, differentiable manifold of class C with k _-> 2; in particular, M is a
metrizable topological space. We let TM denote the tangent bundle, -" TM M the
canonical projection, and T,M r- (x) the tangent space to M at x M. Recall that
TM is a C- manifold and zr is a C- submersion.

(ii) Let M be n-dimensional and let (o, U) be a coordinate chart of M. Since the
mapping q is a ditteomorphism of U onto an open subset of It", for x in U the

[ndifferential do T,M T,(,) is a linear isomorphism. We will make the usual
identification T,(x)" " and hence, regard do as a linear isomorphism of T,,M onto
[n.

(iii) Let tr" J M be an absolutely continuous mapping; i.e., for every chart (r, U)
of M the mapping r cr is absolutely continuous (in the usual sense) on every compact
subinterval of J where it is defined. Let to J and let (o, U) be a chart of M such that
or(to) U. If the derivative (0)(to) exists, then we define 6"(to) in T(to)M by

(r(to) (dqgg(to) )-((-)(to)).

This definition is independent of the choice of the chart whose domain contains tr(t0). If
or’ J M is absolutely continuous, then it is clear that 6-(t) exists a.e. for J.

DEFINrrION 2.4. (compare [2, Chap. 2]). Let J be an interval and let M be an
n-dimensional Ck manifold. A mapping :J M " TM is called a quasi-C
control vector field on M (with control space "), 1-< r -< k- 1, if the following two
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conditions are satisfied’
(i) for every (t, x, w) in J M R", we have (Tr sc)(t, x, w) x;
(ii) for every chart (q, U) of M, the mapping

defined by

:(t. y. w)=d.-((t. 0-(y). w)).

is a quasi-C mapping. The mapping er will be referred to as the local representative of
with respect to the chart (, U).

Remarks 2.5.
(i) If J is an open interval and sc :J M R" TM is a C mapping (in the usual

sense) satisfying 2.4(i), then : is a quasi-C’ control vector field on M.
(ii) An important special case of Definition 2.4 occurs when M V, an open

subset of En. By virtue of condition 2.4.(i) and the fact that TV V x n, we can define a
quasi-C mapping f:J V ’ R by the relation

(t, x, w) (x, f(t, x, w))

for (t, x, w) in J V x ". Alternatively, f is the local representative of with respect to
the chart (idv, V). In this case one usually refers to the control system f: J V Rm -- non V rather than the control vector field :J x V x R’ TV.

LetL(J) denote the set of (equivalence classes of) essentially bounded, measurable
mappings of J into ". Recall that Lo(J) is a Banach space when equipped with the
essential-supremum norm. We denote this norm by I[’ [Iv. Elements of L(J) will be
referred to as controls.

DEFINITION 2.6. LetM be an n-dimensional Ck manifold and let :: J M "TM be a quasi-C control vector field on M (1 =<r -< k-1). If (s, x)JM and
u Lo(J), then a response of with initial condition (s, x) corresponding to the control u is
a mapping r" I -M such that"

(i) I is a subinterval of J containing s and r is absolutely continuous;
(ii) r(s) x;
(iii) (r(t) (t, r(t), u(t)) a.e. for I.
We have built enough regularity into the definition of a quasi-C control vector

field to ensure the existence and uniqueness of responses for a given choice of initial
condition and control. This is stated formally in the following standard theorem.

THEOREM 2.7. LetJbe an interval, letMbe an n-dimensional Ck manifold, and let
:J xM x" - TM be a quasi-C control vector field on M (1 <- r <-_ k 1). Then for
every (s, x) in Y xMand every u in Lo(Y), there exist an interval Y(s, x, u) containing s,
contained in and open in J, and a unique response

z(,, :J(s, x, u)-, M,

of with initial condition (s, x) corresponding to the control u, which has the following
maximality property. If tr:I-M is any response of with initial condition (s,x)
corresponding to the control u, then I J(s, x, u) and/x(s,x.,[i o’.

DEFINITION 2.8. Let : J M " - TM be a quasi-C control vector field on M.
Denote by @(s) the subset of J J M L(J) given by

() ={(t, s, x, u)JJ M x Lo(J)[t J(s, x, u)},

and define a mapping/z (s) M by

z(t, s, x, u)=
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The mapping is called the global flow of : and the set () is called the domain of
definition of the flow.

We now summarize the properties of the global flow/x that are required for our
applications.

THEOREM 2.9. Let J be an interval, letMbe an n-dimensional Ck manifold and let
J xM " - TM be a quasi-C control vector field on M (1 <- r <- k 1). The global

flow Ix: () Mof has the following properties:
(i) () is an open subset ofJ xJ xM x Lo(J);

(ii) /x is continuous;
(iii) [or every (t, s) in J J the set @(t,s)() defined by

(,.s(:) {(x, u) M x Lo(J)[(t, s, x, u) @()}

is an open subset ofM L(J);
(iv) /f(t,(s) is nonempty, then the mapping (x, u)--lz(t, s, x, u)o[@(t,)() intoM

is of class C.
Remark 2.10. The most difficult part of the preceding theorem is the proof of the

differentiable dependence of the flow on the control variable (in the sense of the Fr6chet
derivative). In the situation whereM is an open subset of Rn, the C dependence of the
flow on the control variable is a result of Lee and Markus [15, pp. 379-380]. A detailed
proof of the C case, in the context of control vector fields, can be found in [11, 3.3
and 3.4].

We conclude this section with several useful results concerning control systems
defined on open subsets of ". In what follows, J denotes an interval, V denotes an open
subset of g and f:J x V " -* " denotes a quasi-C mapping (1 _-< r-<_), viewed as
a control system on V (see Remark 2.5(ii)). We let/x: @(f) -* V denote the global flow
of f.

PROPOSITION 2.11. For every (So, Xo, Uo) in J V L(J) and every compact
interval I containing So and contained in J(so, Xo, Uo), there exist an open neighborhood
Vo 5% of (Xo, Uo) in V L(J) and a positive constant A such that

{So} x Vo x Xo (f),

and

I1 (t, so, x, u)-(t, so, , a)ll A" max{l[x -11, Ilu 11},

for every in I and (x, u), (2, a) in Vo x ago (11" denotes any convenient norm on ).
PROPOSITION 2.12. Fix a point (to, So, Xo, Uo) in (f) and let DIx (to, So, Xo, Uo)

denote the partial derivative of tx with respect to its last two variables at the point
(to, So, Xo, Uo). Then for every (h, v) in x L(J), we have

Dlz(to, So, Xo, Uo)(h, v) A (to, So, Xo, Uo, h, v),

where the mapping t-- h (t, So, x0, Uo, h, v) ofJ(so, x0, Uo) into is the unique absolutely
continuous solution of the linear differential equation

(6) =Duf(t, ge(t, So, Xo, Uo), Uo(t))x +D3f(t, ge(t, So, Xo, Uo), Uo(t))v(t)

satisfying the initial condition (So, h).
COROLLARY 2.13. For every v in L(J), we have

D4/z(to, So, Xo, Uo)V I//(to, So, Xo, Uo, v),

where the mapping t-->g(t, So, Xo, Uo, v) of J(so, Xo, Uo) into " is the unique absolutely
continuous solution of the linear differential equation (6) satisfying the initial condition
(so, 0).
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3. A topological covering theorem. The main result of this section is a topological
covering theorem, which is a straightforward extension of a lemma of Brunovsky and
Lobry [5, Lemma I-1] to mappings taking values in a ditferentiable manifold (as
opposed to "). To provide a means of verifying the hypotheses of the covering theorem
in certain situations, we will also introduce the notion of a normal value of a ditferenti-
able mapping.

Our first lemma is essentially standard, but we will include the proof as it is very
short. The notation B (0, a) denotes the open ball in " centered at 0 and of radius
while B(0, a) denotes its closure.

LEMMA 3.1. Let X be a topological space, let h" X n be a continuous mapping,
and let s’B(O, 3)-,X be a continuous map.ping_such that (h os)(y)= y, for every y in
B(0, 3) (in articular, h(X)_B(O, 3)). If h’s(B(0,2))-, is a continuous mapping
satisfying IIh(x)-h(x)ll<= 1 for every x in s(;(O, 2)), then l(s((O, 2))) B(0, 1).

Proof. Fix ] in B(0, 1) and define a mapping H:B(0, 2)1" by

H(y)-+y-(s(y)).
Clearly, H is continuous and H(B(0, 2))_B(0, 2), sinee for y in B(0, 2) we have

IIH(y)II <- [[Yll + ]]y l(s(y))[]
IIY]I + IIh (s(y))- l(s(y))ll < 2.

By the Brouwer Fixed-Point Theorem, there exists z in/(0, 2) such that H(z) z. This
implies )7 lYt(s(z))/(s(/(0, 2))) and, because 37 B(0, 1) was arbitrary, the proof is
complete, l-!

LEMMA 3.2. LetX be a topological space, let M be a finite-dimensional manifold,
and let d be a metric on M compatible with the manifold topology. Let h" X-M be a
continuous mapping and suppose that]or some y in M, there exist an open neighborhood V
of y and a continuous mapping s" V X satisfying (h s)(z) z, for every z in V. Then
there exist open neighborhoods V1 and V2 of y and an e > 0 such that:

(i) V
_
V2 V2 . V and V2 is compact;

(ii) if t: s(2) M is a continuous mapping satisfying d(t(x), h(x)) <- e for every x
in s(I7"2), then ft s (17"2

_
V.

Proof. Once a suitable choice of coordinate chart is made at the point y, the proof
follows in a routine manner from Lemma 3.1. We omit the details, lq

Our proof of the following theorem is similar to the proof of the Brunovsky-Lobry
lemma.

THEOREM 3.3. LetXbe a topological space, letMbe a finite-dimensional manifold,
and let d be a metric on M compatible with the manifold topology. Let h" X -M be a
continuous mapping and let C be a compact subset ofMsuch that C

_
h (X) and h has a

continuous local right inverse at every point of C. Then there exist a compact.subsetK ofX
and an e > 0 such that ift" K Mis any continuous mapping satisfying d h (x ), h (x <-_ e

for every x in K, then C
_
(K).

Proof. By hypothesis, for every y in C there exist an open neighborhood V of y
and a continuous mapping s" Vy X such that (h sr)(z) z, for every z in V. Using
Lemma 3.2, we obtain, for every y in C, open neighborhoods U and Wr of y and an
ey > 0 satisfying the following conditions"

(i) Ur.___ W_
_
Wr

_
Vr and Wy are compact;

(ii)_if h" s(Wy) M_ is a continuous mapping such that d(h(x), h(x))<-_ey for every
x in s(Wy), then h(s(Wy))_ Uy.
The family {UlY C} is an open cover of the compact set C, so we can extract a finite
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subcover {Uyl, , Uyk}. It is easy to see that the set

and the positive real number

satisfy our requirements.

k

K= t_J sy,(Wy,),
i=1

e min {eyl, , eyk},

In order to be able to apply Theorem 3.3, we must have a reasonable way of
determining when a mapping has a continuous local right inverse at a point in its image.
The following proposition gives one such criterion, based on the inverse-mapping
theorem.

PROPOSITION 3.4. LetXand Y be Banach manifolds of class Ck (1 <- k <- ) and
let h’X Ybe a C mapping. Assume thatfor some Xo in Xthe differential dhxo" TxoX
Th(xo Y is surfective and its kernel splits in ToX. Then there exist an open neighborhood V
ofh(xo) anda Cmappings V Xsuch that (soh)(xo) xoand (h os)(y) yforevery y
in V.

Proof. This is a straightforward consequence of the inverse-mapping theorem. See
[14, p. 17] for details.

DEFINITION 3.5. Let X and Y be Banach manifolds of class C and let h:X Y
be a C mapping. A point y0 in h (X) is called a normal value of h if there exists at least
one x0 in h-a(yo) such thatthe differential dhxo is a split-surjective linear mapping
(contrast this with the notion of a regular value, where it is required that dh be a
split-surjective linear mapping ]br every x in h-l(y0)).

Remark 3.6. When Y is a finite-dimensional manifold, we can drop the splitting
assumption in Proposition 3.4 and Definition 3.5, since in that case the kernel of dh is
closed and of finite codimension, and hence always splits (see, e.g., [13, p. 186]).

For later reference, we state the following immediate consequence of Theorem 3.3
and Proposition 3.4.

THEOREM 3.7. Let E be a Banach space, let M be a finite-dimensional C
manifold, and let d be a metric on Mcompatible with the manifold topology. Let Ube an
open subset orE and let h" U
h (U) such that every point ofC is a normal value ofh. Then there exist a compact subsetK
of U and an e >0 such that if h’K-M is any continuous mapping satisfying
d(t(x), h(x))<-e for every x in K, then C

_
t(K).

4. The stability of controllability to a compact set under small perturbations. This
section contains our main theorem concerning perturbations of control systems that are
strongly controllable to a compact set. Before stating this theorem, we will need to set
some notation, review a few definitions, and establish two preliminary technical
propositions.

Notation 4.1. Let J be an interval, let M be an n-dimensional C manifold
(k _-> 2), and let : J M -m- TM be a quasi-C control vector field onM with global
flow tz @(s) M. For each (t, s, x) in J J M let t,.x)(s) denote the subset of L(J)
defined by

(t,s,x)() {U t(J)l(t, s, x, u) ()},,

and, if t.s.)(:) is nonempty, let/xt,s,x): @t,,)(:)M denote the mapping defined by

tZ(t,s,x)(U)= (t, s, X, U).
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Remark 4.2. It is a consequence of Theorem 2.9 that the set @(t.s.x)(:) is open in
L(J) and the mapping Ixu.s.x)is of class Ca.

DEFINITION 4.3. Let :: J M R TM be a quasi-C control vector field onM
and let (t, to, Xo) J J M with => to. The attainable set of from (to, Xo) at time is
defined by

sC(to, Xo; t) {g(t, to, Xo, u)[u
Equivalently, Me(to, Xo; t) is the image of the mapping/xCt.to.xo). Observe that we have
de(to, Xo; to) {Xo}.

DEFINITION 4.4. Let :J M " --> TM be a quasi-C control vector field on M
and let (h, to, Xo) J J M with ta > to. The control vector field sc is said to be strongly
controllable from (to, Xo) to a subset C c_M at time ta if C

_
M(to, Xo; ta). When

M(to, Xo; ta) M, we say that s is strongly globally controllable from (to, Xo) at time tl.
Our first proposition will require some additional notation. If V is an open subset

of ", C is a nonempty compact subset of j V R’, and g" J V ’ --> " is a locally
bounded mapping, then [Ig[[c denotes the nonnegative real number defined by

Ilgllc sup {[Ig(t, x, w)ll [(t, x, w) C}.

We let B (z, a) denote the open ball centered at z and of radius a in any metric space
under consideration. If A and B are subsets of a metric space with metric d, then the
distance from A to B is defined by

dist [A, B] inf {d(a, b)l(a, b) A x B}.

PROPOSITION 4.5. Let f:J V ’ --> " be a quasi-C mapping (viewed as a
control system on V), let tz" (f)--> V denote the global flow of f, and fix a point
(ta, to, Xo, Uo) in @ (f) with ta > to. Then for every e > 0 there exist a 8 > 0 and a compact
subset C of J x V ’ satisfying the following condition. If g" J x V Rm --> n is a
quasi-C mapping, then [[g[[c-<-8 implies that

[to, ta] {to} x B(xo, 8) B(uo, 8)c_ (f+ g),

and

(t, to, x, u -/x (t, to, , a)ll < ,
]:or every t in [to, tl] and (x, u), (, a) in B(xo, 8) B(uo, 8), where 12" (f+ g)--> Vis the
global flow off+ g.

Proof. By Proposition 2.11, there exist a 8a > 0 and a positive constant A such that

[to, ta]x {to} x B(xo, 81) x B(uo, 81)_ (f),

and

(7) II(t, to, x,u)-(t, to,,a)ll<-_A.max{llx-ll, llu-alM,
for every in [to, tl] and (x, u), (, ) in B(xo, 81) X B(uo, 81).

The set Ko {/z(t, to, Xo, Uo)]t [to, tx]} is a compact subset of the open set V. Let
E > 0 be sufficiently small that e --< e and V, _c V, where V, is the open set defined by

V, {x R ]dist [x, Ko] < e

Define a compact subset D81 of " by

Ds, {w ’ldist [w, uo(J)] --< 81},
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(we are tacitly identifying the equivalence class Uo with a class representative that is
pointwise bounded in norm by Iluoll everywhere on J). Then C [to, tl] Q,1 D81 is a
compact subset of J x V ’. By Remark 2.2, there is a positive constant L such that

(8) Ill(t, x, w)-f(t, ,
for every (t, x, w), (t, 2, ) in C. Furthermore, if we set

62 min {61, e 1/4A},

then the choice of 61 and the Lipschitz condition (7) imply that

[to, tl]x {to} x B(xo, 6.) x B(uo, 6z)c__ (f),

and

(9) II(t, to, X, u)-ix(t, to, 2, tT)ll-_< e,/2,

for every in [to, tl] and (x, u), (2, ti) in B(xo, 62) x B(uo, 62). In particular, if we put
(2, t7)= (Xo, Uo) in (9), then we infer that Ix(t, to, x, u) V for every (t, x, u) in [to,
B(xo, 62) B(uo,

Let g’ J x V x" " be a quasi-C mapping and let/2" @(f+ g) - V denote the
global flow of the control system f+ g. We claim that if

(10) Ilgll --< ____L_X
4(t1- to)

e

then

(11)

and

(12)

[to, tl]X {to} x B(xo, 62) x B(uo, 62)_ @(f+ g),

IIZ (t, to, x, u Ix (t, to, 2, t7 )ll < e 1,

for every in [to, tl] and (x, u), (2, iT) in B(xo, 62) x B(uo, 62).
To establish the claim, we will first show that for every (x, u) in B (Xo, 62) x B(Uo, 62)

the response t--> fi (t, to, x, u) is defined on [to, tl] and maps [to, tl] into V1. Suppose that
this is not the case. By a standard extension theorem in ordinary differential equations
[18, p. 187], there exists t* in (to, tl] such that:

(a) t->fi,(t, to, x, u) is defined on [to, t*);
(b) fi(t, to, x, u) V,1 for every in [to, t*);
(c) limt_,t*- fi(t, to, x, u) exists and is an element of OV1, the topological boundary

of V1.

Inequality (10) and the Lipschitz condition (8) yield the estimate

I1 (t, to, x, u) IX (t, to, x, u)ll

x + | [f(s, ;,(s, to, x, u), u(s))+ g(s, ;,(s, to, x, u), u(s))] ds

(13)

E le
-L(q-t)

<---- -((q too

ds + ft Ill(s, g(s, to, x, u), u(s))-f(s, ix(s, to, x, u), u(s))[I ds
o

E e -L(tl-t)
+ I, LIItZ (s, to, x, u) g (s, to, x, u)ll ds,
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for every in [to, t*). Applying the Gronwall inequality to (13), we obtain

Ilg (t, to, x, u) -/x (t, to, x, u )[[ <_- el/4,

for every in [to, t*). In combination with inequality (9), this implies that

(14) I[(t, to, x, u tx (t, to, 2, a)[[-< 3e/4,
for every in [to, t*) and (x, u), (2, tT) in B(xo, 82) X B(uo, 82). However, inequality (14)
with (2, iT)= (Xo, Uo) is clearly inconsistent with statement (c) above. Hence, for every
(x, u) in B(xo, 82)B(uo, 82) the response t-t2(t, to, X, u) is defined on [to, tl] and
maps [to, tl] into the set V1. Consequently, inequality (14) holds for all in [to, t]. That
establishes the truth of relations (11) and (12). The smaller of the two numbers 82 and
e e-L(q-t/4(tx--to) will serve as the desired & F1

DEFINITION 4.6. Let M be an n-dimensional manifold of class C. A Finsler
structure on the tangent bundle TM is a continuous mapping to: TM -+ R such that for
every x in M the restriction to TxM: TxM + is a norm on the n-dimensional vector
space TxM. For a tangent vector v in TM, we will often use the notation [Iv[[., in place of
(v).

Remark 4.7. By using a partition-of-unity argument, one can easily show that any
finite-dimensional C manifold admits a Finsler structure on its tangent bundle.

The next proposition is the global version of Proposition 4.5. In this proposition we
will employ the following notation. Let " ] M "--> TM be a quasi-C control
vector field on M and let to: TM -> be a Finsler structure on TM. If C is a nonempty
compact subset of J xM x ", then fir/fie denotes the nonnegative real number given by

[In[Ic --sup {lln (t, x, w)lll(t, x, w) c}.

PROPOSITION 4.8. Let M be an n-dimensional manifold of class Ck (k >-_ 2) with
compatible metric d, let to TM --> be a Finsler structure on TMand let J M -->

TM be a quasi-C control vector field on M. Denote by tx () --> M the global flow of
and fix a point (tl, to, Xo, Uo) in () with t > to. Then ]:or every e > 0 there exist a 8 > 0
and a compact subset C ofJ M g’ satisfying the following condition. If ? J M

" --> TM is a quasi-C control vector field on M satisfying [Inll <- , then we have

and
[to, t]x {to} x B(xo, ) B(uo, 8) c_(+ 1),

d(fi(t, to, x, u),/x(t, to, 2, t2) < e,

forevery tin [to, tl] and (x, u), (2, a) in B(xo, 8)x B(uo, 8), where 12"(+l) --> Mis the
global flow of + 1.

Proof. Since the set {/x (t, to, Xo, Uo)[t [to, ta]} is a compact subset of M, there exists
a partition {So, Sl," ’, sp} of the interval [to, ta] with

to So < S < < sp t,

such that for each 1, .., p the set

{/z (t, to, Xo, uo)lt e [si-1, si]}

is contained in the domain Ui of a coordinate chart ((9i, Ui) of M. We set X

Ix (si, So, Xo, Uo) for each 1,. , p.
For ] 1,.. , p consider the following statement.

(]) For every e > 0 there exist a 8 > 0 and a compact set C c_ J M R" such that
if r/’JMR"-+ TM is a quasi-C control vector field on M satisfying
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Ilnllc , then

and

[so, s] x {so} x B(Xo, ,) x B(uo, ,)
_
(+ n),

d(fi(t, So, x, u), Ix(t, So, 2, ti)) < e,

for every in [So, sj] and (x, u), (2, ti) in B(xo, 3) x B(uo, 6).

We will show that statement (]) holds for ] 1,..., p by induction on ]. Because
statement (p) is precisely the assertion of the proposition, this will complete the proof.

By applying Proposition 4.5 to the local representative vl of :, we see that
statement (]) holds with ] 1. Assume that statement (k) holds for some k such that
1 <- k =< p 1. We must show that statement (k + 1) holds.

Let e > 0 be given. Applying Proposition 4.5 to the local representative :vk/l, we
obtain a tk+ > 0 and a compact set Ck+ contained in J x Uk+l X [m such that if
11,7 IIc+ --< +, then

(15) [s,s+]x{s}xB(x,6+)xB(uo,+l)_@(+rl),

and

(16) d(fi(t, s, x, u), g(t, s, , a)) < e,

for every in [s, s+] and (x,.u), (2, ti) in B(x, 8+) x B(uo, +1). Observe that we
necessarily have +_<-e.. Because statement (k) holds, there exist a 8 >0 and a
compact set C contained in J xM x N such that if Ilnllc <-- , then

(17) [So, S]X{so}xB(xo, 8)xB(uo, 8)c_N(+rl),

and

(18) d(fi(t, So, x, u), Ix(t, So, 2, tT)) < 6+,

for every in [So, Sk] and (x, u), (2, tT) in B(xo, 6)B(uo, 6). Observe that we
necessarily have t =< 6+.

Since Ix is continuous, there exists a 6 > 0 such that t _-< 6 and

(19) Ix(Sk, $0, X, U) e B(xk, tk+l),

for every (x, u) in B(x0, ) B(uo, ). Set C Ck Ck+a. Clearly, C isa compact subset
of J M ’. Let rt" J M " - TM be a quasi-C1 control vector field on M
satisfying IInll -<-. From (17) and (18), we obtain

(20) [So, Sk]X{so}XB(xo,)xB(uo,)c_@(+rl),

and

(21) d(fi(t, So, x, u), Ix(t, So, 2, t7))< 3k+ <= e,

for every in [So, Sk] and (x, u), (2, iT) in B(xo, 6) B(Uo, 6). In particular, for (x, u) in
B (Xo, 6) B (Uo, 6) we have

d( (s, So, x, u), (s, So, Xo, Uo)) d (t; (s, So, x, u), x)
(22)

6k+1,

which by (15) implies that

(23) (t, Sk, 12(Sk, So, X, U), U) @(:+ r/),
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for every in [Sk, Sk/l]. Relation (23) and the fact that

](s, (s, So, x, u), u) ](So, x, u)

yield the inclusion

(24) [Sk, Sk+I]X{So}XB(Xo, 6)XB(Uo, 6) c_@(+).

Using (19), (22), (16), and the transitivity property of the flow, we obtain

d(g(t, So, x, u), u(t, So, , a))= d(g(t, s, t2(s, So, x, u), u), u(t, s,u(s, So, , a), a))
(25)

for every in [Sk, S+1] and (x, u), (Y, 7)in B(x0, 6) x B(uo, 8). Statement (k + 1) is now a
consequence of (20), (21), (24) and (25). This completes the induction and the
proof. F1

We are now ready to state and prove our main theorem. This theorem requires an
assumption concerning the existence of normal values of the mapping/z(tl,to,xo, and
such an assumption is bound to appear rather ad hoc at this point. We will make some
attempt to justify the reasonableness of this assumption in the next section.

THEOREM 4.9. Let M be an n-dimensional manifold of class Ck (k _->2) with
compatible metric d, let o9: TM -> be a Finsler structure on TM, and let J xM x" -->

TM be a quasi-C control vector field on M. Denote by Iz @() --> M the global flow of
and let (h, to, Xo) eJ xJ x Mbe such thattl > to and the open subsetul,to,xo)() ofL(J)
is nonempty. Suppose that C is a compact subset of sge(to, Xo; tl) and every point of C is a
normal value of the mapping

tz ul,o, xo @ul,to,xo () --> M.

Then there exist a 8>0 and a compact subset K of J xMxi such that if
l’J xM x R’--> TM is a quasi-C control vector field on M satisfying IIr/ll/ =<8,
then C

_
sg+n(to, Xo; h).

Proof. Recall that the mapping/x (t,o,o) is of class C and its image is precisely the
attainable set e(to, Xo; h)..By Theorem 3.7, there exist an e > 0 and a compact subset F
of (t,to,xo)(sc) such that if h" F-->M is a continuous mapping satisfying

d(h(u),/z (a,o,xo (u))_-< e,

for every u in F, then C h (F).
For every u in F we can apply Proposition 4.8 to obtain a 6 > 0 and a compact

subset K, of J xM x N" such that if rt’J xM x R" --> TM is a quasi-C control vector
field on M satisfying I1/11:, =< 6,, then

(tl, to, Xo, v)

and
d(12(tl, to, Xo, v), tz(h, to, Xo, v)) < e,

for every v in B(u, 6.), where/2 is the global flow of + 7. The collection {B(u, 6)lu
F} is an open cover of the compact set F, so we can extract a finite subcover

{B(Ul, 6u)," ,B(u,,6,)}.

Let K =U ki=lgu, and 6 min{6,1, , 6,}. Clearly, K is a compact subset of J xM x
N". Let r/’JxMxN" TM be a quasi-C control vector field on M satisfying
Ilnll,,--<, If u is an arbitrary element of F, then u e B(ui, 8,,) for some index in
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{1,..., k}. Since

we infer that

and

to, xo, u) e(+ n)

d(.,to,xo (u), .,,o.xo (u)) < .
By the choice of the number e and the set F, we obtain

C _t(t,to,xo)(F)___ +n(to, Xo; tl).

This completes the proof.

$. The existence of normal values. The hypothesis of Theorem 4.9 included the
assumption that every point of the compact target set C is a normal value of the
mapping (tl,to,xo)" In this section, we will make an attempt to justify this assumption by
giving sufficient conditions for the existence of normal values in certain situations. We
begin with some general properties of normal values.

LZMMA 5.1. Let E and G be Banach spaces and let L(E; G) denote the set of
continuous linear mappings of U into G, viewed as a Banach space under the usual
operator norm. The set of split-surjective, continuous linear mappings of E into G is an
open subset ofL(E G).

Proof. See [1, p. 42]. I-!
PROPOSITION 5.2. LetXand Ybe Banach manifolds of class C a, let h:X Ybe a

C mapping, and let yo Y be a normal value of h. Then there exists an open neighbor-
hood Vo of yo such that Vo

_
h (X) and every point of Vo is a normal value of h.

Proof. By hypothesis, there exists Xo in X such that h (Xo) yo and the differential

dhxo" TxoX Tyo Y is split surjective. Using Lemma 5.1, we obtain the existence of an
open neighborhood U0 of Xo such that the differential dhx: TxX Thx)Y is split
surjective for every x in Uo. In particular, every point of the set Vo h (Uo) is a normal
value of h. Moreover, Vo is open in Y because the mapping h lo, being a submersion, is
an open mapping.

COROLLARY 5.3. The set of normal values of a C mapping h X--> Y is an open
subset of Y.

We now take up the question of the existence of normal values in the context of
control systems defined on open subsets of N". For the remainder of this section, J
denotes an interval, V denotes an open subset of N", and f: J x V x’ -> N" denotes a
quasi-C mapping, viewed as a control system on V. Let/x @(f) --> V denote the global
flow of f and fix a point (h, to, Xo) in J x J x V such that ta > to and the open subset

I(tl,to,Xo) (f) {L/ Lc(J)[(tl, to, Xo, u) (f)}

of L(J), is nonempty.
Our study of normal values of the mapping

(..,o.xo (,..to.,.o (f)-" V

will be approached via the technique of linearization of a nonlinear control system along
a given response. For this reason, it will be convenient to review a basic fact from linear
control theory.

PROPOSITION 5.4. Let A:J L(Rn; Rn) and B:J L(m; ) be mappings that
are measurable and locally bounded and let : J J L(; E") denote thefundamental
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matrix solution of the linear homogeneous differential equation A (t)x. Then ]:or every
(tx, to, Yo) in J x J x R with tl > to, the linear control system

(26) ,/= A(t)x + B(t)w

(with controls in L(J)) is strongly globally controllable from (to, yo) at time tl ifand only
iffor z in the relation

B(t)’(to, t)rz =0 a.e.fort[to,

implies that z 0, where the..superscript T denotes the matrix transpose.
Proof. See [6, p. 99].
Remarks 5.5. (i) Since the criterion in Proposition 5.4 does not involve the point

yo, we can conclude that the linear control system (26) is strongly globally controllable
from (to, y0) at time t for some y0 in " if and only if it is completely controllable on
[to, tl] (see 1).

(ii) If the linear control system (26) is completely controllable on [to, tl], then it is
completely controllable on every interval [to, t] such that _-> tl and J. This is a direct
consequence of the preceding remark and Proposition 5.4.

DEFINITION 5.6. Let f: J x V " -" be a quasi-C control system on V and let
(to, Xo, Uo) J V Lo(J). For in the interval J(to, Xo, Uo), the linear control system

Ozf(t, Ix(t, to, Xo, Uo), Uo(t))x +D3f(t, Ix(t, to, Xo, Uo), Uo(t))w

is called the linear variational control system off along the response t-->Ix(t, to, Xo, Uo).
We will now formulate a necessary and sufficient condition for the derivative

DIx(tl,to,xo) (Uo) to be a surjective linear mapping, in which case the point Ix(q, to, Xo, Uo)
is a normal value of the mapping Ix(tl.to.xo).

THEOREM 5.7. For Uo in (tl,to,Xo) (f), the derivative

DIx (tl.tO.XO)(Uo):L(J) --> "
is a surjective linear mapping if and only if the linear variational control system offalong
the response t-->Ix(t, to, Xo, Uo) is completely controllable on [to, tl].

Proof. By Remark 5.5(i), it suffices to show that DIx (tl,tO,xo)(Uo) is surjective if and
only if the linear variational control system of f along the response -> Ix (t, to, Xo, Uo) is
strongly globally controllable from (to, 0) J R" at time tx. For in [to, tx] and u in
Lo(J), let t-->d/(t, to, Xo, Uo, u) denote the unique absolutely continuous mapping
satisfying (to, to, Xo, Uo, u) 0 and

0
O-d/(t, to, Xo, Uo, u)= D2f(t, Ix(t, to, Xo, Uo), Uo(t))$(t, to, Xo, Uo, u)

+ D3f(t, Ix(t, to, Xo, Uo), Uo(t))u(t),

I.e. for e [to, tl]. It is evident that the linear variational control system of f along the
response t-> Ix (t, to, Xo, Uo) is strongly globally controllable from (to, 0) at time tl if and
only if the mapping u -> t (tl, to, Xo, Uo, u) is surjective. However, by Corollary 2.13, we
have the formula

t(tx, to, Xo, Uo, u) D4IX (tx, to, Xo, Uo)(U)= Vix(tx,to,xo)(Uo)(U).

Therefore, the mapping u -->O(tl, to, Xo, Uo, u) is surjective if and only if the derivative
DlX(tl.tO.Xo(Uo) is surjective. This completes the proof. [-]

Theorem 5.7 is of interest because it reduces the determination of the surjectivity
of the derivative DIx (tl.to.xo)(Uo) to the question of the complete controllability of a linear
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control system, and much is known about the latter (see, e.g., [6] and [12]). The major
drawback of Theorem 5.7 is that it is not a computable criterion in the sense that one
must know the response Ix (t, to, Xo, Uo) in order to determine the linear variational
control system along that response. However, this does not preclude the use of
Theorem 5.7 as a tool in deriving computable criteria for the surjectivity of the
derivative of [.l,(tl.to,xo) and we will present two results in this direction.

THEOREM 5.8. Let f: J V R Rn be a quasi-C control system on V with
global flow/z: @(/)- V, and fix a point (to, Xo) in J V. Suppose that for some open
neighborhood Jo Vo of (to, Xo) in J x Vthe partial derivative D3f(t, x, w) has rank n for
every (t, x, w) in Jo V0 (in particular, m >- n ). Then, for every tl in Jsuch that tl > to
and (tl,to.xo(f) is nonempty, the derivative Dix(tl.tO.Xo)(U) is a surfective linear mapping
]’or every u in (tl,tO,XO) (f)"

Proof. Fix a control u in (tl,to,xo)(f) and let

J(to, Xo, u) J(to, Xo, u) L(n; )

denote the fundamental matrix solution of the linear homogeneous differential
equation

D2f(t, Ix(t, to, Xo, u), u(t))x.

For every (t, x, w) in Jo Vo [’, we have the following implications:

D3f(t, x, w) has rank n D3f(t, x, w)" " n is surjective

:D3f(t, x, w) 7".m is injective.

To show that DIx (tl,to,Xo)(U) is surjective, it suffices, by Proposition 5.4 and Theorem 5.7,
to show that the relation

D3f(t, Ix(t, to, Xo, u), u(t))T(to, t)z O,

for almost every in [to, tl], implies that z 0. But if relation .(.) holds, then there exists
in [to, t] such that (, Ix(, to, Xo, u)) e JoX Vo and

D3f(, Ix(, to, Xo, u), u())Tq(to, )z =0.

Because D3f(, Ix(, to, x0, u), u())T is injective and F(to, )7- is invertible, we conclude
that z 0.

The rank condition on the partial derivative D3f(t, x, w) in Theorem 5.8 is quite
strong, and this severely limits the applicability of the theorem. Consequently, we will
present one final result in this section which ensures the existence of normal values on
an open dense subset of the attainable set under a much weaker hypothesis. We preface
this result with a remark concerning linear autonomous control systems.

Remark 5.9. Let AL(n;R) and BL(";"). Recall that the linear
autonomous control system 2 Ax +Bw is said to be completely controllable if it is
completely controllable on every compact interval [to, tl] with tl > to. A well-known
necessary and sufficient condition for the complete controllability of the system

Ax +Bw (due to Kalman) is that

rank IB, AB, , A B n.

THEOREM 5.10. Let]" V " - be a C autonomous control system with global
flow Ix’(f) V, and let (Xo, Wo) V ’ be such that"

(i) f(Xo, Wo) 0;
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(ii) the linear autonomous control system

Daf(xo, Wo)X + D2f(xo, Wo)W

is completely controllable.
Let to, s, and tl be real numbers satisfying to < s < tl. Then we have

’r(to, Xo; s)
_
r(to, Xo; tl),

and every point of r(to, Xo; s) is a normal value of the mapping Ix (tl,to,xo)"

Proof. Let yo be an arbitrary element of ’r(to, Xo; s), which we fix for the
remainder of the proof. Then we have yo =/(s, to, Xo, Uo) for some control Uo in
@(s.to.xo) (f). Identify Wo with the constant control v:R R" given by v (t) Wo for every
in . Condition (i) implies that/x (t, to, Xo, Wo) Xo for every in .

Let u be the control defined by

Wo if [to, to + tl s],
ul(t)

Uo(t + s tl) otherwise.

Because f is autonomous and /x(t, to, Xo, Wo) Xo for all in , the response t--

/x (t, to, Xo, u 1) is seen to satisfy

and

/x(t, to, Xo, ul) {
/x(t + s tl, to, Xo, Uo)

if to, to + tl s ],
if [to + tl s, tl],

/.t, (tl, to, Xo, Ul)--"/J, (S, to, Xo, Uo)= Yo.

In particular, we have yo r(to, Xo; tl), and this establishes the inclusion

gf(to, Xo; s) (to, Xo; tl).

The linear variational control system of f along the response t-l(t, to, Xo, ul) is
given by

(*) =Dlf(lz(t, to, Xo, ul), ul(t))x +D2f(tx(t, to, Xo, ul), ul(t))w.

For in [to, to + tl- s] this assumes the form

Dlf(xo, Wo)X +D2f(xo, Wo)W.

Hence, condition (ii) implies that the linear control system (.) is completely controllable
on the interval [to, to + tl-s]. By remark 5.5(ii), the linear control system (.) is also
completely controllable on the interval [to, tl]. Therefore, we infer from Theorem 5.7
that the point yo =/x(tl, to, Xo, ul) is a normal value of the mapping i.b(tl.to,xo). This
completes the proof. I-]

COROLLARY 5.11. Let to, s and tl be real numbers satisfying to< s < tl. Then
r(to, Xo; s) is contained in the interior of r(to, Xo; tl) relative to V.

Proof. This follows from the theorem and Corollary 5.3.
COROLLARY 5.12. For to < tl the set of normal values of the mapping iJ.(tl,to.xo) is

open in V and dense in the attainable set r(to, Xo; tl). In particular, sCr(to, Xo; tl) is
contained in the closure of its interior.

Proof. The set of normal values of Id.(tl,to,xo) is open in V by Corollary 5.3, so it
suffices to show that this set is dense in t(to, Xo; q). Let yo =/x(tl, to, Xo, Uo) be an
arbitrary point of r(to, Xo; tl) and let Vo be an arbitrary open neighborhood of yo in V.
Since /z is continuous, there exists a real number s such that to<S<tl and
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# (s, to, Xo, Uo)e Vo. By the theorem,/x (s, to, Xo, Uo) is a normal value of the mapping
(tl,tO,XO)" ]

6. Examples.
(i) Let GL(n, R) denote the open subset of invertible elements in L(Rn; Rn) and let

A:J- L(n; ") and B:J GL(n, ) be mappings that are measurable and locally
bounded. Define a control system,

f: J GL(n, ) L(R"; R") - L([" "),

by

f(t, Z, W) (A(t) + B(t) W)Z.

For every (to, Zo, Wo) in JxGL(n,N) xL(N";In)
D3f(to, Zo, Wo) is given by the formula

the partial derivative

D3f(to, Zo, Wo)W B(to) WZo.
It follows that D3f(to, Zo, Wo) is a linear isomorphism of L("; ") onto itself, since the
inverse ofD3f(to, Zo, Wo) is readily seen to be the mapping W-B(to)-1WZ-1. Hence,
for every (tx, to, Zo) in JJ GL(n, ) with tx > to, Theorem 5.8 implies that every
point of the attainable set 4r(to, Zo; t) is a normal value of the mapping tx(tl,to,Zo). We
can therefore apply Theorem 4.9 to compact subsets of 4r(to, Zo; tl). Furthermore, by
Corollary 5.3, the attainable set Mr(to, Zo; tl) is an open subset of L("; ) (a more
detailed analysis actually shows that r(to, Zo; tl) is the connected component of
GL(n, ) containing Zo).

Control systems of this type can arise in the study of linear optimal systems with
quadratic cost criteria (see, e.g., [15, Chap. 3]). For physical reasons, a control
U :J L( ;R") is sometimes called a gain matrix.

(ii) Consider the control system f: 2\{0} R2... 2 defined by

f(Xl, X2, W1, W2)"-(XIWI--X2W2, X1W2"t-X2W1),

or, in more traditional notation,

31--" XlUa(t)-X2U2(t),

.z XlU2(t)+x2u(t).

A routine verification shows that the global flow/. of f is explicitly given by the formula

OS

tz(t,S, Xl, X2, Ul, U2) =exp (I Ul(’/’)dr)
\sin I

u2(’) dr -sin I u2(z) dr X1

/t2(7" dr cos Is /,/2(7") d 2

From this formula we see that, for every compact interval [to, tl] with tl > to and every
(xx, x2) in 2\{0}, the control system ]" is strongly controllable from (to, (xx, x2)) to 2\{0}
at time tl. Moreover, if Dwf denotes the partial derivative of f with respect to the pair of
variables (Wl, WE), then we have

Dwf(Xl, x2, Wl, w2) x1

X2 X1

which is an invertible 2 2 matrix for every (x, x2) in N2\{0}. By Theorem 5.8, the
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derivative

is a surjective linear mapping for every choice of the control (u, u2). Hence, Theorem
4.9 can be applied to compact subsets of 2\{0}.

Acknowletlgmenl. The results of this paper are a portion of the author’s doctoral
dissertation written under the supervision of Professor Felix Albrecht at the University
of Illinois at Urbana-Champaign.
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ON THE ADJOINT PROCESS FOR OPTIMAL CONTROL
OF DIFFUSION PROCESSES*

U. G. HAUSSMANN"

Abstract. For the Markovian control problem
T

minE{f l(t,x, u)dt+c(x(T))},
dx f(t, x, u) dt +r(t, x) dw,

it is shown that the adjoint process appearing in the maximum principle has the form

{c)C ftTolp(t,x)=-Etx --x(X(T))d(T,t)+ -x(S,X(S),(s,x(s))(s,t)ds
where t is the optimal feedback control, Etx denotes conditional expectation, and is the fundamental
matrix solution of

Of Oo"dy --x(t, x(t), a(t, x (t)))y dt + ---x t, x(t))y dWk.

Here, r is the kth column of o- and Wk is the kth component of the Brownian motion w, It is also shown that
p(t, x(t)) satisfies (* denotes transpose)

Of* Or Ol*(tdp* --x (t’ x(t)’ t(t’ x(t)))P* +-x (t’ x(t)) Vx(t’ x(t))rk(t’ x(t))+
Ox

x(t), (t, x(t))) dt

Vx(t, x(t))cr(t, x(t)) dw,

Oc
p( T) ---x (X, T)),

where V,, is the Hessian of the value function V.

1, Introduction, Consider the completely observable stochastic control problem

(1.1) min, Et
l(t, x, u) co(% xO’))

subject to

(1.2) dx=f(t,x,u) dt+o’(t,x)dw, x(0) Xo,

(1.3) EciO’, xO’)) O, 1," ", ko,

where E stands for expectation, - is the first exit time of the process {t, x(t): => 0} from
an open set (0, T) G cRd/l, (d + 1)-dimensional Euclidean space, x0 G, w is a
standard Brownian motion on (lq, , P) with values in Ra, l, f are defined on [0, T]
Idx U, where U c " is the set of control points, and where c maps [0, T] d into
ko+l. The minimization in (1.1) is taken over the admissible controls R, i.e., all Borel
functions mapping [0, T] G into U.

To be more precise, with o- and & Lipschitz continuous in x, r bounded, and
lO (t, x)l2 _<- K (1 + Ix 12), let x be the unique solution of

(1.4) dx &(t, x) dt + r(t, x) dw, x(O) Xo.

* Received by the editors September 19, 1979, and in final revised form June 16, 1980. This research was
supported by the Canadian Natural Sciences and Engineering Research Council under Grant number A8051.

" Department of Mathematics, 2075 Wesbrook Mall, The University of British Columbia, Vancouver,
B.C., Canada V6T 1W5.
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If we assume f(t,x, u)--(t,x)+o-(t, x)O(t, x, u), [O(t, x, u)lZg(l +lxlZ), it follows
from Girsanov’s theorem that for any u ag there is a probability measure pu and a
process w U( which is a Brownian motion under P,. such that

(1.2)’ dx f(t, x, u) dt + o-(t, x) dw u.
For u e 0-//, we define

J(t, x, u) EtUx[ l(s, x(s), u(s, x(s))) -k- Co(r, x(7"))

where Et% is the conditional expectation under pu, given x(t)= x. Now the problem
(1.1)-(1.3) can be reformulated precisely as

(1.1)’ min J(0, x0, u),
uO/

subject to

(1.3)’ E)xoCi(’r, x(’)) O, 1,. ., ko.
This problem can be attacked either by using the maximum principle developed by

the author in [7], [8], or (in the case k0 0) using dynamic programming as presented by
Bismut [1] or Fleming and Rishel [5], to conclude that any optimal control must satisfy

(1.5) t(t, x) arg max H(t, x, v, p(t, x)) a.e.,
vU

where/-(t, x, v, p) PC’(t, x, v) (t, x, v) and where p is the adjoint process (in row
vector form). Let us write/3 for pa and " for Ea for w a

In 2, we shall use the maximum principle to reduce the problem with k0 0 to one
where k0 0, i.e., c Co, so that dynamic programming applies. Let us now assume
k0=0.

In order to apply the maximum principle, one must have at hand a reasonable
characterization of p. If we define the value function

V(t, x)=- inf J(t, x, u),
Ol

then by the principle of optimality V(t, x) J(t, x, t). Assuming smoothness, then from
[5, Chapt. VII, it follows that

dV(t, x(t))= -l(t, x(t), t(t, x(t))) dt + Vx(t, x(t))r(t, x(t)) dye.

On the other hand, from the maximum principle, if

(1.6) M(t) "t

then

dM X(t, oo) d,

where (x(t, oo)lx(t)=x}---p(t,x)cr(t,x) so that p=-Wx-(OV/OXl, O V/Ox2,, 0 V/Oxa). These results are not satisfactory because one would like to characterize p
independently of V since it is often difficult to solve for V.

For the case of nonanticipative controls u (t, o)) and G Re, Kushner 12 derived a
maximum principle with adjoint process ,6 given by (2 is the optimal Ito solution, t the
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corresponding control)
T

(1.7) p(t) -E{cx(T, (T))dp(T, t)+ It lx(t, (s), (s))(s, t) ds ft},
where (t, to) is the fundamental matrix solution of

d

(1.8) dy =fx(t, (t), fi(t))y dt + rx(t, (t))y dffk,
k=l

with (t0, to) -/, the identity. Here; rk is the kth column of r and {t} is the r-algebra
generated by w(s), s <- t. This work does not extend to the closed loop situation, but the
author has shown [8], [9], [10] that if is smooth, then p (in the closed loop case with
G [d) is given by

T

where is the fundamental matrix solution of

(i.10) dy (fx +futx)y dt
k

In this work, we delete the smoothness requirement on t, and we show that we can take
T

(1.11) p(t,x)=-txlcx(T,x(T)).(T,t)+It lx(s,x(s),a(s,x(s))).(s,t)ds},
where is defined by (1.8), but with a(t) replaced by the feedback control a(t, x(t)).

Long ago, Fleming [3] noted the difficulty with the smoothness assumption
inherent in (1.9), (1.10), and showed that if r is constant, if U g’, and if a(t, x) is
smooth in x, then one can replace (1.9), (1.10) by (1.8), (1.11). Our approach for the
case r T is still based on partial differential equations and dynamic programming, but
assumes only minimal restriction as required for (1.8), (1.11) to make sense. We smooth
the problem and show that the limit of the value function of these smooth problems is a
generalized solution of the Hamilton-Jacobi-Bellman equation (H-J-B equation).
Hence, for the unconstrained problem, our version of dynamic programming gives an
existence result under hypothese,s weaker than those in [5] but stronger than those in
[1 ]. However, unlike [1], we can show that p

After the reduction in 2 to the case k0 0, we develop the dynamic programming
results in 3. In 4, we then establish (1.11) for the unbounded case (r T), and in 5,
we treat the case of G bounded when the H-J-B equation is strongly parabolic. Here,
we use a general approach suggested by Davis [2] to derive a representation for Vx.

We remark, as pointed out by Bismut, that p as defined by (1.11) does satisfy an, Ix(s, x, u)d(s, t) ds,equation. If (t, to)=--(t, to)- if p(.t)---cx(T, x(T))(T, t)- T

and if E{iO(O)lx(s),s<-t}-(O)+ Ek=l 0 //t dWk, then

p(t, x)= Etx{p(t)} /{p(t) Ix(s), s <= t}

T

={ (T)(T, O)-It lx(s)d(s, O)ds[x(s),s<-t}(t, O)

={p(O)lx(s),s<=t}I’(t, 0)+o Ix(s)(s, O)ds (t, 0).
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Since

then

(1.12)

We shall identify the unknown functions Ok in terms of V at the end of 5. The
results of this work have been applied to solve some simple control problems (cf. [11 ]).

Finally, we point out that the constraints (1.3) could just as well be taken as
inequality constraints or as constraints in integral form rather than terminal constraints.
The results do not change.

2. Reduction ot the problem. We shall first reduce the problem to the case when
is independent of u, since the maximum principle [7] requires the cost functional to
depend only on x, not u. Then, using the Lagrange multiplier feature of the maximum
principle, we shall observe that an optimal t solves a new unconstrained problem.

For the purposes of this section, we need only make the assumptions A-A8 of [7];
however, instead we make the following stronger assumptions since they will be needed
later.

(H) r(., .), is bounded on (0, T) G.
(H2) f(t,x,u)=(t,x)+r(t,x)O(t,s,u), l(t, x, u)= l(t, x)+12(t, x, u) where &,

8, 12 satisfy a linear growth condition in x, i.e.,

[(t, x)[z + [o(t, x, u)[z + [Iz(t, x, u)[ <=K(1 + Ix[Z), O<-t<-_T, ueU,

and where 0, 12 are continuous in u for each (t, x)e Q.
(n) Ic(t,x)l=+ll(t,x)l=<-g( +ix[) for some po<m.
In addition all functions are Borel measurable.
Let us now consider the problem

(2.1) min J(0, o, u),

subject to

(2.2) /’i(r, 2(r))= O, i= 1,..., ko,

where (* denotes transpose) *=(x*,a+l), *o =(x’,O), ](t,,u)=E,,’
{o(r, (r)) + ]’ l(t’, (t’)) dt’},, ?g(t, ) c,(t, x) if > 0, (t, ) Co(t, x) +a+ if 0,
[’(t, ) lt(t, x), and where Et." is conditional expectation under p-u, and satisfies

(2.3) d f(t, , u) dt + (t, ) de,,

with if* (w*, Wo), Wo a scalar Brownian motion independent of w, (11 is enlarged to

), f’(t, , u)*= (f(’, x, u)*, lz(t, x, u)), ’(t, x)= (o’(,, x) O)0 1
r is as before but u, the

admissible controls, are still measurable functions of x* (.1, , a), not of a+1; i.e.,
the problem is partially observable with u u(t, x). It is well known that (2.1), (2.2) is

equivalent to (1.1)’, (1.3)’; i.e., both problems have the same optimal controls and
values (cf. [19, p. 452]).

According to the maximum principle [7], [8] (a slight variation of the proof given in

[7! allows the removal of the hypothesis that f be continuous in u uniformly in t, and



OPTIMAL CONTROL OF DIFFUSION PROCESSES 225

extends the result to the Markovian case), if t is optimal, then the.re is a Lebesgue null
set N, and a vector a Rk/l such that for tN (E is expectation with respect to P, the
optimal measure on 1)
(2.4) a(t,x)argmaxE{a*;(t)(t,)-(t,, v)lx(t)=x} with probability 1,

vU

where we use the pseudoinverse if a matrix is not invertible, and
T

f=--(z, (z))+ Io l*(t, (t)) dteo f_, + Io ;(t) d(t),

eo* (1, O,...,0).

But if [cf. the martingale representation theorem]
T

(2.5) L =-- c(’r, x(’r)) + Io dt eo L+ Io ;g(t) d,(t),

then L L + Wo(’)eo and for -<_ z,

(2.6) ,(t) (x(t), e0),

because o )d+l q- Co, and da/x 12 dt + dwo. But (2.6) implies that,(t) is {x (s)" s =< t}-
measurable. Hence, (2.4)becomes, for <- z, a* (ao, a, , ako),

(2.7) t(t, x)e arg max {a*,(t, x)tr(t, x)-f(t, x, v)+ aol(t, x, v)},
vU

where $(t, x)= {)((t)lx(t)= x} with X defined by (2.5). Thus, we are back to a
completely observable d-dimensional problem with p a*,r-1. From (2.5) and the
Markov property of x(. ), it follows that

dV(t, x(t)) -l(t, x(t), u(t, x(t))) dt + X(t) d,

so that X(t) is x(t)-measurable; i.e., X(t, to)= 2(t, x(t, to)) with probability 1.
We shall now exploit the Lagrange multiplier feature of the maximum principle.

This is best done in some generality, so let us consider a general problem. Define , x,
pu as in 1 so that (1.4) and (1.2)’ hold. Let Lo, L1, L2 be [, kl, [k2.valued functions
defined on the set of trajectories of x, i.e., the space of continuous functions, and assume
that

[L(x)[ _-< K (1 + sup {Ix (t)lo: 0 <_- _-< T}),

where L* (Lo, L*, L*) and K, po are finite constants. Now the problem is

(2.8) min {EULo(x) ELa(x) <-_ O, E’L2(x) O, u }.

Let us first show that, subject to constraint qualifications, the maximum principle
conditions are sufficient for optimality.

LEMMA 2.1. If there exist ll, a O, with ao<= O, a <-O, such that La <= O,
al" L =0, JL2=O, a*Xtr-f" <-a*Xtr-fa a.e. (dtxd) for all u U where X is

defined by
T

L ’L + Io xd,
then is optimal provided the following constraint qualifications hold"

i) If Lz O, then {E"L2: u ll} contains a neighborhood of O.
ii) IfL O, there exists u all such thatE"L2 0 and E"L1 lies in the open negative

orthant.
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Proof. The hypotheses imply that a E"L <-a. _.L aoLo (cf. [7, (3.4)]). Since
a E’L=aoEULo+al EULI+a2 E"L2, then

aoE’Lo <-_ aoELo;

i.e., t is optimal if ao 0. But if a0 0, then (ii) implies that a 0 and now (i) implies
that a2-0, contradicting a 0. Thus, the constraint qualifications eliminate the
abnormal case a0 0, and the proof is complete. Note if Li 0 then ai, 1, 2 should be
taken as 0 in the statement of the lemma. This fact yields

COROLLARY 2.2. For the unconstrained completely observable problem (i.e.,
min {E"Lo(x) u 0-//}), the maximum principle is sufficient ]’or optimality.

COROLLARY 2.3. If , a are as in the lemma and , u’ optimal, then ce*X’tr-xf <=
fu’a*X’o’- a.e. for all u U, where X is given by

T

(2.9) L E’L + [ X’ dw’.
o

Proof. The corollary says that the multiplier a’ corresponding to u’ can be taken as
a. As in the lemma,

(2.10) a EL<-a ;L=aoiLo=aoE’Lo<=a E’L,

the last equality follows since , u’ are both optimal, hence must have the same cost.
Now (2.9) yields

T

(2.11) EU(a L)=E’(a L)+E’ f flua*x’cr-l[fu-f’]dt,
o

where/u is the Radon-Nikodm derivative of P" with respect to P’. Then (2.10), (2.11)
and the maximum principle (cf. [7, (3.5)]) imply the result.

Suppose now that t is optimal for (2.8) and that a is given by the maximum
principle. Then (2.10) implies that t is optimal for the unconstrained problem [ff -a ],

(2.12) min {Ea*L(x) u q/},

and also that if u’ is also optimal for (2.8) then u’ also solves (2.12). There is, however,
one further point to consider. For (2.8), the adjoint process is defined by

p(t, x)= a*l.{X(t) Ix(t)= x}tr(t, x)-1

-{*x(t)lx(t)= x}cr(t, x)-,
so it is also the adjoint for (2.12) It is this latter which we shall actually compute. But
suppose in (2.12) we use u’ as an optimal solution, to obtain p’(t,x)=
-E’{ff*X’(t)lx(t)= x}tr(t, x)-1. Is p’=p?

With u u’ in (2.10), we have a E’L a L and hence,

T

a.L=/(a.L)+Io a xd

T

=E’(a L)/ fo a. x’ dw’
T T

E’(a L) + fo x’ dW- fo ot X’o’-l(f’-?) dt,
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O1"

ce (X X dr + X’tr- (f’-) dt O.

The nonnegativity of the second integral (Corollary 2.3) implies that a X a X’ a.e.
(dt x d). Hence, two different optimal controls give rise to the same adjoint process.

If we now apply these results to our original problem (1.1)’, (1.3)’, then we can
conclude’ if u is optimal, then it is optimal [with c* (Co, cl,. ’, Cko)] for

(2.13) min Eo -c*c(’, x(’))- co l(s, x(s), u(s, x(s))) ds
uO

This follows from (2.7) and Corollary 2.2. Moreover, the adjoint process is independent
of which optimal control is chosen.

3. The vle efi. Let G N so T, write c(x) for c(T, x), and let k0 0,
i.e., no constraints. We assume that

( 0
(t,x,u)=(t,x)+

g(t,x,u)

(t, x) (0 0 )0 (t, x)

where g has d- components and is a (d-)x (d-) matrix. We make the
following assumptions’

(A) U is compact.
(A) , are bounded on Q [0, T]xd’

is continuous on Q;,, ,, g, exist for each (t, u) and are bounded on Q x U;

If(t, x, u)l g(1 + Ixl=);
g is continuous on Q x U.

(A3) 12(t, x, u) is continuous and (/1),, (/2),, Cx exist;

Ilk(t, x)l + Ilk(t, x, u)l= + I(l)(t, x)l= + I(l) (t, x, u)l=
+lc(x)l=+lc(x)i=g(1 + Ixl=),

(m4) The system (1.4) has a transition density if(s, x, t, y) such that for some

#>1, T

for all s’> s.
All functions are assumed Borel measurable and all x derivatives are assumed

continuous in x.
Observe that A4 is satisfied if (t,x)=A(t)x, (t,x)=(t) and (A,) is

completely controIlable, [5, Thm. 9.1], or if and , smooth, [6, Chapt. 6, Thms.
4.5, 5.4], or if and is uniformly continuous, bounded, [14, Thm. 8.1].

In 15], 16] Fleming proves that the H-J-B equation has a generalized solution for
the cases G N, G bounded, respectively, under the added hypotheses that , are
bounded and continuous (although the x derivatives need not be continuous in x) and
(t, x) (t, x+, , xe). Then in [17], Rishel shows that this generalized solution is
the value function in the bounded case. We use a method developed in [5] under much



228 u.G. HAUSSMANN

stronger smoothness assumptions to show that the value functional is a generalized
solution of the H-J-B equation. This result and the approximation used in the proof will
then be used in the next section to relate p to Vx.

We now define the nonanticipative controls on Is, T], i.e., (s). u is in (s) if u is a
U-valued stochastic process defined on a probability space (II", ", pu), adapted to a
family of increasing r-algebras {’}, such that there exists a Brownian motion
(wt, ’t ). Hence, if u (s) then

(3.1) dx f(t, x, u(t, to)) dt +or(t, x) dw", x(s) xs,

has a unique solution x" on [s, T], because of A2. For u (t), we set

J(t, x, u)= Et,x c(x(T))+ l(s, xU(s), u(s)) ds

l(t, x) inf {.(t, x, u)" u (t)}.
We shall need the following result. Let y, y be two processes on (, ,/3)

satisfying

dy a (t, yi i),to) dt+b (t,y dff, y (s)-y,

an.d let

Ii(s, yi) ’{yi(y(T)) + Is
7"

where [ai(t, y, o)l+ Ibm(t, y, 0)12_-<K(1 + lyl2),
(t, y, o)12_-< K(1 + [yl2).

LEMMA 3.1.

(i(t yi(t), to) dt},

2i]+[bil<K, and [/y(y)] +laylay

IIl(s, yl)--Ia(s,

Ko l + + + /[la(t, y2(t), w)-a2(t, y2(t), to)[2

+ Ib(t, y2(t))-b2(t, y2(t))12] dt}
1/2

( -]o+Ely (y T))-y2(y2(T))l+ /181(t, y2(t), to)-a2(t, y2(t), to)[ dt.

Proof.
[I I=l E[Ty(py(r)+(1-p)y2(r))l [Y (r)-y2(r)[

T

+ lSy(p2(t)y(t)+(1-p2(t))y2(t))] [y’(t)-y2(t)l dt

T

+[TX(y2(r))- T2(y2(r))]+ff 18(t, y2(t), )-82(t, y2(t), ) dt,

implies that the first termby the mean value theorem. But the growth condition on Ty
on the right is bounded by

B {KI(1 +[yl(r)12q + ly2(r)12q)lyX(r)- y2(r)[2}1/2.
The linear growth condition on a’ b’ implies that ly’(t)[2o< K2(1 +[y’l2")
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Finally,

( t Iy (t)-y t) (y -y + (a (y (t’))-al(y2(t’)))dt’

+ Is (b l(yl(t’))- b (y2(t’))) d,

+ Is (a (Y(t’))- a2(Y(t’))) dr’+ (b (y(t’))- b(y(t’))) d,

and Gronwall’s inequality impliesso that the uniform bound on a , b
[y(t)- y2(t)[2

g ly- yl + [la (y(t’)) a(y(t’))l + b e(y(t’))- b(y(t’))l] dr’

Hence,

[[a (ye(t)) a2(y2(t))[2

The second term is bounded similarly to obtain the result.
COROLLARY 3.2. r(S, y’)-- ’(S, y)l_-<go(1 +[yl2+ly’12o)l/aly’-yl.
Proof. For each u a//(s), we have, from the lemma,

[](s, y’, u)-](s, y, u)] =<Ko(1 + ly[2Oo+ ly’12"o)/2ly’- yl,
so the result follows.

COROLLARY 3.3. [(s, y)[<-K5(1
Proof. Take a 2 b 2 y2 2 2

=T =6 =0, SO yZ(t)0, /2=0, with a (t,y,w)=
f(t, y, u(t, oa)), b r, y y, / c, 6(t, y, o2)= l(t, y, u(t, o2)), ](s, y, u) Ia(s, y ).
Thus,

T 1/2

Ir(s, y, u)l-<go(1 +lyleq)l/e(lyle+Is If(t, O, 0)1 = dt)
T

+E"[c(0)] + J E"]l(t, O, u)]dt

-<_go(1 + lyl2)/2(ly[z + 2(T- s)g)/ +g/2 + (Z- s)g/2,
by (Az) and (A3). The result follows.

Next we approximate the original problem by a nondegenerate smooth one.
Extend onto R x Ra as a continuous function with support on a set bounded in and x
bounded on x [a. Set

COOwhere /3 is a function, nonnegative, with support in S/,={(t,x): [tl<=l/n,
Ix -< 1 /n } and fin ds dy 1. It follows that n is smooth, ’n ’’> " uniformly on compact
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sets, and #,, (#,)x are bounded uniformly in n. Since (c)-1 is bounded on Q, then on Q
]det [_->p >0, so [det ,[_->p/2 on S(’IQ for mm. On SO define
and extend it to [0, T] x to be smooth, invertible, and bounded along with and
(")- uniformly in n. Since (a-X)x, =-a-a,a-, then (")x is bounded. Now set

(t, x) (/n I 0 )0 "(t,x)

Next extend & to be zero off [0, T], and set

’(t, x)= jld j_ (t-s,x-y)"(s, y)ds dy.

Then for any q <, any A compact,

II[’(t,x)-(t,x)ldtdxO.
Moreover, is smooth, satisfies a linear growth condition uniformly in n, and () is
bounded uniformly in n. Next, extend g as a continuous function on x x U, zero for
not in some compact set, and define

g(t, x, u)= [ [ g(t-s, x-y, u)’(s, y)dsdy

on S, x U. Extend g" to [0, T] x x U as a smooth bounded function such that g is
bounded uniformly in n and lg"(t,x,u)[K(l+[x[). Then, g"g uniformly on
compact sets.

It follows now that ", "C’2(); on(n)-l(fn)CX’X(xU);and n,
(g,)--X, (g), ()x, 0, 0 are bounded, c and are defined in the same way as .
Then c and l are smooth, and along with c, (l)x they satisfy a polynomial growth
condition. Moreover, on compact sets, 17 ll and c c in Lq (just as was the case for
). Also l 12 uniformly on compact sets (since l: is continuous).

It now follows from [5, VI.4/6] that the "n" problem has an optimal feedback
solution u(t, x), and that

y"(s,x, u)= V(s,x)= (s,x)="(s,x, u"’X),

where u "’x (t, w)= u (t, x (t, w)) and x is the unique solution of

(3.2) dx="(t,x) dt+"(t,x)dw, x(s)=x,

on (, , P). Then Q satisfies

1 V0=v2+- x,
ni=l

(3.3) + [d-(ff)*]i.V.,, + Vb +min g/Vx, +l"
i/=,+1 uU i=

V"(T,x)=c(x).

We will next proceed to show that I7" --> 17" and I7" is a (generalized) solution of (3.3)
in the limit as n ->

LFMMa 3.4. (cf. [5, Lemma 8.1, p. 179])"
Ca) l’"V,(t, y)l_-<M(1 + lying)/
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(b) For any bounded set A Q and 1 < h < o, them exists MA,x such that

m dy ds - Ma,.i,.i--+

Pro@ (a) follows from Corollary 3.2. Since "V,, are unilormly bounded on
bounded sets as are (cf. Corollary 3.3), then the proof of [5, Lemma 8.1(b)]
establishes (b). (Note that {()*} are equicontinuous and elliptic uniformly in n so
that the a priori estimates are uniform in n.)

We need the following auxiliary result. For u e (s) let xU(t) be the solution of
(3.1) for ts, x(s)=y (fixed), and x(t) be the solution of (1.4) for ts, x(t)=y,
w w. For 0 square integrable in (t, ), adapted, set

(ts(O(")) exp O(t’) dw- 10(t’)l2 dt’

and set [0(t)]* (0, [#-l(t, x(t))g(t, x(t), u(t, w))]*).
LEMMA 3.5. If is measurable and I(t, x)12K(1 +lxl=), then

E"(t, x"(t)) U"{(’(0"(. ))(t, x (t))},

and there exists A o > 1 such that for 1 < A < Ao

sup {E"[’,(0"(.))] u (s), ts}<.

where

dx &(t, x) dt + r(t, x") du,

dv dw + O" (t) dt

is a Brownian motion under P" and 0" is defined like 0 but with x(t) replaced by x (t).
But by law uniqueness (x ", r ,/5) (x, w , PU) so that

EO(t, x(t)) exp (t’) d - "(t’)l dr’ O(t,

[(,(0" l(t,

Moreover, ( is the -algebra generated by the past of x),

E(’(OU) EU{(EU((O")],)}
E"{((0") }

is bounded uniformly in u (cf. [7, Corollary 4.2]).
LEMMA 3.6. IfA is a bounded subset of O, then

(i) P" P ui[ormly on ,
(ii) "" "" ""V, V,, V,,,, i, ] + 1, , d, converge weakly m V, V,, V,,,respectively in

Lx (A) for 1 < <,
"" , pointwise in O, and , is continuous in (t, x+,(iii) for > , V,, ", Xd) for

(x, x) fixed.
Proof. Without loss of generality, assume A =[0, T]XAo. First we establish

#" # pointwise. For u 6 (s)
T
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where n (s) y and, for => s,

d =fn(t, "(t), u(t)) dt+trn(t,]"(t)) dw u.
We now apply Lemma 3.1 with y y2 y, al(t, x, to) f"(t, x, u(t, to)), b tr, 8 ,

2 ,2y c ,anda (t,x, to) f(t,x,u(t, to)),b 2 2
=tr, 8 =l, =c, ff=w .Thus,

fin(s, y, u)-(s, y, u)l
T

<= g6(1 + [y[2q)l/2{ I EU[lf(t,x(t),u(t))-f(t,x"(t),u(t))[2

1/2

+ Io,"(t, x(t))-o’(t, x(t))[2] dt}
+ E]c (x(T)) c(x (-T))

T

+| E"ll"(t, x"(t), u(t))-l(t, x"(t), u(t))[ at.
s

But
T T

lim sup Is Ell’;(t’x’(t))-ll(t’x(t))[2 dt=li, lim su.p Is E"[l’;-ll[2 dt,

since EllT(t, xU(t))-ll(t, xU(t))12<-2g(1 +ElxU(t)]2) is bounded uniformly in t, u
by (A), Lemma 3.5, and the fact that sup {EUlx(t)lq" 0 N _-< T} < oo, for all q < oo. Now
with B {x" Ix I<_- N}, N < m, we have from Lemma 3.5

x"(t))-ll(t, x(t))[2 dt
T

fs, EU[l (t, x(t))- ll(t, x(t))12ts(OU) dt

T T

(I
s’ IB’+ Is, IB)II(, X)--[l(t X)12u{ts(OU)[x(t)-" X}[(t, X; S, y)dx dt

n_l 2--<llt xll2.[s’,TaxllEUEC’s(O )lx(’)-’]t(’,’;s,
T 1/q T 1/q’

where la is the characteristic function of A.
Since l 11 in gq([$’, r] B) for any q < oo, since l (t,.) is polynomially bounded

uniformly in n and t, and since
T

Iu
T

< [[t(’," ;s, y)ll.,t’, a# [ff’s(O")lx(t)- x
d

/(t, x; s, y) dx dt}
(t-q’)/(.-1)

is bounded uniformly in u by (A4), Jensen’s inequality and Lemma 3.5, for 1 < q’ < , q’
Tsmall enough, then llm._.os,E [l-l12dt=O uniformly in ul(s), and so

T
llm_oo E 111 IiI2 dt 0 uniformly in u.
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Next, consider

E’[c" (x (T)) c(x (T))
T=E G(O )lc (x(V))-c(x(T))l

As above, the first factor on the-right side is bounded uniformly in u. Since c" c in
Lq(B), then cc in measure on B. Since the density ff exists, then Ic(x(T))
c(x(T))[lt:lx()lzO in probability for each N<. Moreover, c , c have a poly-
nomial bound uniformly in n, E"Ix(T)I"o < for all qo <, and P{Ix(z)l >N} 0 as
N, so that $x>lc(x)-c(x)l"ff(Z,x;s,y)dxO as g uniformly in n.
Hence, lim, Elc’(x (T))-c(x"(T))[ =0 uniformly in u.

Now consider

x"(t), u(t))-lz(t, x(t), u(t))[ dt,

NEU( + ]l(t,x(t),u(t))-12(t, xU(t),u(t))ldt,

where ZN =min (T, inf: {t->s" [xU(t)[ =>N}). By continuity of 12, l 12 uniformly on
compact sets, so for each N < 00, E iv It t=l dr-, o uniformly in u. Moreover, l., 12
satisfy a polynomial growth condition uniformly in t, u, n and

T T 1/p 1/p

EUl. I’z-12[2dt<-(I 2K(X+EU[xU(t)12q)dt) (E(T-zN))
where qo comes from the growth condition and p-1 + p-i 1. But

! sup

TI{,o:suplx(t)l>_N} ([(0 u) dP

N}sup Ix(t)[ =>
1/A’

uniformly in u, as N- c, for 1 < h < ho, h -1 + (h’)-I 1. Also, E"[x (t)[2p is bounded
uniformly in t, u. Thus, limn-,oo E"]l’-/2[ dt 0 uniformly in u.

The terms involving r and f are treated similarly. This proves that I7""- I7’
pointwise on Q. To establish the uniform convergence on A, observe that Lemma 3.4(a)
implies [Q (s, y) I7 (s, y’)[ =< MAIy Y’I and similarly, for Q, on A. Given e > 0, there
exist points {yi}/M=1 such that the spheres of radius e/(3MA) centered at y cover o.
Hence,

e rn(.) Q(s, y)- lT"(s, y)[ <2+ l<=i<-_Mmax

i.e., Qn (s, - lT"(s,. uniformly on compact sets for each s fixed. Following [5, Chapt.



234 u.G. HAUSSMANN

VI, 8], fix yi and set O"(t, z)= r"(t, y) where

z; y}), j ,
(3.4)

=yj, ]=u+l,... ,d.

Now the a priori estimates of [5, Chapt. VI, Lemmas 8.1, 8.2] and the Ascoli theorem
show that 0 n, 0’, converge uniformly on any compact set. Hence, On(s, z) Q(s, i)

~iuniformly in s where. )7.-y., ]-1,..., u, y.=z., ]--,/1,..., d. Thus, for n
sufficiently large,

max In(s,O,... O, yimax In(s, yi)_ ’(s, yi)- /,..., y)- (s, y )1
liM

E

for all s [0, T]. Substituting this into (*) shows that
Observe that for i> v, $z, Vy,, so that (iii) also holds.
Finally, (i) and the weak sequential compactness implied by Lemma 3.4 imply (ii).

This proves the lemma.
Remark. Ifwe write 0n(t, z, y0) iT.n (t, y), where z is defined as in (3.4) but with

replaced by y0, then the above proof (and the proof of [5, Chapt. VI, Lemma 8.2])
yO (t, z, yO)_> Vy.(t, ) uniformly for (t, z) in aactually shows that for > u, fixed,

compact set, where 17 y o, _-< u, Tg zg, >
We say that W(t, x) is a generalized solution of

d1 y,. ((t, x)’$(t, x))i]Wxixi-Jr- Wx(t, x)4)(t, x)+ ll(t, x)Wt(t’ x)+-
i.i=+l

(3.5)

+min Y’. gi(t,x,u)Wx,(t,x)+12(t,x,u) =0,
uU i=r,+l

if W is continuous on Q, satisfies a polynomial growth condition, and for any bounded
AQ, Wt, Wx,, i=l,...,d, Wx,x, i,f=u+l,...,d, are in Lx(A) for some A>
/x/(/z 1), and (3.5) is satisfied almost every.where on Q.

THEOREM 3.7. Assume A1-A4. Then V is a generalized solution of (3.5).
Proof. By Lemma 3.6(i), 17’ is continuous on [0, T] x {x" Ixl--<N} for all N <

Hence, it is continuous on Q. By Corollary 3.3, it satisfies a polynomial growth
condition. By Lemma 3.6(ii), the generalized partial derivatives are suitably bounded,
i.e., in Lx.

It remains to show that I7" satisfies (3.5) a.e. If 0 is a smooth function of compact
support A in Q, then (3.3) yields

0 VyilCy dy ds
n i=1

(3.6) + I7"7 +
o’=+

Vx.x, + Qcb + l dy ds

+ min E g’/fz, +l Odyds.
uU i=v+l

Now let n c. Lemma 3.4(a) implies that the first term goes to 0. Set a -n(tn),.
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Then

a gi ,,,,4’ (a i ai)

But ]]a.-aij[],,aO [h -l + (h ’)-l =1] because " in L,(A) for all q<, and

" [[a.a is uniformly bounded by weak convergence, soxix

Similar arguments show that the second integral in (3.6) converges to the same
expression without n.

Moreover,

g," (s, y, u) Vx," (s, y) [g, (s, y, u) g,(s, y, u)]"x, (s, y)+ g,(s, y, u) v,(s," y).

Since g" g uniformly on compact sets and Q and g are bounded on bounded sets,
then g Qn Qx, for each (s, in ux, gi y) uniformly (Lemma 3.6(iii)). 12 is treated similarly,
and so the last integral in (3.6) also converges appropriately; i.e.,

0= + 2 am++/+min(ff+/) Odsdy.
i]=+1 U

Hence, V satisfies (3.5) a.e.
CooA3.8. Assume A1-A4. Then there exists an optimaleedback controlor

the (unconstrained) problem.
Pro@ cf. [5, Chapt: VI, Thm. 8.3].
Cooa 3.9. V V.
Pro@ cf. [5, Chapt. IV, Thm. 8.1 and Corollary 4.2].

4. Te eess N. Assume now that we are given an optimal
control e so that

dx (t, x) dt + (t, x) dw

(t, x, (t, x))dt + (t, x) d,

where is a standard Brownian motion on (, , ). We shall first show that, cf. (1.5),
p(t, x)=-(t, x); then we shall give the required representation of (= V). Again,
we treat first the reduced case when k0 0. With x as in (1.4), set (t) (t, x(t, )), and
let be the unique solution

x"(t) xo+ [(s,x(s),a(s))ds+
Then,

c"(2"(r))
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dE el
7"

Q. (t, Y" (t))#" (t, Y (t)) dk"JI- Xi
i +1 0

(4.1) T-o l"(t, $(t), a(t)) dt + "(0, Xo)

T

+ V (t, 2 (t))[f(t, x(t), (t))-f(t, 2 (t), (t))] dt

+ ;, (t, " (t)) di
i=1

[ (t, "(t))a(t, (t)),,
q= v+l 0

Standard arguments using Gronwall’s inequality and the convergence of
[g"(s,x(s))-g(s,x(s))[ds to zero (cf. Lemma 3.6) show that supt [2"(t)
x(t)[ 0 for h <. This and the polynomial growth condition on c (uniform in n)
imply

lc(2"(T))-c(x(T))l {Ko(1 + x(T)[+[$(t)-x(t)l"o)l$(T)-x(T)l}/

+[c (x())- c (x ())l 0,

as in Lemma 3.6. Similarly,
To l(t’(t)’ (t))-l(t’x(t)’ (t))] dtO"

Moreover, V is polynomially bounded uniformly in n so E1:(-) dtO,
V, dk] O. Finally, observe that

0so that if we define the process x(t) e N by x (t) x(t), and if we set y (t) x(t),
(t) z (t) (t), > , then

P (t, (0 n (t, z (0,

where V, 0 are related as in the proof of Lemma 3.6. But by the remark following
Lemma 3.6, for i> , O,(t, z, yo) ,(t, ) uniformly on compact subsets for
fixed. Since sup I()-x(t)0 in probability, then {’supor
supor [i (t)l > N}< e, for all N > N, n > n (but n independent of N). Hence,

"" (t)) , (t, (t)) 0v,(t,

in measure (t, w). Again Lemma 3.4(a), the boundedness and Lipschitz continuity of 5,
and the above convergence in measure imply that

TIoT n (t, n(t)) dj Io V,(t, 2(t)) ,(t, ’(t))]. dixi i]

+ v,(t, f(t))o;,d
T

[ x,(t, x(t))o,
30
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in the mean, since (by Lemma 3.6(iii)) I7"x, is continuous in xj, > v. Thus, we have (recall
(1.6) and following) from (4.1)

(p(t, x(t))+ Vx(t, x(t)))cr(t, x(t)) dvb >-0,

whence follows
LEMMA 4.1. Assume A1-A4. Then

(4.2) pi(t, x) ’x,(t, x), > v.

Note that since x is independent of wl, , w, then p 0 for N v.
Let us write u (s, w) (s, x(s, w; x)) where x(s, w; x), s t, is the unique solution

of

dx (s, x) ds + (s, x) dw, x(t) x.

Then u e (t) and (t, x)= ](t, x, u), cf. Corollary 3.9. Thus, we are interested in
](t, x, u). For u e (t), x fixed, we let x" (s), s N t, be the solution of (3.1) with x" (t) x
on (flu, u, p,). Then we have the following characterization of the gradient.

LEMMA 4.2. For u (t)
T

where " is the fundamental matrix solution of the linearized version of (3.1).
Proof. For z a, let x"’(.) be the solution of (3.1) with x’(t)=x +z. From

well-known estimates (ef. [12, pp. 559-561]), it follbws that
O([z[:) and E"[x’(s)-x"(s)-"(s, t)z]Z=o(zj2) uniformly in s. Hence,

Y(t, x + z, u)-Y(t, x, u)
T

E"Ic[x(T)]*(T, t)z + J, l(s, x(s), u(s))*"(s, t)z ds

+ c[x"()][x"’()-x"()-"(, )z]

+ [c (( ())x"()+()x"’())- c(x"())][x’()-x"()]
T

+ J, l(s, x"(s), u(s))[x"’(s)-x"(s)-"(s, )z]

+ [l(s, (-())x"(s)+()x’, u(s))-l(s, x"(s), u(s))]

[x"’(s)-x"(s)] s}
T

by the continuity and polynomial growth of c and I. Here, 0&i(w) 1. This proves
(4.3).

Define by
d

(4.4) d(t, t’) f(t, x(t), (t, x(t)))(t, t’) dt + (t, x(t))(t, t’) d,

with (t’, t’) I,
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THEOREM 4.3. Assume Ax-A4. Then

-p,(t, x)= v,(t, x)
T

(4.5) ltx{ Cx(X(T))dP(T, t) + It lx(s, x(s), a(s, x(s)))(s, t)ds},i i> u.

Proofi Since ](t, y, u) V(t, y) >_- O, with equality at y x, and since ],, V, exist,
then

Jx,(t, x, u x) Vx,(t, x), > ,.
The result now follows from (4.3) since u(s, to) t(s, x(s, to)) with pu fi]x(t=, so
that Cu .

If we strengthen AI-A4 by demanding that 12 satisfy a linear growth condition, then
the results of 2 apply and so (4.5) is also valid for the constrained case, i.e., k0-> 1, so
that (c is now a matrix)

T

pi(t, x) Jtx{ a*Cx(X(T))dp(T, t) + ao t Ix(s, x(s), a(s, x(s)))(s, t) ds} > u.

$. Finite domains. Let G be bounded with boundary OG of class Cz, and set
O (0, T) x G. Again, we begin by considering the unconstrained case, i.e., ko 0. If
one proceeds as in the previous section, some difficulties arise in discussing the
dependence of z on the initial point x or x + z in Lemma 4.2. Instead, we shall restrict
the discussion to the smooth nondegenerate case where we can apply an idea due to
Davis [2].

(As) o" is in cX’2((); i.e., the partial derivatives o’t, o’xx exist and are continuous on
; tr(t, x)-x exists on (.

(A6) f and are in C’I(t U); i.e., ft, f,, lt, lx exist and are continuous on t U
as are/, I.

(A7) c(T, x) is in C2(G), and c(t, x) (t, x) on [0, T]OG, where is a function
in C’2(().

Observe that Ax, As-A7 imply that V is in CI’2(Q)(’I C’((), [5], and A4 is
satisfied with & 0. Let us write 0*Q for {T} G [0, T] OG.

We now apply the argument of Davis to obtain a representation of V,. As we shall
need to find d{ Vx}, we shall need an expression for dV, i.e., for Vxt +V, where is
the differential generator of x under/; i.e.,

.V - aii(t, x) Vx,x, + Y fi(t, x, (t, x)) Vx,,
i,j=l i=l

where aii(t, x)= [tr(t, x)tr(t, x)*]ii. Since we have

(5 1) Vt + ..V -Jr- 0 V(t, x) c(t, x) for (t, x) 0* Q,

we might just differentiate with respect to x, except that we do not know that Vt,,, V,,xx
exist! Also, to apply Ito’s lemma, we would require Vx to be C1’2, and in fact it is only in
W]’2 (Q), A < o; i.e., V,t and Vxx, are in Lx (Q). Thus, an approximation argument due
to Rishel [5] will be needed.

Let us write 4(t, x) for b(t, x, t(t, x)) for any function b, but note that

cx(t, x)=--qbx(t, x, t(t, x)) #-x (t, x)=--b(t, x, t(t, x)) +cu(t, x, a(t, x))t(t, x).

Now set H(t, x, p) maxu t/-(t, x, u, p), cf. (1.5). The following lemma is crucial.
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LEMMA 5.1. Assume A1, As-AT. Then H is differentiable almost everywhere and,
for any k 1, 2, ..., d,

(5.2) -:-H(t, x, Vx(t, x)) -, Vx,xk (t, x)(t, x)- Vxk (t, x)- (t, x) a.e.
OXk

Proof. Since V is in C1’2(Q) c’l(O) then as in [4, (2.6)] for K c Q, K compact,
there exists CK such that if x, c K, then

[H(t, x, V,(t, x))-H(t, , V,(t, 2))1 <- CKIx
Hence, if we set h(t,x)=-H(t,x,-V(t,x)) then Oh(t,x)/OXk exists for XkeNk, a
Lebesgue null set depending on t, xl, Xk_, Xk/, Xd. Moreover,
{(t, x): Oh(t, X)/OXk exists} is measurable, cf. [18, p. 294, ex. i], and so by Fubini’s
theorem Oh/Oxk exists a.e. For such (t, x), (5.2) follows as in [4, Lemma 2.1]. The
importance of this result is that because we are using the optimal control , then no
derivatives with respect to u need be taken.

Next we differentiate (5.1) to obtain an equation for Vxk=-Vk as a Schwartz
distribution; moreover, this equation will have a unique solution. Then we shall show
that the equation even has a solution in W’2 (Q) for any h < o, so that this solution
must be Vk, i.e., Vk WI’2 (Q).

LEMMA 5.2. Assume A1, As-A7 and that G’ G is compact, qb C2, the support of
qb(t, is contained in G’, and c(O, x) O. Then

Io
T

IG--gk(t--i (] aiigx)x,

Pro@

1
Wk (agj)x Vixi] E [ivk + (Lk)i vii k]) dx at- [(aij), , --i X,

+ [o Cx (T, x)qb(T, x) dx O.

Vbx dx dt Vqbk dx
t=0

+ (V)dx
3Xk o

-Ic(T, x)6(T, x) clx,

since b(0, x) 0 and 4(t, x) 0 for x OG. But the first integral is also equal to

Io Io io o- Vqbx, dx dt V dx at

T

=fo fG, Vxk+Vxktdxdt
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Since, on (2,

1

then

--vk, -aiiV,,,x,+iV,,,+ 4xkdxdt+ c(T)6(T)dx=O.

However,

Io aifV,x,4xk dx =-Io V,[(aifck)x (aif)x4]x, dx

V (aifqb), Vx dx, (aif)x

k Vk (aif)V,]O dx,aiV,4, + [(ai), x,

and so (5.3) follows from the above and (5.2).
COROLLARY 5.3. Vk is the unique solution in VE(Q) of

1

(5.4) x,

(t,x)= Vxk(t,x) for (t,x)eO*O,

where

1(t,x)=-Z(ag)xV,,+YV, +L"
if

Note that V2(Q) consists of those elements in W’I(Q) for which
esssup,(lO(t,x)l=dx)/=/qio[O(t,x)l=dxdt)a/=<o, where W’I(Q) is the
Sobolev space of functions in L2(Q) for which @x 6 L2(Q); cf. [13] for more details.

Proof. From (5.3), it follows that Vk satisfies (5.4). Since V 6 C1’2(Q) and V 6

C(0) then Vk V2(Q). C(() is the space of continuous functions on t. Now [13,
Chapt. 3, Thm. 3.1] gives the uniqueness.

LEMMA 5.4. V Wq’2 (Q’) for any q <, where Q’= G’ x (8, T- 8) with G’
open, G’ c G, 8 > O.

Proof. On Q’, consider

1
(5.5) ut +- Z aifu,, + qt O, u= V, onO*Q’.

According to the results in [5, Appendix E], Vx, is H61der continuous on 0* Q’, in
x with parameter/z and in with parameter x/2, where/z 1 -(n + 2)/h and h > n + 2
is arbitrary. It now follows from [13, Chapt. 4, Thm. 9.1], that (5.5) has a unique solution
in W’z (Q’) for q < h/(n + 2). If q > n + 2, i.e., h > (n + 2)2, then u and u, are in C(0’).
Hence, u V2(Q’) and so by the last corollary (restricted to Q’) it follows that
u VW’ (Q’).
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Using an approximation argument from [5] together with the ideas in [2], we have
THEOREM 5.5. Assume A1, As-A7. Then

(5.6)

-p(t, x)= Vx(t, x)

,t{ Cx(r, x(r))(r, t) + It Ix(s, x(s), t(s, x(s)))(s, t) ds}.
Proof. Since V is C1’2(Q), Ito’s lemma implies p -Vx. Vk can be approximated

by C functions ’ such that ’, x" converge uniformly to Vk, Vk, and , x"
converge in Lq(Q’) to vkt, Vxkx. Then

and the boundedness of tr, or,, ’, ’ implies

--,txd((klm) Etx dPkl 0? + - iiOxix + i fil[cxi

By the same argument as in the proof of [5, Lemma V.11.2], it follows that for
t’> t>0, r’ inf {s > t" x(s)gQ’},

Jtx{fkl(t A 7", t) Vk (t’ ^ ’, x(t’ ^ "r’))}

=Etx fkl("l" t)Vk(r’,x(r’)) + --(kl vkt 4" ., aiiVx,x,-+-EVk
Xi

" 11

in

Now let t’ --> t, use (5.5) and sum on k, to obtain

v,(t,x)

-’tx{ gx(’F’, X(’F’))f(7", t)]l "+" It k [ .. (aii)xk gxix, "" gxfxk "" xk]fkltl

ik in

fx(S, X(S))f(S, t) dS}l.
(5.6) is obtained in the limit as Q’’ Q, and so the proof is complete.
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It now follows from (2.8) that, in general (ko # 0), we have

(5.7) p(t,x)=Jt a*cx(’,x(’))dP(’,t)+ao lx(s,x(s),t(s,x(s)))dP(s,t)ds

where c is given by the maximum principle, so c # 0 and a0 0.
Remark. We can now obtain the forward equation satisfied by p at least in the

nondegenerate case, cf. (1.12), under the hypotheses At-A3, As-A7. In the proof of
Theorem 5.5 we only looked at the drift term for d(lm), but the same analysis shows
that (with 0, x x0) (since 7 V uniformly)

Vx,(O, xo)={c(,,x(,))O(r,O)+ x(s,x(s))O(s,O)ds

in the space L(), or

V(O, xo) c(r, x(r))(, O) + (s, x(s))(s, O) ds

=-(0)- (v)(s, o)

-(o/- [(s)+(v(s, o)].
The unbounded case (r T) follows by using the domains O (0, T) x {x: Ixl N l} with
boundary condition V(, x(r)) and then letting m. Hence, we have

O(s) =-(V)(s, x(s))(s, 0) with probability 1.

But p(s) %(s, x(s)) and

(s(s, 0)= -(v)(s, x(s)),

so that (1.12) written in column form gives

(5.8)

dp* -{ (t, x(t))p*-X [o’ (t, x(t))]*Vx(t, x(t))cr(t, x(,))- (t, x (t))*} d,

Vx(t, x(t))tr(t, x(t)) d,

p(’) =-cxO’, x(’)).

Note that if we think of p in feedback form, i.e., p(t, x) V(t, x), then we might write
Vxx(t, x(t)) as -px(t, x(t)). If tr is independent of x, then the drift term alone gives the
deterministic adjoint equation:/*=-p*+ . Finally, if tr 0, i.e., the problem is
deterministic, then (5.8) reduces to the deterministic adjoint equation. Hence, it seems
very likely that (5.8) also holds in the degenerate case. Note that in the definition of V
and in (5.8), we simply replace c and by -a*c and -col (although a is unknown) in
case constraints are present, i.e., ko 0.
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NONLINEAR FILTERING FORMULAS FOR DISCRETE-TIME
OBSERVATIONS*

YOSHIKI TAKEUCHI" AND HAJIME AKASHI"

Abstract. This paper presents two types of nonlinear filtering formulas in the form of differential
equations for the case where the signal is a continuous-time and the observation is a discrete-time process.
The observation is corrupted by additive Gaussian white noise. The method of solution is based on Girsanov’s
measure transformation technique and a family of probability measures is introduced which is indexed by the
continuous-time parameter. By computing the time evolution of these measures, the conditional expectation
of a functional of the signal, given the observations, with respect to the original measure is smoothly updated.
The obtained formulas are recursive with respect to the observation sequence whereas the well-known Bayes’
formula is nonrecursive in the general case considered.

1. Introduction and summary. This paper is concerned with the continuous-
discrete nonlinear filtering problem within the additive white Gaussian noise frame-
work: Let x,, [0, T] be a continuous-time signal process which takes values in a
complete separable metric space S. Suppose that at each ti [0, T], 1 _-< / _-< N, we have
an observation zi R" related with x,, t-<_ T such that

(1) zi=hi+vi,

where hi is a certain functional of xs, s =<ti and Zk, k <=f-l; and vi, f-<N is a
zero-mean white Gaussian noise sequence such that

(2) Eviv 3ikR f
and for all , vi is independent of xs, s <= and Zk, k <_-/- 1. At each time Iti, ti+l), we
wish to compute the minimal variance filtered estimate of f(xt) based on Zk, k <=.i, i.e.,
the conditional expectation E[f(xt)[Zk, k-</’], for a suitable real-valued function f
on S.

For the corresponding continuous-time problem, quite general formulas are
applicable [1]-[7]. In particular, Fujisaki et al. [1] derived a stochastic differential
equation for the filter which can be applied in most cases. As is pointed out in [1], a
generalized Bayes’ formula [9] is useful in applications only when is fixed, because the
estimate at a future time can not be computed without using all the past data. The
advantage of the filtering formula in the form of a stochastic differential equation lies in
the recursive structure with respect to the observed data.

Although the continuous-time problems are of much theoretical interest, discrete-
time observations are more convenient in many applications because of digital
computer implementations. For the continuous-discrete case described above, it is also
desirable to obtain a formula which is recursive in the observation zi. By applying the
classical Bayes’ formula, Jazwinski I-8] obtained such a recursive formula. However, his
result is not applicable unless xt is a Markov process in Rn, hi is simply a function of xtj,
i.e., hi hi(xti), and vi, / <= N is completely independent of xt, <= T.

This paper presents a new method of updating the conditional expectation from
E[f(xti)lzk, k <j- 1] or E[f(xti_l)lZk, k <=f- 1] to E[f(xti)]Zk, k <-/] via differential
equations which are applicable for the general class of continuous-discrete nonlinear
filtering problems. First, a family of probability measures" fit, [0, T] is introduced by

* Received by the editors January 2, 1980, and in revised form June 2, 1980.
t Department of Precision Mechanics, Faculty of Engineering, Kyoto University, Kyoto 606, Japan.
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a measure transformation on the original probability measure P. Roughly speaking, the
measure/fit for [ti_l, i] is defined in such a way that the conditional expectation
E’[f(%)lzk, k <_-] with respect to/6t is the estimate of f(xt,) under the hypothesis that
Zk, k-<]-1 are given by (1) and the jth observation zi is replaced by

tit(3) z u, ds + vi,
t,-1

where ut, [0, T] is a measurable process with the property

(4) hi us ds, 1 <- j <= N,
--1

(see Definition 2 and Lemma 2 for details). Defining Pt in this way, we have
E"-[f(x,)lz, k _-</’]= E[f(x,,)lz, k <-f- 1] since zj-1 is composed of no signal (z.-1 is
the value of z at t= ti_l). On the other hand, we also have Et’[f(xt,)lz, k _-<f]=
E[f(x,,)lz, k =< j] since z. zi. Consequently, by computing the evolution of
E’[f(x,)lz, k =<]] with respect to t, a formula is obtained by which the estimate is
updated from E[f(x,)lz, k <=.i- 1] to E[f(xt,)[Zk, k <=]] (see (34) in Theorem 1).
Similarly, by computing the evolution of E’[f(x)lz, k <-.i], we have another formula
which directly updates the estimate from E[f(%_)lZk, k <-j- 1] to E[j:(x,)lz, k <-i"]
((45) in Theorem 2).

This paper is organized as follows. In 2, notation, definitions and technical
conditions are given to formulate the filtering problem precisely. Section 3 is devoted to
presenting preliminary lemmas concerned with the measure transformation and the
properties of the transformed measures. These results are applied in 4 to derive two
types of nonlinear filtering formulas (Theorems 1 and 2). Two examples are given in 5
for the better understanding of the results.

2. Notation and definitions.
General notation. Throughout this paper, column vectors are denoted by lower

case letters and matrices are denoted by capital letters. The identity matrix of any
dimension is L The prime denotes the transpose of a vector or a matrix. The Euclidean
norm is denoted by l’ ]. The trace of a square matrix A is tr [A], and if A is nonsingular,
A- denotes the inverse matrix of A. The triplet (f, , P) is a complete probability
space where iq is a sample space with elementary events o, is a r-algebra of the
subsets of l’l, and P is a probability measure. E and El. I], 3 c denote respectively
the expectation and the conditional expectation, given , with respect to P. o,{. } is the
minimal sub-r-algebra of with respect to which the family of -measurable random
variables {. } is measurable. If and ’2 are sub-r-algebras of , then ’ v ’2 denotes
the minimal r-algebra containing both and. From now on, it is assumed that each
sub-o--algebra contains all null sets in .

Signal process. Let xt, 0 -< T be a stochastic process on (lq, , P) which describes
the signal or the state process of interest and takes values in a complete separable
metric space $. (In particular, S could be the n-dimensional Euclidean space Rn.) The
only major assumption on xt, <= T is that the space D*() (see Definition 1 below) is
nonempty.

Observations. Let i, 1 <- j -< N be a finite set in [0, T] such that 0 < tl <... < tN T.
At each discrete time point i, we have the observation zi given by (1). For convenience,
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let to 0 and Zo 0. Define or-algebras:

i=cr{zk;k<=j}, O<=j<=N,

@i tr{x s<--_ti+} v o’{z k <_-j},

N o’{x, s _-< T} v O’{Zk k =< N},
:t o-{x,; s <_- t} v o-{z,; k <-1-1},

0<]<N-1

te[ti_,ti), I<-]<-N,

T

Io El dl= dt <,

(5) dtlt(f) f(xt) Ef(xo) Msfds

is an (t, P)- martingale.
It should be noted that in the special case where xt is a Markov process, Mt is the

generator given by

(6) M,f(x,) lim 1--{E[f(Xt+s)ltr{xt}]-f(xt)}.
s$O S

From now on, it is assumed that *(M) is nonempty.

3. Preliminary lemmas. This section is devoted to presenting some preliminary
lemmas which are necessary to obtain the main results (Theorems 1 and 2) of this paper.
These lemmas are concerned with the properties of new measures introduced on
(n, ).

Let us define a sequence ri, 0-< ] <_-N by

2 [-h’R-l(k)Vk-1/2h’R-(k)hk], 1 <=1 <=N,
k=l

(7)
&=0.

First, let us describe Kunita’s result [2] in a slightly generalized form.

1D*(M) is the continuous-discrete time analogue of the class D(at) introduced by Fujisaki et al. for the
continuous-time case.

and

For the observation (1), we will assume the following conditions:
(C-l) hi, j _-< N is adapted to @_; i.e., h(to) h(xs, s <= t, Zk, k <= j- 1).
(C-2) For each ], v, r >-] are independent of d_l.
(C-3) For all ], R (]) is nonsingular with bounded elements.
(C-4) e{to Y’.= IR-/2(])h]2 < oo} 1.
Now, let us define a class of functions f on S.
DEFINITION 1. Let f be a real-valued measurable function on S such that

Eif(xt)[2 < 0(3 for all [0, T].

The function f is said to belong to space D*(M) if there exists a jointly (t, to)-
measurable real-valued function Mtf(to) adapted to t such that



NONLINEAR FILTERING FORMULAS 247

LEMMA 1. (Kunita [2, Lemma 2.14]). In addition to (C-1)-(C-4), assume
(C-5) E exp (srr)= 1,

and
(C-6) P{o exp (r2v) 0} 0.

Let us define P on (II, ;) by

(8) P(A) exp (’) dP, A e .
Then"

(i) /3 is a probability measure on (f, ;) and -- P; i.e., is mutually absolutely
continuous with respect to P.

(ii) z, ] N N, with respect to P, is a zero-mean independent Gaussian sequence with
the covariance .zjz’ 6ikR (]) (where _. denotes the expectation with respect to i3).

(iii) Zk, k >-], with respect to P, are independent of i-1.
Proof. It is obvious from (C-5) and (8) that/5 is a probability measure and that/5 << p

(i.e.,/ is absolutely continuous with respect to P). Then, by (C-6), P <</ follows from
[3, Lemma 6.8]. Hence/5 p, and (i) is proved. The proof of (ii) and (iii) is the same as
for !-2, Lemma 2.14]. Since [2] is written in Japanese, the proof of Lemma 1 (ii) and (iii)
is given, for convenience, in the Appendix.

Now we introduce a continuous-time process ut, 0 <= <= T which generates inter-
polation of the sequence hi, ]--< N.

DEFINITION 2. Let u =--{ut; 0 <- <--T} be an "-valued measurable process. The
process u is said to belong to (h) if

(i) for all 1 -<_ <- N,

(9) h usds;
ti-1

(ii) for all I<-j<-N and t[ti_1, ti), ut is di_l-measurable;
(iii) there exists a constant 1 _-< K -<_ - < oo such that for all 1 _-< ] _-< N,

(10) {sup lutl}(ti-ti_l><=Klhi[ P-a.s.;
ti-l <--t<ti

and

(iv) for all 1 <-j <= N and [ti_, i],

ti-1

The process u is said to belong to Oo(h) if there exist v e O(h) and e [0, T] such that

for 0 --<_ s < t,
(12) us

0 for --< s --< T.

Remark 1. It is clear that (h) c 0(h). Note that (h) is nonempty; i.e., there always
exists at least one process u which belongs to (h) because

hiu,
(t ti-), ti- -< < i, 1 _-< ] =< N

satisfies the conditions (i)-(iv).
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For u Oo(h), let

(13) hi(u) usds, I<=]<=N,
--1

and define Sj(u) by

(14) $0(u) 1.

Note that if ueO(h), then hj(u)=hi, and hence b/(u)={exp(’j)}-1. Thus, P=
I bN(u) d/ for u II(h).

Let u 0(h) be fixed. For [0, T], let a m {a; 0 s T} be the process defined by

-t {u for0s<t,
(15) u=.0 fortsT.

Then, at o(h). Note that $i(a) is a (,)-martingale with $u(at)= 1. Let us
introduce a family of measures’ Pt, 0 T by

(16) t(m) a N(at) d, A

Then, each #t is clearly a probability measure on (, ). The following lemma describes
the properties of t.

LEMMA 2. Assume (C-1)-(C-6). flu (h), then, for [ti_x, ti], , has the follow-
ing properties’

(i) #t-Pand#tP.
(ii) The distribution of {x, s i, z k ] 1 } with respect to is equivalent to the

one with respect to P. Furthermore,

t(A) P(A) for all A

(iii) Zk, k ] + 1, with respect to t, is a zero-mean independent Gaussian sequence
with covariance EZkZ’ =6kR(k), k, r]+ 1, and is independent of (where E’ is
the expectation with respect to fit). Furthermore, for each(. with respect to ,

#t(A) #(A) for all A

(iv) The distribution of zx, z2,’", zu with respect to
z , z2,. "’, z with respect to P; i.e.,

(17) E exp Zk E exp 2 z k e m, ,
=1 k=l

where

(18) z, hk(t’) + Vk.

(V) Zi- hi(gt’), with respect to t, is a zero-mean Gaussian vector with covariance
R () and is independent of _; i.e., for all A

.tREtgA exp (i;{zi- hi(at)}) A(A) exp (- gi ([)).

Proof. First, (i) is clear by (C-6), [3, Lemma 6.8] and Lemma 1 (i). Let p exp (i).
Then, since Oi() is a (i, fi)-martingale and since Oi_(t)=Oi_(u)= (pi_)-, we
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have

t(A) [&N(tt)lj-1] d/5

JA (Pi-I)- d P(A) for all A

where the third equality follows from Lemma 1 (i). This proves (ii).
To show (iii), note that N(tt) is equal to .(t’) and is %-measurable. Then it

follows from Lemma 1 (ii) and (iii) that for all A e %.,

E/Aexp E Ck k =JO(at)Iexp E z
k=1+1 k =j+l

(19) (E&i(a’)iA) J exp E
k =1+1

N
let R=/5,(A) rI exp {-2g (k)’k}.

k =1+1

This proves the first part of (iii). Noting that i(t), with respect to/5, is independent of
Y3, we obtain

-t(A IA [O(tT’)l3] d/=/(A) for all A e Y3.

Hence, we have (iii).
Let us show (iv). Noting that z , Vk for k >- ] + 1 and that Vk, k >-_ ] + 1, with respect

to P, is independent of % we have

(20) Eexp E ,z: =Eexp :,z, .Eexp E ,v
k=l k=l k ----/+

Let

Then, since

X exp {i:;hj (t’) 1/2:R (/)$.}.

E exp (i ,z,) EE[exp {i:z}l.-1] exp (i ’k=l k=l

EI exp(i z
it can be seen from (20) that

(21) E exp 2 ’z =Exlexp
k=l

On the other hand, it follows from (iii) that

E ,zk Eexp E
k=l k=]+l

(22) E exp E’CkZk exp :,zk Etexp
k=l k=l k=/+l
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It can be seen from (19) with A 12 that

(23)

N

E exp Y
k =j+l

) (
N

):,z =exp --k=i+l
=Eexp ’Vk

k =/+1

From (21), (22) and (23), we only have to show that

(24)

Let

and

E exp (i :Zk EX; exp :zk
k=l

rfi hj(tt) + iR (j)j,

y exp {,-h ’R -1(i)Z 1/2/,//, ’R -1 (i)/, }.

If we note that bj_l(t t) 4i-l(u) (10j-l) -1 and that/[y1%-1] 1, it follows that

Et exp (i kZk) =/’d,(tt) exp (ik=l k=l

=/,_(uX, exp (i i1 ,z,)
=//[yld_]4_(u)x exp

Xi exp
k=l

(exp :z
Hence, we have (24), and consequently (iv).

Finally, to show (v), note that

(a) exp (i[zj- h(a )])= 4,(u)? exp (-5R(])),
where

"2 exp {r’R-(])v 1/2 ’R-(])},

and

r hi(a t) h + iR (J)G

Then, since EIA/= EIAE[C/I(qi_] P(A)=/t(A) by virtue of assertion (ii), it follows
that

EtIA exp (i[z hi(fit)I) _,IAqbi( t) exp (i;[z hi(fit)I)
[A(U) exp (-iR(j)i)

--EIAexp (--iR(j)i)
Pt(A) exp (-iR(j)i).

This completes the proof.
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From now on, for simplicity of notation, we will use bj, h and ft to denote
respectively bi(tt), hi( t) and f(xt).

By virtue of Lemma 2, the following lemma is immediately obtained.
LEMMA 3. Assume (C-1)-(C-6). Let g g(w) be any (ql-measurable random

variable which is t-integrable, (ti-1, t]. If u O(h ), then

(25) Et[glk]
Egb;A(/V k IC(v/)A k

/[ ^(, I,^]"

In particular, for L tj and k j + r, 0 <-_ r <= N j,

(26)

Remark 2. Note that if g is a j_l-measurable random variable, then/3/-integrabil-
ity of g for t-> tj-1 is implied by P-integrability of g. This is immediately seen from
Lemma 2 (if).

4. Nonlinear filtering formulas. This section presents our main results on the
nonlinear filtering problem. The first formula is based on the following lemma.

LEMMA 4. Irt addition to (C-1)-(C-6), assume

N

(C-7)2 Y, EIR-1/2(j)hiI4 <.
/=1

Let g g(to) be any real-valued fi_l-measurable random variable such thatElg[2 < o. If
u O(h), then i we define

(27) ’ EtEglSi], [ti_l, ti), 1 <- / <- N,

satisfies

(28a) d’ -------------d-- {g ,’}u ’tR-1 (/){z/- h},

with the conditions

(28b)

and
"- EEg(o)l,._]

(28c) " EEg(w)l].

Proof. First, we will show that

(29) dS dt

For this purpose, it suffices to show

dtl

tsince 1;I=6 1 <. Noting that u (h) and applying Lemma 2 (ii) and (v), we

(C-7) implies (C-4).



252 YOSHIKI TAKEUCHI AND HAJIME AKASHI

have

(EtIR-/2(j)hiI2)/2(EtlR-/2(j){z h;}12)1/2
(EIR-/2(j)hI2)/2(EIR-/2(j)vi[2)/2 <.

where K/(ti-tj-1). Hence, we have (29).
Now noting that

we can see from (29) that

Then, if it is shown that

dE;glC]
d, dt
dt

(30) E[4,g[;]- : -g[
we have (28a). For (30), it is sufficient to show that

-d-7 g <

since lg lgl gl <. If we note that u e(h)and that g and h are _-
measurable, it follows from Lemma 2 (ii) and (v) that

where Q R-1/2(/’). Hence, we have (30) and consequently, (28a). This completes the
proof.

Remark 3. By the above proof,/6t-integrability of dgt/dt has been shown.
According to Lemma 4, the estimate is updated from E[fti[l_l to E[ft, Igj] by

solving a differential equation. By making use of this fact, we have the following
theorem which presents the first nonlinear filtering formula.

THEOREM 1. Assume (C-1)-(C-7). Let

(t) l for e (tj_, t,), I <= j <- N
(31)

E[f,,I’,] for t,, 0 <- j <- N.
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If feD*(4) and u e(h), then f(t) with the initial condition (O)=Ef(xo) is given as

follows"
(i) Between observations, i.e., for e (tj-1, tj),

(t) (tj-1) + f E[gsf(to)]i_] ds.(32)
ti-1

(ii) At an observation at i,

(33)

where is determined by

(34) ^,.
f,- =/(t-), te(t_x,t].

Proofi By applying Lemma 4 with g ’, we get (34) and (33) from (28a), (28b) and
(28c). To show (32), let (f) for simplicity. Then we have

(35) f fti- "JC" fti-1 4sfds + lr /lt,_ > ti-

Since

taking the conditional expectation E[. Ifi_] on both sides of (35), we have (32). This
completes the proof.

Remark 4. It should be noted that E[fsl,i-1],s>t.i-1 has a continuous
modification and hence,

Remark 5. In Theorem 1, the computation of the estimate f(ti) is given by two
steps, i.e., prediction and correction, respectively described by (32) and (34). Although
](t), for ti_ < < ti, is the filtered estimate of ]’t =-f(xt) in the sense that i_1 is the
available data at t, it is also the predicted estimate in the sense that Lrj_a is the available
data at ti_x. Hence,/(ti-) is the one-step prediction of [tj based on Zk, k =</’-1, and
formula (32) is a predictor in this sense. On the other hand, formula (34) plays the role
of corrector which updates the estimate from ](ti-)= E[ft]i-] to ](tj)=

According to Theorem 1, we must solve equations (32)and (34) over the same time
interval by turns. If we are interested in computing f(ti), I<=j<-_N rather than
/(t), 0 -< =< T, we can obtain a formula which directly updates the estimate from ff(t-l)

’t
to ](ti) without using the predicted estimate but by compuUng the evoluuon of ft. In
order to obtain this direct formula, we shall impose additional conditions (C-8) and
(C-9) given below.

Let us start by describing the martingale property of M(f) with respect to P.
LEMMA 5. Assume (C-1)-(C-6). Let

(36)
:[ o’{x s <- t} v o’{Zk k <- ]}

’t v o’{zi}, e [ti_, tj), I<-_j<-N.

Iff D*() and if the condition
(c-8) Eo,,l,(f)l < o for all [0, T]

is satisfied, then (:tit(f), , ,B) is a martingale.
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Proof. Let Mt .lilt(f) for simplicity. By (C-8), it is evident that Mt is integrable with
respect to/5 for all s [0, T]. Since t+ = t and Mt is adapted to t, Mt is also adapted
to [. Now, it should be established that

(37) ’[d,/ dtIt+ 0 forallO<-t<s<=T.

Note that if e [t_t, t) and s (t_, tr], r >-- ], we have

r-1
(38) -/’[’{./gs t, 1 ,_}+ E {, , 1+,_}+,, ,l].

k=+I
Hence, (37) is shown if[ tl 0 is shown for t_x N < s N t. Since z, with
respect to P, is independent of i_() and since -t is _-measurable for

t-i N < s N ti, we have

g[, ,I; [, , ,]

(39)
E[m-,(,-,)l,]

E[, -,I,] o, t_ < s t,

where the third equality follows from t-measurability of p_. This completes the
proof.

For [t-x, ti), let

(40) #7, +E[,;bil,.
and

As the second step to obtain the direct formula, we will show the following lemma.
LEMMA 6. Assume (C-1)-(C-6). Let

(42) .A/’t(u) qt 1 qsds.

If u e O(h ), then (t(u), ,15) is a martingale.
Proof. For simplicity, let Nt ,(u). By definition, it is clear that Nt is adapted

to t+ and is integrable with respect to /6 for all tel0, TI. Let t[ti_l, ti) and
s (tr-1, tr], r >= f. Then, it follows from Fubini’s theorem that

(43)

Er-w,lt+]- E4;-4;,- q, drlS]

This completes the proof.
By Lemmas 5 and 6, d//, d//t(f) and t t(u) are (t+,/)-martingales if the

assumptions are fulfilled. Since Mtt is, by definition, P-integrable, there exists an
--adapted and/-integrable process, denoted by [, ]t, such that J//drt- [, ]t is
an (,t+,/)-martingale. The process [, r] is/6-a.s, unique (hence, it is P-a.s. and/6t-a.s.
unique by Lemma 2) and is called the quadratic covariation of t/t and Art (see [11] for
details).
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We now show the following theorem which presents another formula for the
nonlinear filtering problem.

THEOREM 2. Let

(44) 46 ()-[///, /’], [0, T].

Assume (C-1)-(C-8) and
(C-9) El0tlz< oo, for all t.

Iff *(s) and u (h), then ft,f, satisfies

t+tf dt+{ft-t,+’t}utR l(]){zi-ht dt,
()

te(t_,ti], I]N.

The filtered estimate E[ftl] is given by the value off at t= t, i.e.,

(46) Elf,,I] f, 0 N] N N.
+Moreover, if ut is adapted to t then Ot O.

Proof. To show (45), note that

(47) &flt {ft--t}Wt
Let k ]- 1 for simplicity. Then it follows from (5) that

, Itt, It(48) {ft-,I 6 {ft-,}+ 6fas + {L-,I as /

Substituting (48) into (47), we obtain

=f,+,-,- ds
kds]

(49)

+I,s+I,( s ,s.
Now, we will show that

(50)

+ [ [;fY] ds + []Lu;R-l(f){z- h]}[Y] ds.
at

From (49), we have (50) if it is shown that

Noting that

(52)

and that

we have

(53)

ct c" + I qs ds +’N’t -’N’"
tk
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Then, by applying Lemma 5 to (53), we get (51) immediately. Hence, we have (50).
Next, note that

(54) t E;1,3 E;I3-EE,

For the first term of the right-hand side of (54), substituting (50) and applying (29), we
have

(55)
It’ e#.ff ds
+ {I -I + ;}ur-’(]){z h’" ds.

Then, substituting (55) into (54), we immediately obtain (45).
Finally, if ut is adapted to , then is also adapted to Tt+. Hence,

t [&[-] &,
and (42) implies that Nt 0. Then, [/, N] 0, and consequently Pt --- 0. This completesthe proof.

5. Examples. So far, we have obtained two main theorems, i.e., Theorems 1 and 2,
for the nonlinear filtering problem. Although we must apply Theorem 1 in the case
where the estimate f(t), 0 _<- _-< T is required, both theorems are applicable when we are
concerned with computing f(ti), 0 _-< j _-< N. For the latter case, it is not easy to decide
which one is more useful since, as usual in nonlinear filtering problems, those theorems
do not give feasible explicit solutions. However, we may say that if we can find the
process u (h) which is adapted to t+, then (45) in Theorem 2 is proper since St 0.
On the other hand, if ut, ti-1 <-- < depends on xs, < s _-< i, then it is better to apply
Theorem 1 since evaluation of t is not easy in general. In this section, examples are
shown where the minimal variance estimate x. E[xtjli] is feasible.

Example 1. (conditionally Gaussian case). Let S R and consider a stochastic
differential equation

(56)
dxt A(t, z)xtdt + G(t) dwt,

Xo o, e [0, T],

where xt e I is the state vector; wt is a d’-dimensional standard Brownian motion
process which is independent of {vi 1 <=] <= N}; $o is a Gaussian vector with mean o
and covariance matrix Q0 and is independent of {vi; 1-<]-<N} and {wt; 0 <- <= T}.
The observation z ={zi; 1 <=]<=N} is given by (1)with

hi Hi (], z)xti + n2(s, z)xs ds, Ij<-N,

namely,

(57) zi=H(],z)xt+ H2(s,z)xds+vi, I <-]<-N.
--1

We assume the following conditions.
(C-10) For all [0, T], ] <= N and

A(t, r,), G(t, r,), Hi(j, K) and H2(t, ) are bounded.
the elements of
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(C-11) For all K (R"), A(t, ) and H2(t, ), ti-1 <-_ < are continuous in t.
(C-12) For each ] and [ti_l, ti), A(t, z), H2(t, z) and Hi(f, z) are i-l-measur-

able.
The system (56) and (57) is linear in x but nonlinear in z. Note that the observation

(57) is more general than the usual Kalman filter model in that the observation at
depends on the past state {xs; ti-1 =< s < ti}. Let

1
hi =hi.t t_

Then, in this example, we can take u (h) as

Hence,
ut=h forte[tj-l, ti), I<=]<-N.

=(t-ti_l)hi.hi=_hj(’) *

rli [x’tj h’ ]’,

Then, it follows from simple computations with (28), (34) and the above-mentioned
Gaussian property that i is given by solving the following pair of differential equations"

(58)

(59)
B.-’ Bi-,

In (58) and (59), we have set

C=[0 I], 0" m xn,

vii-= -1

I: rem,

and

B- E[(n n-)(n n-) lY-].
It is not difficult to see that the solution of the pair (58) and (59) is given by

(60)
., -, -1
rt 1i- +BICtR (]){z Ci-},

and

Note the properties"
(i) Given i-1, xtj, hi and h are jointly Gaussian with respect to P.

(ii) x,j, hi^and h are i_l-measurable.
(iii) P Pt on
(iv) zi- h, with respect to i6t, is a Gaussian vector independent of

Then, we notice that x, and h, given i, are jointly Gaussian. Let
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and

(61)

where Ct (t- q-a)C. Let

and

B;-- B/-4-Bi-’ {ti-Ct q-R(j)}-lti-,

Ni- E[(h i-)(hi-/i-)’li_].
Then, setting ti in (60) and (61) and noting that hi (h ti-a)h, we have

(62a) x. i-+ Mi-{Ni- + R (/’)}-a{z nC’i-}
and

(62b) Qi Qi- Mi-{Ni- +R (/’)}-aM-.
Also, it easily follows from (32) and (56) that

(62c) [-/--] =*z(ti,
h

and

(62d)

where

is given by

and

M;- (ti’ ti-a)Oi-az (ti’

+ (ti, s)G(s)G’(s) (ti, s ds,
--1

dPz (t, s)](t, s) t,

O---dpz(t,s)=A(t,z)dpz(t,s), dpZ(s,s)=I
Ot

z (t, s) Ha(i, z)O (t, s) + Js Hz(’, z)O (t, s) dr.

Thus, with o o and Oo oo, (62a)-(62d) forms a recursive nonlinear filter. In the
special case where H2-=0, HI(j, z)=Hl(]) and A(t, z)=-A(t), formula (62) reduces to
the continuous-discrete Kalman filter derived by Jazwinski [8].

Example 2. Let S n {0, 1} and xt =- (at, $t), and consider the system of equa-
tions

(63) dt=A(t, z)tdt+G(t) dwt, o=, te[0, T]
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and

(64)
zi aH(s) ds + vi,

--1

where H(t) is an m n-dimensional matrix with time-dependent and bounded ele-
ments and at is a binary-valued process which changes from 1 to 0 at a random time
-(o), i.e., at It(o,<,. The random variable z(o), which is assumed to be independent
of :t, <- T and vj,/" -< N, takes zero with probability zr, and given that z(o)) > 0, z(w) is
exponentially distributed with a parameter A; i.e.,

P{z(w <- t} 7r + (1 r)(1 e-Xt).

Let yt, 0-< =< T be the continuous-time process defined by

dyt otn(t)t dt + R (t) dt, yo=0, t[0, T],

where t7 is an m-dimensional standard Brownian motion process. Then, the observation
(64) can be constructed from Yt, <- T by setting

and

zi Yt Yt_

1 (j) 1 (s)I’(s) ,is.

Let Ut "--atH(t)t. Then Ut is adapted to -. Hence, Theorem 2 is applicable. Let

then

Hence, we have

(65)

where

Ot {1--Ol.t}t;

Therefore, it suffices to compute the evolutions of d tt, (tt and tt in order to obtain the
minimal variance estimate c, c and . Since the operator t is given by

,f(x,) ,/(,,

lOl,{f(,, O)--f(t, 1)}+f’(xt)A(t, z)(, + tr [G’fe(xt)G],

it follows from (45) that
.0’--et{ce}2] dt, ao r(66) dc,= [(e,- ). )6t

and

(67) dt[ [{A(t, z)-e,I}d+A’ -t’tFff, ]dt, o r,



260 YOSHIKI TAKEUCHI AND HAJIME AKASHI

where

and

Now, we shall obtain the evolutions of gt and /tt. Noting that Et[ .[at 1, i]=
Et[ [oj ]/(tt and that t and h , given O 1, are Gaussian, it can be seen from Lemma 4
and Theorem 2 that

tEC,R-aC,,g, +,C,R-aC]Iff ;A C’R lz dt,
(68)

-1 Yi-1 [(;-1 ]0]’, [ti_l, ti],

and

(69)

where
--t.:,_-, E[:,,_,lc,,_, 1

O,_ =[(,,_, ._)(,,_,

0

and (t, z).
Since is an element of t, we can compute d tt, and recursively by (66)-(69).

Hence, we can compute (, d)= (, d) by (65).
Remark 6. The solution of (68) and (69) is directly available in the following orm:

(t, t_)_ +BC’{CBC’ + R(j)}-{z-C(t, t-)ff-l},
*C,CB*=- c +(]lt- c,

(t, t__(t, t_+[ (t, sld(s(t, s’ s,

where is the transition matrix given by

(t,s)=(t,z)(t,s) (s,s)=I.
dt

Appendix.
Proof ofLemma 1 (ii) and (iii). The properties (ii) and (iii) of/ are shown in the

following way.
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For :j R ’n, 1 _-< j <= N, let us define 39 Yi() by

yi=exp k[hk ff-l)k]-}- kR(k)k
k=l k=l

and yo 1. Then, it follows that

where

<-j<-_N,

mkR (k)mk,39P =exp
k=l

m’kR-l(k)Vk " k=l

mk iR k)k hk.

Clearly, YjOi is also a (i, P)- martingale. Then, for all ->_ j and A e 3i_, we have

IA’yId IA "yIE[ON CI dP IA "YIPl dP

Hence, Yi is a (dj,/6)-martingale, and we have

fA ’Y/(/-1)-1 dP fA J[’Yllj-x](’YJ-l)-ld--(e).
This implies that

exp ’kZk dl P(A) 1-I exp{-2kR(k)k}.
k =i k =i

The above equation proves (ii) and (iii) simultaneously. This completes the proof.
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SPECTRAL THEORY OF THE LINEAR-QUADRATIC
OPTIMAL CONTROL PROBLEM: ANALYTIC FACTORIZATION

OF RATIONAL MATRIX-VALUED FUNCTIONS*

EDMOND A. JONCKHEERE" AND LEONARD M. SILVERMANS"

Abstract. The inversion of the Toeplitz operator T,, associated with the operator-valued function
defined on the unit circle, is well known to involve a special factorization, called analytic factorization, of the
function . New results and algorithms concerning this factorization are presented, in the special case where

is rational and matrix-valued.

1. Introduction. If is a rational function from the unit circle to Cn, then the
associated Toeplitz operator T, can be represented by the semi-infinite block-matrix
whose blocks are the Fourier coefficients of , the negative Fourier coefficients being in
the upper triangular part [7]. It can be shown [12, Theorem 2] that T, is invertible if and
only if admits a so-called analytic factorization

A’P;

A and P are functions defined on the unit circle, with vanishing negative Fourier
coefficients, and taking values in Cn; A-a and P- exist and should be of the same type
as A and P; a star denotes the conjugate transpose or the adjoint. If the factors exist and
are known, then it can be shown that [12, Theorem 2]

T Te-TA*-.
This representation of the inverse in terms of the factors A and P is useful, because in
many cases it allows the computation and the study of the inverse [12]-[17].

Although the equivalence between the inversion and the factorization problems is
fairly well known, there has not been that much interest in the factorization problem
itself. Practical algorithms are lacking to determine whether a function is factorable and
to determine the factors if they exist; moreover, the basic properties of the factors, if
they exist, are not yet known. Similarly, in the context of the inversion of Toeplitz
operators, although theoretical results exist [5], invertibility tests are needed. Along
that line, we, however, point out the partial result of Pattanayak [32].

In this paper, we look in detail at the analytic factorization problem, in the case
where is rational and matrix-valued. An algorithm to determine whether is
factorable, and to compute the factors if they exist, is presented. The general properties
of the factors emerge. The derivation of our results relies heavily on the so-called
Hilbert problem of factorization theory [16, Theorem 3.1].

The paper is organized as follows. Section 2 is concerned with spaces of analytic
functions, Toeplitz operators, and the precise statement of the equivalence between the
inversion problem and a factorization problem. In 3, we distinguish two types of
analytic factorizations: the above-mentioned factorization and another slightly
different one (this is necessary for mathematical rigor); the associated Hilbert problem
is also introduced. Section 4 is concerned with the pole and zero removal phase of the
factorization; this enables the reduction of to a matrix-valued function of constant

* Received by the editors March 7, 1978 and in final revised form May 12, 1980. This research was
supported by the National Science Foundation under Grant ENG 76-14379 and by the Joint Services
Electronics Program through AFOSR/AFSC under Contract F44620-71-C-0067.

" Department of Electrical Engineering-Systems, University of Southern California, Los Angeles,
California 90007.
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determinant. Section 5 is concerned with the problem of factoring a matrix-valued
function of constant determinant with the Hilbert problem playing a crucial role.
Section 6 briefly reviews the whole factorization algorithm. Section 7 is devoted to a
particular case, the spectral factorization; we examine this classical problem in the light
of our results; this enables us to point out and. to rectify an error in the proof of the
discrete-time spectral factorization statement [20]. Section 8 is the conclusion. The pole
and zero removal phase of the factorization ( 4) needs some elements of index theory
as applied to Fredholm Toeplitz operators; the necessary background material is
relegated to Appendix A.

This research is motivated by previous papers of the authors [26], [27] which are
concerned with the discrete-time linear-quadratic optimal control problem, in the case
where the quadratic cost to be infimized is not necessarily positive semidefinite. To
grasp the significance of the factorization problem in control theory, consider the
discrete-time, linear, finite-dimensional system x(k + 1)= Ax(k)+Bu(k); x(k) ,
u(k) , and A and B are real, time-invariant matrices of compatible sizes; the pair
(A, B) is controllable. We further assume that A is asymptotically stable; this last
assumption does not introduce any loss of generality; see [27, II, C]. Together with
the dynamical system, we define two outputs y (k) Cx (k) +Du (k) and z (k)
Ex (k) + Fu (k); y (k) and z (k) are in " C, D, E, and F are real, time-invariant matrices
of compatible sizes. Let the initial state be x(i)= sc, and define the control sequence

U(i,t)=[u*(i)..1. u*(t- 1)]*tT_he quadratic performance index, to be infimized, is
then defined as _.s, U(i, t)3=Z,k=gy*(k)z(k).Thisperformanceindexisnotnecessarily
positive semidefinite. Hence, it might not be bounded from below, resulting in the
optimal cost diverging towards minus infinity. More precisely, the question that arises is
whether or not there exists a sequence of matrices {N(t-i)= N*(t-i) N:t >-i}
such that J[s, U(i, t)] -> *N(t i), for all sc, all U(i, t) and all -> i. If such a sequence
exists, we say, more simply, that "the cost is bounded from below". Although this seems
a purely control theoretic problem, it has a wide range of interpretation and application
[27], [34] which makes it a fundamental problem in system theory. There have been
many attempts to characterize boundedness of the cost in tb.e frequency-domain and to
find a useful test to check whether or not the cost is bounded from below; see the
discussions in [27, I and IV]. In [27], this boundedness problem was restated in the
appropriate Hilbert space setting, and it was shown that the crucial underlying
mathematical issue is a Toeplitz operator having its spectrum included in N/. To define
this Toeplitz operator, let J(e) D + C(eI-A)-B and K(e)
F+E(eiI-A)-B. Let KJ*. The Toeplitz operator in question is T. Hence, the
cost is boundedfrom below ifand only if the spectrum of T, is a subset of +. It was shown
in [27, IV] and [33, IV] that, even if the cost is not bounded from below, the
spectrum of T, is the union of a compact subset of the real line and at most a finite set of
isolated, real eigenvalues of finite multiplicities. It follows that the frequency-domain
characterization of the existence of a lower bound to the cost can be stated as follows"
The cost is boundedfrom below ifand only iffor all A (-o, O) there exists a factorization

-AI A*Px,
where A andPx are defined on the unit circle, with vanishing negative Fourier coefficients,
and taking values in ""; moreover, A- andP- should existand be ofthe same type as
Ax and Px. Since T,_xz T.-AL the set of A’s for which the above factorability
condition breaks down is the spectrum of T,. This spectrum is important, because its
structure reflects the intrinsic properties of the control problem [27], [33], [34]. For
example, it can be shown, that, if the transfer matrices J and K are invertible and
minimum phase, then there are no isolated eigenvalues of finite multiplicities in the
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spectrum of T,. Along the same line, it was shown in [27, III] that the compact part of
the spectrum contains information as to whether or not a reduction of the algebraic
Riccati equation is possible. The spectrum of T, is thus worth examining; this provides
a new approach to linear-quadratic control, the spectral theoretic approach. To
compute the spectrum of T,, we have to look at the factorability of -h/, for all h ’s.
The results of this paper allow us to check the factorability of -h/, for a given h. To
compute the spectrum it remains to find how the results of this paper should be used in
order to handle the case where h is variable. In [33], precisely this task is achieved.

2. Setup. Let L(C)(1 =<p __<o; n 1, 2,. be the classical Lebesgue spaces,
for the normalized measure dO/2’, of functions from the unit circle q]-=

{ei: 0 [0, 2zr)} to the space C". It is easily seen that L(C")___L2(C). The closed
subspace of Lo(C") of functions whose Fourier coefficients vanish on the strictly
negative (positive) integers is the Hardy space H (C")(K (C")). Define the orthogonal
projections

Pno(c-) L (C") H (C"),

P:(c" L (C") -K (C"),

C(C"), P(C"), and R (C") are the sets of functions from ql- to C" that are continu-
ous, trigonometric polynomials, and ratios of trigonometric polynomials (or rational),
respectively.

Let Mn be the algebra of endomorphisms of the space Cn; this can be identified
with the algebra of n n complex matrices. Then L(M,,), H(M,,) and K(M,,) are
defined as the sets of functions , from T to M, such that the function

q]- - C,

ej x*(eJ)y,
be in L(C), H(C), and "K(C), respectively, for all x and all y in Cn. H(M,,) and
K (M,,) are closed subspaces of L (M,). Also, observe that L(M)

_
LE(Mn). Define

the following orthogonal projections:

Pn.(.) :L (M,,) H (M,,),

:L’ KoPc.(t.) (M,,) - (M,,), 1 < p <-_ .
The norm of dOL(M,) is defined by esssup{ll(ei)[l:O[O, Zcr)}. This norm,
together with pointwise algebraic operations, makes L(M,,) a Banach algebra.
H(M,,) and K(M,) are clearly closed subalgebras of L(M,,).

C(M,), P(M,,), and R (M,) are the sets of functions from T to M, such that the
function

ql- C,

e x*(e)y,
be in C(C), P(C), and R (C), respectively, for all x and all y in C n.

It is convenient to introduce the function

If L2(Mn), then its Fourier expansion is

ei ei.

.-I-oo= Y ea,x.
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The function * is defined by

*= y, ,x-,
where is the conjugate transpose (or the adjoint) of

References that make ample contact with the above material are Hoffman [1],
Dfiren [2], Helson [3] and Douglas [4, Ch. 6].

Let L(M,). Then the Toeplitz operator associated with is by definition

T" H2(Cn)H2(Cn), T. Pn(c")().
It is useful to introduce the Laurent operator associated with L(M,) which is
defined by

L:L2(C") LZ(Cn), L .
Standard references about Toeplitz operators are Douglas [4, Ch. 7], [5], Grenander
and Szeg6 [6] and Widom [7].

As was said in the introduction, the problem of inverting the Toeplitz operator
T. is closely related to the problem of factoring the function to which it is associated.

DEFINITION 1. Let @ L(M,). A weak analytic factorization for is by definition

(la)

where

(b)

(c)

()

moreover, there exists an element

(le)

()

such that

(lg)

,, -1, , p- HOO(M,,),
U6L(M,,),

U(ei) is unitary for almost every 0 [0, 2r);

VH (M.),

V- H(M,,),

ess sup {llV(e) U(e)ll 0 E0, 2r)} < 1.

PROPOSITION 1. Let L(M,). Then the Toeplitz operator T. is invertible if and
only if has a weak analytic factorization.

Proof. Early versions of this result are available in Widom [8, Thm. I] and Pousson
[9, Thin. 3.4]. This faetorability criterion was subsequently developed by Pousson 10]
and Devinatz [11]. The result in its definitive and general form is to be found in
Rabindranathan [12, Thin. 2].

This paper is mainly concerned with the factorization of Proposition 1 in the case
where is in L(M,,) f3 R (M,,).

The main difference between the spectral factorization and the weak analytic
factorization is that, in the latter, the function to be factored is not restricted to satisfy
the condition *, nor is it restricted to take positive semidefinite values along the
unit circle. This kind of factorization seems to have been introduced by Gohberg and
Krein in a famous series of papers [13]-[15]. These papers, in the continuous-time
setting, are mostly concerned with integral equations and do not look at the factoriza-
tion problem itself.
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A general question of terminology: Since L(Mn)f3 R (Mn), this function can
be analytically extended from T to C\{pl, P2, }, where {pl, p2, } is the finite set of
poles of the extension of . The value taken by the extension at z C\{p, p2, } will
be written (z). In the sequel, we shall not explicitly specify whether should be
interpreted as the original function on qF or its extension to C\{p, P2, }; this will be
implicitly specified by the context.

3. Strong analytic factorization and Hilbert problem. Conditions (1c)-(1g) in Def.
1 are somewhat troublesome. However, we shall prove in the sequel that, if
L(Mn) fq R(Mn) and if a weak analytic factorization exists, then one has always the
freedom to take U I, so that Conditions (1 c)-(1 g) become completely irrelevant. This
motivates the following definition"

DEFINITION 2. A strong analytic factorization for dL(M.) is by definition

(2a) A’P,

where

(2b) A,PH(M,,),

(2c) A-,P-H(M,,).

Strong analytic factorability is clearly a condition much stronger and much cleaner
than weak analytic factorability. Moreover, it will be shown that the strong analytic
factorization belongs to a broad class of factorizations, all of them having the same
underlying algebra. This algebraic nature of the factorization problem is treated in
detail in McNabb and Schumitzky 16]. In algebraic terms the factorization problem is
defined as follows" Let R be a ring of unit element e. Let p/ and p- be two projections
defined on R that commute. Let p0= p/p-= p-p/. Define the additive groups R/=
p/(R), R- p-(R), and R p(R). (R /, R-) is said to be a factorization structure in R
if [16, 2]

(a) R / R- are subrings of R" e R / f3 R-"
(b) p0 is a ring homomorphism of R / and R- into R"
(c) R+R-R++R-

In algebraic terms, the factorization problem is posed as follows: Let x R; then does
there exist a factorization x uv, where u, u -a R /, and v, v -1 R-9. If yes, compute
the factors.

Let us now prove that the strong analytic factorization belongs to the class of
factorizations which can be posed within the same algebraic setting.

THEOREM 1. (K(M,), H(Mn)) is a factorization structure in L(M,).
Proof. As said in 2, L(M,) is a Banach algebra, and hence a ring. The unit

element is L
The projections PK(M,,) and PH(M,,) commute, because PK(M,,)PH(M,,) and

Pno(t.PK=(t,,) are both the orthogonal projection from L(M,,) onto M..
By definition of the projections, we have

K(M,) PK=(t.)[L(M,)],
H(M,,)

moreover,

M,,
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Finally, the following conditions are easily verified:
(a) K(Mn) and H(M,,) are closed subalgebras (and hence subrings) of

L(M,,); I K(M,,) f"l H(M,) Mn
(b) PK(M.)PH(M.)= Pm(M.)PK(M,,) is a ring homomorphism of K(M,,) and

H(M,,) into M.;
(c) K(M,,)H(M,)

_
K(M,) +H(M,).

This completes the proof; see [16, 2].
The strong analytic faetorization thus belongs to the class of factorizations

considered in [16]. A first consequence of this fact is the following:
THEOREM 2. Let L(Mn). If A*P is a strong analyticfactorization, then any

other strong analytic factorization has the form [(C*)-IA]*(CP), where C is in M, and
nonsingular.

Proof. See McNabb and Schumitzky [16, Proposition 2.1].
Any factorization problem that can be stated within the above-described algebraic

framework is solvable via an associated Hilbert problem [16, 3].
DEFINITION 3. Let L(M,). Then the Hilbert problem associated with the

strong analytic factorization of is defined as the following system of equations in
(L, R):

(3a) Pt,:OO(M.(L*)= I,

(3b) PO(M. (dR I,

(3c) L, R H(M,),

(3d) L-1, R- H(M,).

THEOREM 3. Let L(M,). Then d admits a strong analytic factorization if and
only if there exists a (unique) solution to the Hilbertproblem (3a)-(3d). Moreover, should
(L, R) be the solution, then a strong analytic factorization is given by

dO (L-)*(RoR-),
where Ro is the coe[ficient o[ ;o in the Fourier expansion o[ R.

Proo[. It is a direct consequence of [16, Thm. 3.1 and Corollary 3.2].
As pointed out in [16], Condition (3d) on the solution of the Hilbert problem is

difficult to check in practice. However, when the matrix-valued function to be factored
has a constant determinant, the problem gets easier.

DEFINITION 4. Let L(M,), and let det (e) c constant 0 for almost
every [0, 2zr). The Hilbert problem associated with the strong analytic factorization
of is the following system of matrix equations in (L, R):
(4a) Po(M.)(LC*c)= L
(4b)

(4c)

(4d)

PH(R)(M,,) (di)cRc) L
LC, R H(M,),

(L")-, (R")- H(M,).

The following result is clearly the same as that of Theorem 3.
THEOREM 4. Let L(M,), and let det (ej) c # 0 ]:or almost every 0

[0, 2r). Then d has a strong analytic [actorization if and only if there exists a (unique)
solution (L, R) to the Hilbert problem (4a)-(4d).

The following result in important; it asserts that the factorability criterion of
Theorem 4 can be simplified.
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THEOREM 5. Let c L(Mn), and let det C(eJ)= c 0 ]:or almost every 0
[0, 2r). If there exists a solution (L, R) to (4a)-(4c), then this solution automatically
satisfies Condition (4d).

Proof. Let (L, R) be a solution to (4a)-(4c). This system of equations can
obviously be rewritten

L* M,
R =S*,

M, S H (Mn), M S =/,

L, R H(M).

It follows that

det [L(e)]*c =det M(ei) for almost every 0 [0, 2r).

But, since L and M are in H(M,), this equation implies

det M (e’) det I 0,

det [L (ei)]* det -/ 0 for almost every 0 [0, 2zr).

Since all the entries of L are in H(C), it follows that adj L H(M). Hence,
(LC)-1= c*adj L exists and is in H(M,).

The proof of (Rc)- H(Mn) goes similarly and is omitted.
The case of Theorem 5 is a pathological case, besides those cited in [16, Theorem

3.3], of factorizations where Condition (4d) on the solution of the Hilbert problem is
irrelevant.

The approach taken in this paper, which relies heavily on the Hilbert problem, can
now be explained in more detail. By premultiplication and postmultiplication of by
suitably constructed factors, the matrix-valued function is transformed into the
matrix-valued function c of constant determinant, which is such that is factorable if
and only if c is. Theorems 4 and 5 are then applied to, and this yields the solution of
the factorization problem.

4. Pole and zero removal. This section is concerned with the transformation of the
matrix-valued function into the function which is in P(M) and of constant
determinant, if this is possible. The procedure consists in eliminating the poles of and
the zeros of det by premultiplication of by factors that are, together with their
inverses, in K(M) and by postmultiplication of by factors that are, together with
their inverses, in H(M,). Hence, is factorable if and only if is; moreover, the
factorization of can easily be determined from that of .

THEOREM 6 (pole removal). Let L(M,) fq R (Mn). Then there exist factors
(5a) A,PH(Mn) fq R (Mn),

having the property

(Sb) (A)-, (P)- H(M) fq R (Mn),

that reduce d to a matrix-valued trigonometric polynomial:

(5c) (I) p (A)*t/)P,
(5d) r}’ P(M.).
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Moreover, T. is Fredholm ifand only if T.p is; in addition, should T. be Fredholm, then
indt (det , 0)= indt (det P, 0).

Proof. Consider the (i, ) entry qij of . Let it have a pole pk(1 <lp[<) of
multiplicity K. Define the elementary factor

] 0
0 1

p,ii,k

(x-p)

where (X- Pk) is located on the (], ]) entry. Obviously,

p,ij,k, (p,i],k)- H (Mn) I") R (M,),

and it is clear that the (i,/’) entry of the matrix-valued function

(pOO,q,k

does not have poles at
Let now the entry i have a pole at pl(O < IPll < 1) Of multiplicity A. Define the

elementary factor

A,i],

-1 0
0 1

Ix- (p71)*]x

where IX-- (p-l)*]x is located on the (i, i) entry. Obviously,

Moreover, the (i, j) entry of

(A’’)*
has no poles at pt.

The procedure for eliminating all the poles of nonzero norm from all the entries of
should now be clear. Define

P= VI 1-I P’",
i,i=l k

l<lpkl<

A= 1-I 1-I A’’’.
L/=I

0<lptl<l

Obviously, the factors so defined satisfy (5).
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It remains to prove the additional claims. From (5c), we have

det dP(ej) =det [A(eJ)]* det (ei) det P(ei).

By construction of the factors, we have

det A(ei) # 0

det P(e) 0

It then follows from Proposition A.1 that T,} and T,I,p are Fredholm at the same time.
By construction of the factors, it also follows that detP has no zeros in the open

unit disk [I) and no poles at all; on the other hand, det (A)* has an equal number of
poles and zeros in [D. Hence, by Proposition A.2, indt (det , 0) indt (det P, 0). This
completes the proof.

The transformation of Theorem 6 ends up with a function P P(Mn). The next
step is to transform the matrix-valued function into a function c in P(Mn) with det
c a nonzero constant map.

THEOREM 7 (zero removal). Let P(M,) with det (ej) # 0, V0 6

[0, 27r), and indt (det P, 0)= 0. Then there exist factors

(6a) A, P H(M.) fq R (M.),

having the property

(6b) (AO)-l, (pO)-i e H(M,) f-) R (M,),

that reduce into a matrix-valuedfunction whose determinant is a nonzero constant"

(6c) (A)*PP,
(6d) c} P(M.),

(6e) det c constant O.

Proof. Obviously, det P(C). Since det P(e) 0, V0 [0, 2zr), det P has no
zeros on . Let {Zk :k 1, 2, , K} be the set of zeros of det in C\[D. Similarly, let
{Zl K + 1, , K +L} be the set of zeros of det P in ID\{0}. The procedure basically
consists in eliminating step by step all of these zeros from det P. It yields a set of
matrix-valued maps o= p, a, 2,..., }K/L, where det k does not have any zero
at zl, z2, , Zk-1, and Zk.

To show the recursion, assume that the zero Zk(1 < ]Zkl <; k 1, 2," , K) of
order has to be eliminated from det k-X. Since the matrix dPk-(Zk) is singular, there
exists a vector

u #0,

Lu .J
such that

(k-l(zk)Igk "-0.
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Choose a component of u k different from zero; let uk # 0. Define the elementary factor

ith column
k

Ul
0 0

X--Zk
k

U21 0
X--Zk

k
Ui0 0

X--Zk

k
Un

0 1
X--Zk

pO,k,1

0

0

Obviously,

Moreover, we have

pO,k,1, (pO,k.a )-a HO(M,) t R (M,).

k-lpO,k. P(M,),

and det (fk-lpO,k,1) has a zero of order K-1 at Zk. The recursion to eliminate
completely the zero Zk from det k-a is now obvious. It yields a set of elementary
factors

pO,k,1, pO,k,2, pO,k,K,

such that

pO,k,.,, (pO,k,m)-a H(M,,) 71R (M,,),

Define

pO,k pO,k, lpO,k,2 pO,k,K.

Obviously,

We have

pO.k, (pO.k)-a HO(M,) f-) R (M,).

dPk-lPO’k P(M,,),

and det (diIk-lpO’k) does not have any zero at Zk. Hence, we can write

dk dk- pO,k.

Assume now that the zero Zl(O < ]Zll < 1; K + 1, ., K +L) of multiplicity A is
to be eliminated from det l-1. Since the matrix dl-a (Zl) is singular, there exists a vector

U2
v 0,

"l
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such that

(vl)*l)l-l(zl) O.

Let vi be a component of v different from zero. Define the elementary factor

A,/,1

Obviously,

Moreover,

A’/’1, (A’/’l)-1 e H(M,,) R (M,,).

(A’/’l)*t/-1 E P(M),
and det [(A’/’l)*/-1] has a zero of order h- 1 at Zl. The recursion to eliminate
completely the zero at Zl is now obvious. It yields a set of factors

Ao,1,1, A’1’2,..., A’l’X,
such that

Define

We have

h’/’m, (A’/’m)-1 e H(M,,) fq R (M), m=l,2,...,h.

AO,/= AO,/,1AO,/,2... A,/,x.

(h,)*ol-lep(M,),
and det [(A’/)*/-1] has no zeros at z. Hence, we can write

(I)l (A,/)*(I)1-1.
The general procedure to eliminate all the zeros in C\{O} should now be clear.

Define

pO= pO,apo,2 pO,K,
AO= AO,K+IAO,K+2... A,K+L.

It is claimed that these factors satisfy (6). We have

(9K+L= (A)*OPp.
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Obviously,
tC+L P(M, ),

and det C+L has no zeros in C\{0}.
Let us now prove that det ,:/L is, in fact, a nonzero constant map. Since det

P(ej) O, VO [0, 2r), it follows from the construction of the factors A and pO that
det K+L(eJ) # 0, V0 [0, 2r). Hence det K/L is not identically zero. By construction
of A and pO, det pO has no poles in D and no zeros at all; on the other hand, det (A)*
has an equal number of poles and zeros in D. By Proposition A.2, it then follows that

ind, (det (K+L, 0) indt (det P, 0).

Hence,

indt (det c+L, 0)= 0.

But det c/t P(C), and det /thas no zeros in C\{0}. Hence, det /Lhas an equal
number of zeros and poles at the origin. In other words, det x+L is a nonzero constant
map, and one has c/= c. This completes the proof.

The situation is summarized by the following theorem:
THEOREM 8. Let L(M) 71R (M), with det cI)(e) 0, V0 [0, 2r), and with

ind (det , 0)= 0. Let P(M,), where det cI) is a nonzero constant map, result
from the application of the algorithms of Theorems 6 and 7 to . Then b admits a strong
(weak) analytic factorization ifand only if admits a strong (weak) analytic factoriza-
tion.

Proof. Assume c admits the strong analytic factorization c (AC).pc. It is then
readily verified that a strong analytic factorization of is given by A’P, where
A A (AA)- and P pc (poOpO)-.

Now, let admit the strong analytic factorization A’P; then a strong analytic
factorization of is given by (AC)*Pc, where A AAA and pc pppO.

The case of the weak analytic factorization is proved the same way.
It thus remains to check whether d P(M,,), where det c is a nonzero constant

map, is factorable, and, if a factorization exists, to determine the factors. These are the
topics of the next section.

5. Factorization of a matrix-valued function of constant determinant. The solution
to the problem of factoring a matrix-valued map whose determinant is a nonzero
constant relies completely on Theorems 4 and 5 of 3.

We first prove that, in the constant determinant case, weak and strong analytic
factorizations are equivalent.

THEOREM 9. Let c P(Mn), with det C(ei) c 0 for almost every 0 [0, 2r).
Then c has a weak analytic factorization if and only if it has a strong analytic
factorization.

Proof. If c admits a strong analytic factorization, it obviously admits a weak
analytic factorization.

Conversely, if c admits a weak analytic factorization, then, by Proposition 1, the
Toeplitz operator T,i,c is invertible. This guarantees the existence of a solution R
H2(M,) to the equation Pnt.)(CR)= L

Let us show that this result can be strengthened to R H(M,). We know that
there exists a solution R H2(M,) to the equation CRC S*, for some S H2(M,),
with S =L Since c P(M,) and R H2(M,), it is clear that S has a Fourier
transform supported on a finite set of positive integers. Thus, we write SC=
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I+Y.:=I SkX k. Thus, there exists a solution R E H2(M,,) to the equation Rc=- i, -).c (adj )(I+Y’,:=l Sk*X Sinceadj EP(M,,) itisclearthatthesolutionR has
a Fourier transform supported on a finite set of positive integers. Hence, R H"(M,,).

Thus there exists a solution R to (4b), (4c). From Proposition 1, it is easily seen
that, as a consequence of the invertibility of T,, T.. is also invertible. This guaran-
tees the existence of a solution L to (4a), (4c). Thus there exists a solution (Lc, R c) to
the system of equations (4a)-(4c). But, by Theorem 5, this solution automatically
satisfies Condition (4d). Hence, there exists a solution (Lc, R c) to the system of matrix
equations (4a)-(4d). It then follows from Theorem 4 that c admits a strong analytic
factorization.

Now, we can prove that, in the rational case, weak and strong analytic factoriza-
tions are equivalent.

THEOREM 10. Let dL(Mn)fqR(Mn). Then dp admits a weak analytic
factorization if and only if it admits a strong analytic factorization.

Proof. If admits a strong analytic factorization, then it obviously admits a weak
analytic factorization.

Conversely, if ,I has a weak analytic factorization, then, by Proposition 1, the
Toeplitz operator T, is invertible. By Proposition A.4, det 4(e) 0, 0 [0, 2zr), and
indt (det , 0) 0. Hence, by Theorems 6 and 7, ,c exists. Since has a weak analytic
factorization, so has ,I by Theorem 8. By Theorem 9, since c has a weak analytic
factorization, it has a strong analytic factorization. By Theorem 8, , has a strong
analytic factorization.

In the remainder of this paper, we shall thus primarily be concerned with the strong
analytic factorization.

We now proceed to the problem of the strong analytic factorization of c. We
need some preliminaries, however. Since c e P(Mn) its Fourier expansion takes the
form

N

(7a) c= X kXk M O, 1 2,’’" N O, 1, 2
k=-M

Define

N+M

(7b) Z= 2 ,-tX k,
k=0

N+M

(7c) II= E (r-k)*X k.
k=0

It is easily seen that

(7d) c (V)*M, N,

moreover,

We need the following lemma"
LEMMA 1. Let ,,I)H(M,);Lc,R ceHz(M.); and M=O, 1,2,...,N=

O, 1,2,.. . If

(8a) P.:(M.) (--Lu] /
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(8b) PH2(M.) I,

then
N-1

IlL Y Akgk +IxN, Ak
k=O

k =0,... ,N-l,

M-1

ZRc= BkX k +IXM, Bk eMn;
k=0

k =O,...,M-I,

and conversely.
Proof. This result is easily proved by writing out the Fourier expansions.
The following theorem asserts that, if a solution to the system of equations

(4a)-(4c) exists, then it has a rather simple form.
THEOREM 11. Let dpce P(M,), with det dpC(z)= c, Vz C. Then, if the solution

(Lc, R c) to the system of equations (4a)-(4c) exists, it has the form

L y,. kLkX
k=0

Rc= Rcx k,
k=0

where

degr adj Ft + (1 n)N,

r degr adj + (1 n)M.

(degr adj f(Z) is by definition the largestpower ofx in the Fourier expansion ofthe adfoint
of n().)

Pro@ Let (Lc, R c) be the solution to the system of equations (4a)-(4c). From (7), it
is easily seen that (8a)-(8b) is merely a rewriting of (4a)-(4b). Then, by Lemma 1, we
have

Lc=II- AkXk+IX
k=0

Since det c(z) c # 0, we have det c*xnN. Hence,

C*XnN k=O
Akxk + IX

By hypothesis, L H(M,); but the denominator of L has a zero of order nN at 0
thus, one can choose a set {Ak eM :k =0, 1,..., N-1} such that the appropriate
pole-zero cancellation occurs. It then follows that L has nonzero Fourier coefficients
up to the order degr adj II +N- nN, which is necessarily in ’/.

The proof for R is the same and is omitted.
We can now write out the final result.
THEOREM 12. Let c P(M), with det d a nonzero constant map. Then

admits a strong analytic factorization c (AC).pc if and only if there exists a (unique)
solution ({L, M,: k 0, 1,. , l}, {R , e Mn: k 0, 1,. , r}) to the system of matrix
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equations

(9a)

L
L

(9b)

Moreover, should the solution exist, the factors are then given by

(lOa) A =(L)-,
(lOb) P Ro(R-where

(i0c) L= Z LXk,
k=O

(10d) R Rkg k.
k=0

Proof. By Theorems 4 and 5, c admits a strong analytic factorization if and only if
there exists a solution (L, R) to the system of matrix equations (4a)-(4c). Using (7a)
and Theorem 11, it is easily seen that (9a)-(9b) is merely a rewriting of (4a)-(4b).
Hence, c has a strong analytic factorization if and only if there exists a solution
(L, R) to the system of matrix equations (9a)-(9b).

The additional claims follow from a general result of factorization theory; see
McNabb and Schumitzky [16, Theorem 3.1 and Corollary 3.2].
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The solution to the problem of factoring the matrix-valued function c of constant
determinant is thus given by the finite system of linear matrix equations (9a)-(9b).
Notice that the system of equations (3a)-(3b) of the primary Hilbert problem is, in
general, an infinite system of linear matrix equations. The problem of the existence and
the computation of the solution to (9a)-(9b) should not cause problems because the
system of equations is linear and finite.

A system of linear matrix equations similar to (9a) appears in a celebrated
prediction problem; see Levinson [22], Wiener [23, Appendix], and Kailath [24, 7].
The system of equations of prediction theory can be solved recursively and efficiently
via Levinson’s algorithm. However, (9a) cannot, in general, be solved via Levinson’s
algorithm. The reason is that the application of Levinson’s algorithm to (9a) requires
the existence of a solution to the associated reverse time system of equations, which
might not have a solution even if a solution to (9a) exists. A deeper reason is that strong
analytic factorability is not invariant under time reversal [25]. To see this, observe that

thefunction(I)C=( 1-) is factorable" then observe that the function obtained
X

time reversal, namely, is not factorable. (Hint: use Theorem 12.)

6. Summary of the algorithm. We briefly summarize the algorithm to determine
whether L(Mn)f’IR(Mn) is factorable and to compute the factors if they exist.

The first step is to check whether det (ej) 0, V0 [0, 2r). If this condition is not
verified, then is not factorable (Proposition A.1). If this condition is satisfied, then
check whether indt (det , 0)= 0. If no, is not factorable (Proposition A.4). If yes,
then go through the algorithms of Theorems 6 and 7 to compute A, poO, A0, pO, and c.
By Theorem 8, the problem is now to factor c. Thus, check whether there exists an
appropriate solution (Lc, R c) to the system of matrix equations (9a)-(9b). If no, is not
factorable (Theorem 12). If yes, compute the solution (Lc, R c) to (9a)-(9b). Then
compute A and pc using (10). Then a strong analytic factorization of is given by
(I) A’P, where A A (AA)-1 and P pc(ppO)-.

Observe the following result:
THEOREM 13. Let L(Mn) 71R (Mn), with det (I)(ej) # 0, /0 [0, 2r), and

indt (det (I), 0)= 0. If there exists a solution (L, R) to the system of equations (3a)-(3c),
then this solution automatically satisfies Condition (3d).

Proof. Since det (I)(e) # 0, /0 [0, 2zr), and ind/(det (I), 0) 0, by Theorems 6
and 7, (I) can be reduced to (I) of constant determinant.

Let (L, R) be the solution to (3a)-(3c). Equation (3a) can be rewritten

L*=M,

M H(M,), Mo I.

By Theorems 6 and 7, this can be rewritten

L,[(AOAO),]-l(I)C (ppO)-i M;

we further have

[(AA)-IL]*(I) M(pp).

This last equation is equivalent to (4a). By working out (3b) the same way, one finds that

((AA)-iL[(pp))-i]*, (pp)-aR[(iAo)-]*) (Lc, R c)
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is an appropriate solution to (4a)-(4c). But, by Theorem 5, this solution automatically
satisfies (4d). Hence, (LC)-1 and (Re)-1 exist and are in H(Mn). It then follows that L-1

and R -1 exist and are in H(Mn).
7. The discrete spectral factorization. The discrete spectral factorization is the

problem of the existence and the computation of a strong analytic factorization of ,
when it is subject to the constraints

dp dO* L(M,) f’) R (M,),

(ej) > 0 V0 [0, 27r).

The discrete spectral factorization is considered in Motyka and Cadzow [20]. However,
this paper contains a gap; this will be proved later by a counterexample. Another way to
look at the discrete spectral factorization is to start from the continuous-time spectral
factorization, and then to apply to bilinear transformation in order to recover the
corresponding discrete-time result; this approach was taken by Anderson et al. [21 ]; it,
however, fails to provide a deep insight into the problem. In view of these facts, and
although it is widely used, the discrete spectral factorization deserves some attention.

THEOREM 14. Let dp dp* L(M,) f’) R (M), with (ej) > 0, /0 s [0, 2zr). Then
dp always admits a strong analytic j:actorization A*A.

Proof. Since =*, and (e)>0 for all 0 s[0, 2rr), by the definition of the
Laurent operator, it is easily seen that the operator L, is positive definite self-adjoint.
Then the Toeplitz operator T, is positive definite self-adjoint (to see this, it is useful to
consider the infinite matrix representation of L, and T). Then T, does not have zero in
its spectrum. Hence, T, is invertible. By Proposition 1, admits a weak analytic
factorization; furthermore, by Theorem 10, has a strong analytic factorization.

It remains to prove that any strong analytic factorization has the form A*A.
Since (e) > 0, ’0 s [0, 27r), T is Fredholm by Proposition A.1. Moreover, since

det (e) is real and strictly positive for all 0 s [0, 27r), by the definition of the
topological index, we have indt (det , 0)= 0. Then, by Theorems 6 and 7, can be
reduced to a matrix-valued function c c. of constant determinant by elementary
factors that are such that A P and A pO. By Theorem 8, c is then factorable. By
Theorem 12, there exists a solution (Lc, R c) to (9a)-(9b). Since c= c., (9a) is the
same as (9b). Hence, by Theorem 12, A pc. Finally, a strong analytic factorization of

is given by [A (AA)-I]*[A (AA)-I].
This result is not novel; it is contained in Saeks [17, III, Lemma]; it is contained

partially in Nagy and Foias [18, Ch. V, 7], in Helson [3, Lecture XI], and in
Rosenblum and Rovnyak [19, Theorem 3.1]. It is, however, interesting to see how this
particular result can be recovered in our more general setting.

In the case of the spectral factorization, (9a), which is the same as (9b), can b/e
solved via Levinson’s algorithm. Indeed, in this case, a solution to the reverse time
system of equations exists; this is related to the fact that spectral factorability is
preserved under time reversal [25]. Interestingly, it can be shown that the solution of
Levinson’s algorithm converges to the exact solution of (9a) after a finite number of
steps.

In [20], which deals with the discrete spectral factorization, the reduction of to c
contains several unclear features. Moreover, the proof of the factorability of c[20, V,
Step D] is definitely wrong. Indeed, the proof uses only the constancy of det c and
the property c c., and not the fact that c(e0) > 0 for all 0 [0, 27r). Thus, if this

proof were correct, then the function c=-( 01 X)- would admit a strong analytic
)- 0\ /
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factorization. But the application of the criterion of Theorem 12 proves that this
function is not factorable! Also, the algorithm of [20, V, Step D] to factor c is unable
to provide the factors in all cases; to show this, we invite the reader to try to factor

X_
using the algorithm of [20, V, Step D]. In view of these facts, the

spectral factorization algorithms that do not use the condition (ei) > 0, 0 [0, 27r)
should be reviewed with some care.

8. Conclusions. We have offered in this paper the basic results and algorithms
concerning the analytic factorization of a rational matrix-valued function. The
importance of this problem in the discrete-time linear-quadratic optimal control
problem has been clearly shown in [26] and [27].

The approach that has been taken here is rather analytical. It would be interesting
to set up a more algebraically oriented approach. The key idea is provided in 16]. From
[16, 5 and 6] and Theorem 13, it can be shown that the strong analytic factorability of

is equivalent to the invertibility of an imbedded element -(), where - is a map:
L(Mn) fq R (Mn) K(M,)(R)H(M,), a suitable product being defined on the tensor
algebra. It turns out that the imbedded element is a matrix defined over a noncom-
mutative ring. This shows the algebraic problem underlying the strong analytic
factorization. In a further paper, we shall go into more detail through that.

Finally, it is worth mentioning that a system of linear matrix equations like (9a) has
several system-theoretic interpretations [25]; we also leave these topics to a further
paper.

Appendix A. Fredhoimness and index theory. The transformation of into the
matrix-valued function c of constant determinant needs some elements of index
theory as applied to Fredholm Toeplitz operators. The necessary results are briefly
reviewed; for more details, see Douglas [4, Ch. 5], [5, Introduction and Lecture 1],
Gohberg and Krein [15], [28], Coburn [29], [30], and Atkinson [31].

The results of this appendix are presented within the framework of the inversion of
Toeplitz operators. We could equally have worked Within the factorization framework;
we, however, feel that the former approach is simpler.

A separable Hilbert space operator A is said to be Fredholm if it has closed range
and if Ker (A) and Ker (A*) are finite-dimensional. Should A be Fredholm, then its
analytical index is defined by

inda (A)=dim Ker (A)-dim Ker (A*).

The following proposition is proved in Douglas [5, Theorem 2]:
PROPOSITION A.1. Let C(M). Then T, is Fredholm ifand only if det (ej) #

0, V0 [0, 2zr).
Let q C(C), and let q :ql- - C\{0}. Then the topological index indt (q, 0) is defined

as the winding number of the image of ql- under q with respect to the origin. Should
indt (q, 0)= 0, then the map q ql--> C\{0} is homotopic to a constant map. Notice the
following easily proved result"

PROPOSITION A.2. Letq C(C) 0 R (C), and let q C\{0}. Write q tz/ u, where

k

k=0

u= , ’kX 0<---- <.
k=0
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Then indt (, 0) equals the number of (repeated) zeros of (the extension of) I inside the
open unit disk ) minus the number o] (repeated) zeros o] (the extension o1) inside D.

The following result is due to Douglas [5, Lecture 1]"
PROPOSIrION A.3. Let d C(Mn), and let T. be Fredholm. Then

inda (T)=-indt (det , 0).

Propositions A.1 and A.3 readily yield the following:
PROPOSITION A.4. Let C(Mn). Necessary ]or T. to be invertible is that

det O(ej) # 0, V0 [0, 27r), and indt (det , 0) 0.
This necessary condition for invertibility is not, in general, also sufficient. Indeed, a

Fredholm Toeplitz operator whose associated matrix-valued function has determinant
homotopic to a constant may have a nontrivial kernel [5, Lecture 1], [32] and may,
hence, be noninvertible. In fact, the toughest problem in the inversion of a Toeplitz
operator is to determine under what conditions a Fredholm Toeplitz operator with
determinant of the associated matrix-valued function homotopic to a constant is
invertible; this problem is treated, within the factorization framework, in 5.
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A DEGREE METHOD FOR FREE BOUNDARIES
IN STOCHASTIC CONTROL*

IOANNIS KARATZASt AND V/CLAV E. BENE$

Abstract. In stochastic control problems with a bounded control set, the Bellman-Hamilton-Jacobi
equation leads to two-sided free-boundary problems for the switching surfaces, expressible as an equivalent

set of integral equations containing the boundary functions in a very implicit way that seems to preclude the

standard method used in the Stefan problem. It is natural then to try to use the topological Leray-Schauder
methods to study the properties of solutions. We apply such an approach to the sample problem:
min, E[[f(x,)+ u(x,,t)]dt, subject to dx,=u(x,,t) dt+dw,, lul-<l, with w, a Wiener process. The

absolute value cost lu[ leads to finding the boundaries of a "dead zone" in (x, t)-space that separates the zones
u + for the optimal u. The a priori bounds requisite for the Leray-Schauder approach come from usual
probabilistic and PDE estimates. Then the integral equations are shown to have the form (homeomorphism +
compact) for which a degree theory is available. Finally, a simple homotopy shows that the free boundary is

continuously differentiable; separate arguments establish its uniqueness and monotonicity.
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1. Introduction. We use a sample problem to describe topological methods for
certain questions in stochastic control. In all these questions, the Bellman-Hamilton-
Jacobi equation of dynamic programming suggests a bang-bang optimal law and so,
after a transformation (similar to that used for Stefan’s problem) of BHJ to an
equivalent system of integral equations, a search for the optimal "switching surfaces" or
"free boundaries". To the integral equations we apply Leray-Schauder methods thus’
first, standard PDE and probabilistic estimates provide the requisite a priori bounds;
then, a natural homotopy establishes properties of the free boundaries and the value
function.

The sample problem concerns the linear control of the stochastic differential
equation dxt u(xt, t) dt+dwt over a finite time horizon T, where {wt; O<=t<= T} is a
Wiener process on an underlying probability space (lq, F, P). This is sometimes called
the "controlled noisy integrator," and is depicted in block diagram form in Fig. 1.
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dwt xt
OBSERVED

INTEGRATOR

CONTROL LAW ul <_1

FIG. 1. Control of noisy integrator dxt u(xt, t) dt + dwt.

There will be two kinds of cost incurred in this problem. First, one pays f(xr) for
being in the wrong place at the final time; second, one pays lul per unit time for using the
control law. The control problem is to choose a law u: R x [0, T] [-1, 1] so as to
minimize the expected total cost. Intuitively speaking, the function of the controller u is
to push the output to the left if the latter is too positive or to the right if it is too negative,
thus keeping it as small as possible.

It has been shown that in the absence of an explicit cost of control, it costs nothing
to push harder (up to the allowed limits), and pushing hard in the right direction is
better than pushing only a little; thus, the physically obvious bang-bang law, u(x, t)=
-sgn x, is indeed optimal in that case (Beneg [1974], [1975], Ikeda and Watanabe
[1977]).

In the case of an "expensive" or "costly" controller, however, the optimization
problem must be solved essentially by balancing the costs of control against those of
performance. Exerting more control than the optimal will improve the performance
(i.e., make xr smaller) but not so much as to overwhelm the cost of the additional
control effort. On the other hand, exerting less control than the optimal will result in a
deterioration of the performance which will counterbalance what is saved in effort.
Therefore, in the problem formulated above, where there is an explicit running cost of
control lul, a dead zone in two dimensions suggests itself, in which one should do
nothing. More specifically, one expects the optimal law to be of the form

u(x, T-z)=-1, x > s(z),

-0,

1, x < -s (’),

for some positive and "reasonable" function {s(z); 0-< z <_- T} of the "time-to-go" z.
Indeed, under some symmetry, smoothness and convexity assumptions on the

terminal cost function f(x) and making use of the general theory of quasilinear
parabolic equations, the Girsanov theorem, the Feynman-Kac formula and the maxi-
mum principle for parabolic operators, it is possible to establish existence, uniqueness,
continuity and monotonicity for such a boundary function {s(z); 0_-< r_-< T}, for any
positive time horizon T. In order to prove smoothness of s(z), the so called "free-
boundary problem" is transformed into the equivalent one of studying a system of two
nonlinear integral equations for the free boundary and the value function along it;
actually, a whole family of such pairs of equations indexed by a gain parameter a,
0_-< a _-< 1, [u[ =<a is considered. The latter is viewed as a family of continuous trans-
formations from the Banach space of pairs of continuous functions into another Banach
space; a generalized Leray-Schauder degree can be defined for these transformations,
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which form a homotopy indexed by the gain parameter c. Using the degree of
knowledge provided by the especially simple form of the transformation at the endpoint
c 0 (uncontrolled case) and the invariance of topological degree under homotopy, it is
proved that the free boundary function s(r) for the original problem c 1 (fully
controlled case) is continuously dilIerentiable on [0, T] for any T > 0.

2. Formulation.
2.1. The optimal control problem. Let f(x) be a function satisfying assumptions

A. 1-A.3 below:
A.1. f(x) is an even, C3(R), nonnegative function. Both )e(x) and f’(x) increase

monotonically to infinity on R/
as x -> oo.

A.2. /e(x) is uniformly convex; i.e., there exists a positive constant k such that
e"(x) _-> k > 0, for all x R.

A.3. -L <- ["(x <-_ O on R/, for some L=>0; i.e., the second derivative of the
function ]’(x) is decreasing with distance from the origin.

Let the family A of admissible feedback controls consist of all jointly measurable
functions u R x [0, T]-> [- 1, 1]. The stochastic control problem is to choose a control
law u s A so as to minimize the expected total cost

(2.1)
T

of starting at place x, time T-r, subject to

(2.2)

(2.3)

dxt u (xt, t) dt + dwt,

XT-r X,

T-r<_t<_T,

where {Wt; T-r<-t <- T} is a Wiener process on an underlying probability space
(I1, F, P). E denotes expectation with respect to the probability measure P.

The first question that arises is the following: in what sense is the stochastic
differential equation (2.2) to be understood? Because we cannot expect the optimal u to
be Lip or even continuous in x (in fact, as pointed out in the Introduction, the natural
candidate for the optimal law is discontinuous at the moving cutoff points +s(r)) and so
we cannot just resort to the classical Ito theory. The answer to this question is contained
in a very important paper by Zvonkin [1974], where it is shown that a stochastic
differential equation like (2.2) in one space dimension with u(x, t) bounded and
measurable does possess a pathwise unique strong nonanticipative solution xt.

An alternative approach consists in constructing a solution measure to (2.2) by
means of the Girsanov theorem, rather than attempting to construct the paths of a
solution process. More specifically, for any u e A, x e R and r [0, T] one considers the
process

X X -- Wt--(T--r) T- r <-- <= T,

under the new measure

(dw) =exp u(x + w,-r+,, t) dwt-- uZ(x + wt-r+,t) d P(doo).

Because u is bounded and measurable, / is a probability measure and Girsanov’s
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theorem [1960] asserts that the process

(2.4)
Vt=Wt-T+,--I7 u(x+wx_T+,A)d,

--Xt--X--fr u(xx, A)dh, T-z<-t<=T

is a Wiener process on the probability space (f, F,/5). The process xt thus constructed is
a weak solution of the stochastic differential equation

dxt U(Xt, t) dt + dt,

as indicated by (2.4). Now the control problem can be viewed as an extremal problem on
the choice of the best measure.

In either case, the optimization problem can be treated through the Bellman
equation of dynamic programming for the value function

(2.5) V(x, ’)= inf J(x, T-z; u),
uEA

which for the problem under consideration takes the form

1 1
(2.6) V=- V+min[uV+lu[]=- V+a(V), (x, r)Rx(O, T],

lull

(2.7) V(x, 0)=/(x), x R.

Equation (2.6) is a quasilinear partial differential equation of parabolic type, where
the nonlinearity a (p) is given by

a(p)=l+p, p<-l,

(2.8) =0, [pl-_< 1,

=l-p, p>l.

A verification theorem (Fleming and Rishel [1975, p. 159]) asserts that if V(x, z) is
a solution of the Cauchy problem (2.6)-(2.7) in the space C2’1(R x [0, T]) satisfying a
polynomial growth condition in the space variable x, then V(x, z)<=J(x, T-z; u) for
any u A and any initial condition (x, z) R [0, T]. On the other hand, if u* is a
control law in A such that

u*(x, T-z)=-1, Vx(x, ’) > 1,

(2.9) 0, [V (x, z)[-_< 1,

1, Vx(x, ’)<-1,

for almost all (x, 7-)6Rx[0, T], then u* is optimal: V(x, z)=J(x, T--; u*), and
(x, z) 6 R [0, T]. Existence of a C2’1 solution to the Cauchy problem (2.6)-(2.7) and of
an optimal control law u* for the problem under consideration is guaranteed by the
so-called existence theorems in Fleming and Rishel [1975, pp. 166-170]. Crucial to the
applicability of the above theorems are the assumptions of compactness of the action
space [-1, 1], of Lip continuity of the running cost lul in the control variable as well as
the smoothness and growth conditions on the terminal cost function f(x) (assumptions
A.1-A.3).
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Note. The optimal feedback control law (2.9) obtained by the verification theorem
is actually optimal in the larger class U of nonanticipative laws with values in [-1, 1].
For a discussion of this point, see Davis and Varaiya [1973].

Once the existence and the functional form of the optimal law have been settled,
the interesting problem is to examine whether there exists a "free" or "moving"
boundary x s(r) in two dimensions such that, if one considers the regions

D(-1) {(x, r); x > s(r), 0< r < T},

(2.10) D(0) {(x, r); Ixl < s(r), 0< r< T},

D(1) {(x, r); x <-s(r), 0< r < T},

then the gradient Vx(x, t) of the value function V(x, r) is equal to :t: 1 on +s(r) and

Vx(x, r) > 1 in D(-1),

Vx(x, r) <-1 in D(1),

V (x, r)[ < 1 in D(0).

If such a boundary function {s(r); 0 _-< r-< T} exists, the optimal law u*(x, T-r) can be
written in the more suggestive form

u*(x, T-r) =-1

(2.11) =0

=1

In 4 we prove the following theorem"

in D(-1),

in D(0),

in D(1).

THEOREM 2.1. Under assumptions A. 1-A.3 on the terminal costf(x), there exists a
unique solution V(x, r) in C2’1 (R [0, T]) to the Cauchy problem ofsolving the Bellman
equation (2.6) subject to the initial condition (2.7). The gradient V (x, r) of this solution
is, for fixed 0<= r <- T, an odd, strictly increasing (to infinity) function of x, achieving the
value 1(-1) at a certain unique, finite points(r) [-s(r)]. The function {s(r); 0 <- r <-_ T} is
Lipschitz continuous and increasing on [0, T], any T > O.

COROLLARY. The optimal control law u*:R[0, T]-+[-1, 1] for which the
infimum ofJ(x, T-r; u) over At is achieved is given by (2.11), with {s(r); O<=r <- T} as
in Theorem 2.1.

2.2. The free-boundary problem. We introduce the parameter c, 0 =< c-< 1, to
allow for a variation in the gain of the controller in the optimal control problem: lul -< a.
We thus consider a whole family of optimization problems indexed by a, with
corresponding value functions V)(x, r), 0 <_- a <= 1, satisfying the Cauchy problems for
the Bellman equation

1
(2.12) V v /lul]--a-xx +aa( ), (x,r)eRx[0, T],+ min uV) zl v(lul_<-,

(2.13) V()(x, O) f(x), x R,

where a(p) is the function defined in (2.8). In this and later sections, we drop explicit
dependence of the value function V(x, r) and the free boundary s(r) on the gain
parameter a, whenever a 1 (original problem, fully controlled case).

The unique solution of the equation f’(x) 1 is denoted by b; i.e.,

(2.14) f’(b) 1.
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The "free-boundary problem" is formulated as follows: Find functions s (r) on
[0, T], V(’)(x, r) on R/ [0, T] such that:

in D*(0) {(x, z); 0 < x < s" (r), 0 < r < T},

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

v 1 v v=---x +a-a inD(-a)={(x,r);x>s (r),0<r<T},

Vex) (0, r) 0, 0 < " < T,

V()(x, O)= f(x), x R,

s(O) b, where f’(b)- 1,

V(ff Is(r), r] 1, 0 < r < T.

The curve {(x, r); x s (z), 0 -_< r _-< T} is the unknown "free" or "moving" boun-
dary, which is to be determined together with V(’)(x, r).
DEFINITION 2.1. We say that s(r), V()(x, r) form a solution to the free-

boundary problem (2.15)-(2.20) on R+ [0, T], if
(i) s (r), 0-<_ z-<_ T, is Lipschitz continuous on [0, T],

(ii) W()(x, r) is a C2’I(R+ x[O, T]) function,
(iii) the equations and initial and boundary conditions (2.15)-(2.20) are satisfied.
PROPOSITION 2.1. The Cauchy problem of solving the Bellman equation (2.6)

subfect to initial condition (2.7) in C2’1(R [0, T]) is equivalent to the free-boundary
problem (2.15)-(2.20), for 1.

Proof. If V(x, z) is the C2’1(R [0, T]) solution to the Cauehy problem (2.6), (2.7)
it clearly satisfies all requirements of Definition 2.1, by Theorem 2..1. On the other
hand, if s(r), V(x, r) is a solution to the free-boundary problem (2.15)-(2.20) in the
sense of Definition 2.1, V(x, z) can be evenly extended to the whole of R [0, T]; the
resulting function is C2’1 on R [0, T] and an application of the maximum principle for
parabolic operators asserts that Vx(x,r)>l in D(-1), [Vx(x,r)[<l in D(0) and
V(x, z)<-I in D(1). So V(x, z) satisfies (2.6) and thus solves the Cauchy problem.

In 6, 7 we prove the following theorem:
THEOREM 2.2. Under assumptions A. 1-A.3 on the terminal costfunction f(x ), the

free-boundary problem (2.15)-(2.20) possesses a unique solution on R+ [0, T] in the
sense of Definition 2.1, with s(r) continuously differentiable on [0, T], any T> O.

3. Summary. In 2, the stochastic control problem was formulated and two
methods of approaching it were considered. The first method consists in obtaining as
much information about the function s(r) satisfying V(ff[s(z), z]= 1 as possible
through a direct investigation of the properties of the value function V((x, z); the
latter is viewed as the solution to the Cauchy problem (2.12)-(2.13) for the Bellman
equation of dynamic programming. The second method regards the problem of
determining the boundary curve x s" (z) as a free-boundary problem in the sense of
Definition 2.1. Actually, these two lines of approach are equivalent, as was pointed out
in Proposition 2.1.

The first method is undertaken in 4, where the assertions of Theorem 2.1 are
proved. Using the basic theory of quasilinear partial differential equations of parabolic
type and the maximum principle for parabolic operators, we localize the boundary
curve x s(z) in the (x, z)-plane and prove some of its properties, such as right
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continuity and monotonicity (Proposition 4.2). The most important result in this section
is the stochastic representation (4.44) for VC (x, z) (Proposition 4.5); it is established
via the Feynman-Kac formula and the Girsanov theorem and relates the second space
derivative of the value function to the local time spent by the solution process of (2.2) at
the two branches of the free boundary x +/-s (z). The main corollary of the represen-
tation (4.44) is the positive lower bound (4.55) on the second derivative of the value
function, independent of 0-< ce-< 1, a fact of paramount importance throughout the
whole paper. First, it helps in proving Lip continuity of s (z) on [0, T], for any T > 0,
and thus establishes an "a priori" bound on the growth s’ (z) of the free-boundary
function, independent of 0 <= a <= 1. Second, it provides the crucial step in the proof of
the smoothness of s(z), globally in time ( 7).

We embark on the free-boundary problem approach in 5, our main concern now
being to establish continuous differentiability for the function s(z), 0 -< - =< T. Following
a standard method in problems of this sort, such as the Stefan problem (e.g., Friedman
[1959], Rubintein [1967]), we transform the free-boundary problem into the
equivalent one of studying the pair of integral equations (5.10), (5.17) for
[s’"(z), w’"(z)], w(z) V(’[s’(z),"] (Proposition 5.1). However, the resulting
integral equations are far more difficult to deal with analytically than the corresponding
ones for the Stefan problem, in the sense that they are not amenable in any natural way
to a straightforward fixed point analysis; the reason for this difficulty has to be traced
back to the highly implicit boundary condition V[s(z), z]= 1 (the corresponding
condition for the Stefan problem is s’(z)=- V[s(z), ’] and the integral equations are
solvable by the contraction mapping principle). The integral equations are made use of
in the study of the special case f(x) x 2, particularly in disproving the alleged solution
s(z) =1/2+ - suggested by R. C. Davis [1968] in an unsuccessful attempt to attack this
important special case; they are also used in the proof of strict monotonicity of the free
boundary. Fig. 2 of 5.3 depicts the free boundary s(’) in the special case f(x) x 2. The
plot was obtained by numerically solving the quasilinear partial differential equation of
dynamic programming and identifying the points where Vx (x, z)= 1.

Our method of establishing existence of a continuous solution (s’, w’) to the
integral equations (5.10), (5.17) uses homotopy and topological degree and is carried
out in 6, 7. More specifically, we regard the solutions (s ’, w’")= (c a, ,) of the
integral equations, for all possible values 0-<_a_-<l, as zero-points of the trans-
formations b(c, ,) defined in (6.5)-(6.12) on a Banach space X to another Banach
space Y. The gain parameter a, 0_-<a _-< 1, acts as a homotopy on the family of
continuous transformations {b" (c, ,); 0 _-< a -< 1} fromX to Y (Corollary 6.1). On the
other hand, the operators b admit, for e.ach 0 _-< a <- 1, a decomposition of the form
"compact plus homeomorphism," for which a topological degree can be defined
(Propositions 6.1, 6.3, 6.4). The uncontrolled case a 0 is, however, penetrable, in the
sense that the whole operator b(c, ,) is a homeomorphism. Because of the "a priori"
bound on I[(s ’, w’)[[ established in Proposition 4.7, the topological degree of the zero
point in Y with respect to the mapping b and the set G

_
X defined in (6.13) is

invariant under the homotopy, i.e., independent of a; so deg[tb 1, G, 0]=
deg [b o, G, 0] + 1, from the fact that b 0 is a homeomorphism. Now the existence of a
pair (c, u) G satisfying 4 1(c, u) 0 at the endpoint a 1 is established by appealing to
a basic "existence result" in degree theory. The above heuristics are substantiated in
the proof of Theorem 7.1, in which we establish continuous differentiability of the free
boundary for "small times" 0-< z =< or, cra sufficiently small constant. The method is
then applied step by step and the solution is extended into the future, up to any finite
time horizon T > 0 (proof of Theorem 2.2). As has already been pointed out, the
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feasibility of this extension is a consequence of the positive lower bound (4.55) on the
curvature of the value function.

Most of the details are carried out separately in appendices; see 8, 9 and 10.

4. Preliminary results and a priori bounds. We recall the anisotropic H61der spaces
that enter into the a priori estimates of Schauder type for parabolic equations
(Ladyenskaja, Solonnikov and Ural’ceva [1968, pp. 7-8]). Consider an arbitrary open,
bounded and connected set Q in R and denote by 07- the rectangle O (0, T). For any
positive integer I, any 0</3-< 1, we consider the Banach space HI+,.(I+3)/2 (Or) of
functions u(x, 7") that are continuous in Or, together with all derivatives of the form

Dt"D for 2r + s -<_ and have a finite norm

/’=0

where

<u>(l+/) E (DtrOSxu)) \(l+[3--2r--s)/2
x,OT Z (DtOxu/t,oT

(2r+s l) 0< l+i3 -2r-s<2

, lu (x, r) u (x’, )1
0 < _-< 1(u),.o. sup x’,,,x,,,o Ix-

() lu(x, ’)-u(x, ’)1 < 1(u, t.oT sup 0 < v
x,,,’Q I-’l

We are interested in studying the Cauchy problem

(2.12) =--xx +aa( ), (x, 7")eRx(O, T],

(2.13) V(’)(x, 0)= f(x), x R,

where a(p) is the function defined in (2.8). According to Ladyenskaja et al. [1968,
Theorem 8.1, p. 495], there exists a unique solution V<’)(x, 7") to the Cauchy
problem above in the strip Rr R [0, T], for any 0 =< a =< 1. V(’(x, 7") satisfies (2.12)
in the classical sense and furthermore belongs to the space H2+,1/,/2 (Qr) for any
bounded rectangle Qr Rr, with H61der constants in (4.1) independent of a, 0 =< a -< 1.
Here,/3 is the modulus of continuity of the nonlinear function a (p); in our case, a (p) is
Lipschitz continuous with/3 1.

We now consider the smooth (three times continuously differentiable) approxima-
tions a,,(p), n sN to the function a(p), given by

a,,(p)=c,,(p-1)+c,,(-p+ 1),(4.2)

where cn (p) is the sequence of functions defined below, along with their derivatives"
1

c.(p) o, p<--,
n

1
(4.3) -p, p >-,

n

c,(u)du, Ip[ <
1/n n
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(4.4)

Besides

and

c,(p) 1233 1
2 3n p, 0----<P--<--2n

( (7 n 1 : 2 1
12 2

p- -n p- +- p-
1 1
2n n

1
1, p>-,

n- -c’,(-p), p<0.

cn(p)=--n+2n 3 2 1

<p__<2n3
2n n

1
=0, p >-,

n

p<0,c,(-p),

tit 3
c,, (p) 4n p,

1

<p__<P 2n n

1
=0, p >--,

-c (-p), p < o.

The corresponding Cauchy problems

(4.6) xR

have, for any 0 _-< c -_< 1, a unique C2’1 solution on RT- which belongs, for each n N, to
the Banach space Hs+o,(5+t3)/E(QT), for any bounded cylinder Qr___Rr (see, for
instance, Ladyenskaja et al. [1968, p. 456]). The additional smoothness of the
solutions is a result of the greater smoothness of the coefficients in (4.5) compared to
a(p) in (2.12). We consider now the Cauchy problems for Vn’) and V(x’),

1 V(,)(4.7) V(2’’) ). ),, + aa,, V(’’’) )( V(2’) ),, (x, "r) e R x (0, T],

V(;’’) (x, O)= f’(x), x e R,(4.8)



292 IOANNIS KARATZAS AND V/CLAV E. BENE

and

v(n,) 1 v(n,, v(n,, v(n,)(_ ),=(_ )+aa(_ )(--x )

(4.9)
+ aa (V’) V;) V;)), (x, r) 6 R (0, T],

(4.10) V;) (x, 0)= f’(x), x R,

respectively. Equations (4.7) and (4.9) hold in the classical sense and are derived from
(4.5), (4.7), respectively, by differentiation. By the continuous dependence of the
solutions of parabolic partial differential equations on their coefficients (stability
theorems) we have that V"’(x, r), V’ (x, ), V; (x, ) converge as n to
V)(x, r), V (x, r), V (x, ), respectively, uniformly on compact (x, r) sets.

It is easy to check that V)(x, ) satisfies a polynomial growth condition in x.
Indeed, assumption A.3 implies in particular that f’(x) is decreasing in x 0 and
consequently,

(4.11) O<k<=f’(x)<=K=f"(O), all xeR.

If we use the "naive" control law u(x, t)=O, we immediately get from (2.1), (2.5)

(4.12) V( (x, z) <-_E(KIx + w,l) <- K(x + r), (x, z)e Rx[0, T].

Similarly, the approximating functions V("’)(x, z) as well as their derivatives
V(’’> (x, r), V(2’’) (x, ) satisfy polynomial growth conditions.

Consider the parabolic operator

1 a O V(2.) V(;) O
(4.13) L

2 0x 2

From (4.9)one gets L(V(;;)=0, and since V(;(x,O)=f"(x)k>O, xeR, the
maximum principle for parabolic operators (Friedman [1964, p. 43]) yields

V("’ (x, r) > 0 (x, r) e R [0, T].

Similarly. L( V(’;") K) -aa’( V(;’) --xxv("’)t(-- > 0 in R (0. T].

V(’;’ (x, 0)-K =f"(x)-K <-_0 in R.

A second application of the maximum principle now gives

(4.14) 0 =< V(;) (x, z) <- K in R [0, T],

while a passage to the limit as n --> c in (4.14) asserts that

(4.15) 0 <_- V( (x, z) _-< K in R [0, T],

for any a s f0, 1]. As a consequence of (4.15), the gradient Vx)( ’) is, for any
r s [0, T], an increasing function of x.

We are interested in determining, for each " s [0, T], the point(s) s (r) for which
V)[s(z), r]= 1. It behooves us, therefore, to examine more closely the gradient
function Vx) (x, r).

PROPOSIWlON 4.1. Monotonicity and Lip continuity of the gradient Vx) (x, r) in r.

For any 0 <-a <- 1, x > O, the gradient V (x, r) of the value function
(i) is a decreasing function of " on [0, T].
(ii) is Lipschitz continuous in r on [0, T] with Lipschitz constant ceK + L/2.
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Proof. We introduce the parabolic operators, indexed by the integer n,

(4.16) N

and propose to show that

aK + (z. Zl) --< (x, z2) (x, zl) <-- 0,
(4.17)

for anyx>0, 0-<_zl<z2<_-T, 0_-<a_-<l,

which incorporates the two assertions of the theorem. In particular, (4.17) implies

f’(x)-(aK +-) z V(: (x, z)<-_f’(x),
(4.18)

foranyx>0, O<=r<=T, 0<=a=<l.

First, it is observed that, because of (4.7) and assumption A.3 on f,

f’"(x ’ v2’N[f’(x)-V(2’(x,z)]=N[f’(x)]=-2 )+aa (x,z)]f"(x)<-_O,
z

(x, z) e R+ x (0, T].

Consider any rectangle (r = {(x, z); O<-x.<-q, O<-z <- T} in R+ x[0, T]. The function
u(x, z)=f’(x)-V(x’) (x, z) attains its inaximum on tr at some point p0= (x o, zo).
Denote by S(P) the set of points Z in Or which can be connected to pO by a simple,
continuous curve in Or along which the r-coordinate is nondecreasing from Z to pO.
obviously P=(x,O)6S(P). Suppose that u(P)<0; then by N [u (x, z)] -_< 0 and
by the strong maximum principle for parabolic operators (Friedman [1964,
Theorem 2.1, p. 34]) u(P)=u(P)<O, a contradiction, because u(P)=u(x, 0)=
f’(x)-V(’)(x, 0)=0. So ufP)>0,- which implies a fortiori that u(x,z)=
f’(x)- V(’ (x, z)>-0 in (r, for any such Or. A passage to the limit as n -> oe in the
above inequality yields the right-hand side of (4.18), while letting z-->0, we obtain

(4.19) V(’;) (x, O) -< 0 in R+.
It is also checked that

v("’ (x, ,)]N[f’(x)- aK + z + aa,,[_x (x, z)]f"(x) + aK +

->0, R/ x (0, T],

where again (4.7), (4.2), (4.4) and assumption A.3 on f have been used. Reasoning as
before, we get by the strong maximum principle" f’(x)-(aK x L/2)z- V(’’ (x, z)<=0
in R+x[0, T]. The left-hand side of (4.18) follows readily if we let n->oo in the
inequality above; if we now divide both sides of the latter by z and then let z- 0 we
obtain

(4.20) -(aK +)<- V(;) (x, 0) in R+.

We now differentiate both sides of (4.7) with respect to z and get

(4.21) L(V(2;)=O in Rx(0, T],
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where L is the parabolic operator introduced in (4.13); all partial derivatives involved in
(4.21) are understood in the classical sense. A strong maximum principle argument can
again be used to show that (4.19), (4.21) imply

(4.22) V(x;") (x, r) <-_ 0 in R/ [0, T].

Similarly, we check that

L [ V:; (x, r) + (aK

whence

+ aa", [_x (x, r) aK +

-<0 inR+(0,T],

V(2; (x, 0)+ aK + _-> 0 in

(4.23) aK+ <_- (x,r) in [0, T],

again by a maximum principle argument. From (4.22), (4.23) one gets immediately

Vf’)+ (r.-r) <- (x, r)- V’) (x, r)<_-0,

X >0, 0T1 < r2 T
and therefore (4.17) in the limit as n oo. Q.E.D.

We define

s (r) sup{x > 0" V(x (x, r) 1}, 0 < r _-< T,
(4.24)

b, r=0.

PROPOSITION 4.2. Boundedness and monotonicity of s(r). The function
defined on [0, T] for any 0_-<a _-< 1 by (4.24) is increasing and right continuous.
Moreover,

where m =f’-a is the inverse function off’ on R+.
Proof. The fact that s(r) is increasing on [0, T] follows from Proposition 4.1,

where it is asserted that V(2 (x,.) is decreasing on [0, T], for x > 0. The "localization"
inequalities" (4.25) are a consequence of relation (4.18) and monotonicity. In order to
prove right continuity of s(r), consider any re[0, T) and a sequence rn$r. The
corresponding sequence {s(rn); n 6N} is bounded below and monotone decreasing,
therefore, convergent to some number s*; obviously, s (r) -< s* since s (r) -< s (r,), for
all nN. But V( is continuous, so that V()[s(r), r] V()(s*, r) as n.
Therefore, V(x) (s*, r) 1 which implies s* _<- s (r). Consequently, s* s (r) and
right continuity is established.

PROPOSITION 4.3. Monotone dependence on the gain parameter a. For any two
values a, a2, 0 <= a <- a2 1 of the gain parameter a,

(4.26) V’) (x, r)_-> V’:) (x, r), (x, r)6 R+ x [0, T],
t2(4.27) s(r) <- s (r), 0 < r <- T.
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Remark. Inequalities (4.26), (4.27) above mean that the use of control is more
efficient the larger the gain parameter a is.

Proof. Consider the Cauchy problem (4.7), (4.8) for the two values a l, a2 of the
gain parameter a, al <- a2, and note that

1(V(,.,) V,, ). (V’) V,)) + a2a’ (V("’=) V,

v(n,ol)--aXan(--x )V(xc’’1) inRx(0, T],

V(n’2) (x, 0)- V(’1) (x, 0)= 0 in R.

The difference of the last two terms on the right-hand side of the partial differential
equation can be written as

Define the linear parabolic operator

so that

M[V’’’) --xV(tl’ 1) (l2 a I) V(;)a ’,, (-xV(/l’t 1) )--’0
V’’’ (X, 0)-- V(’’) (X, O)= 0 in R+.

in R+(O, T],

Equation (4.26) now follows by a strong maximum principle argument, similar to
that used in the proof of Proposition 4.2, and a passage to the limit as n c. Equation
(4.27) is a direct consequence of (4.26) and the definition of s (z). Q.E.D.

It is easily seen from (2.12) by formal differentiation and from the definition (4.24)
of the moving boundary s (r) that the gradient V(x satisfies the linear equation

(4.28)
1 V()(v), )x +,g(x, ,)( ),

away from the free boundary x s (’), where g(x, ’) is the discontinuous "turned-
around" drift

(4.29)

x >s(z),

g (x, -) o, Ixl<_-sO-),

1, x < -s"O’).

This fact suggests a new approximation scheme for V(), --xxv()’, we approximate the
discontinuous drift g (x, z) by a sequence of smooth functions g,,, (x, r) to be defined
below in (4.34).
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Consider the functions, for each m e N,

em(x) 2m2 ( 1 )uX,
1

(4.30)
1

=0, x>
m

e,(-x), x<0,

e (x m:Zx x 0 <x <
m m

(4.31)
1

1, x>--,
m

-e%(-x), x < O,

,(x) mx2 1 - mx O<--x <--
m

2 1
(4.32) =x-

3m m

.,(-x), x<0,

and notice that e., (x), g,, (x) are the derivatives of . (x), g., (x), respectively. Now
define the approximating potential and drift terms b,.. (x, z), g,., (x, z) by

(4.33) b,,(x, r)= (-)[e.,(x-s(r))+e.(x + s(z))],
\ z/

(4.34)

where

g.,,m(X, r)= (-)[g.,(x-s(r))+ g..(x + s(z))],

g,,,, (X, "r)=
Io’ b,,,,, (, r)d, x > O,

0, x 0,

-g,.,(-x, ’), x <0.
The Cauchy problem

1 V,)(4.35) V(xre’a) )z )xx + ag,,m (x, r)( V(xre’a) )x in R (0, T],

(4.36) V(’) (x, 0)=f’(x) in R

has a unique solution V(’) (x, z) in the strip R-, which belongs to the space
H3+,3+/2((T) for any bounded rectangle QT RT, where/3 is the modulus of H61der
continuity of the function e(x)’ 1 in the present case (Ladyenskaja et al. [1968,
Theorem 5.2, p. 320]). We can therefore differentiate (4.35) with respect to x and still

get an equation holding in the classical sense; thus, we obtain the corresponding Cauchy
v(m,,problem for

(4.37) V(S’) ). )x, + ag,,,. (x, r)( V(S’) ) + ab,,,. (x, z)( V(S")

in R (0, T],
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(4.38) VS’) (X, 0) f"(x) in R.

The latter has a unique solution Vx’) in Rr belonging to the space n2+ts,1+t3/2 ((T),
any bounded rectangle

Because g.(x,) g(x, r) uniformly in (x, r), one gets by the continuous
dependence of solutions of PDE’s on their coefficients that V’) (x, r),
converge to V) (x, r), V (x, r) respectively, uniformly on compact (x, r) sets, as
m . This fact enables one to get stochastic representations for V
though the Feynman-Kac formula.

PROPOSWIOY 4.4. Representation of Vff (x, r). The gradient Vff (x, r) of the
value function admits the stochastic representation

T

V(ff (x, r)= E[fl’(x+w).exp {a IT ga(x+Wt-T+r, T-t)dwt

(4.39)
a2 T

g(x + w,-r+,, T-t) dt

where {wt; 0 N T} is a Wiener process on the underlying probability space (, F, P)
and E denotes expectation with respect to the probability measure P.

Pro@ We introduce the notation

(4.40) (_,(g) a g(x + wt-r+,, T-t) dwt- g](x + wt-r+,, T-t) dt.

According to the Feynman-Kac theorem (Friedman [1975, p. 148] and Beneg [1974])
the unique solution to the Cauchy problem (4.35)-(4.36) satisfying a polynomial growth
condition in x admits the stochastic representation

(4.41) V(Y’) (x, r)= E[f’(x + w,). exp (_,(ag.m)],

subject to mild smoothness conditions, such as Lip continuity, on the drift g.m. To show
that the right-hand side of (4.41) converges as m m to that of (4.39) uniformly on
compact (x, r) sets, it is sufficient to prove

(4.42) Elexp (_,(ag.) exp

uniformly on compact (x, ’) sets.
By Girsanov [1960],

(4.43) E[exp r._,(b)] 1,

for any bounded, nonanticipative Wiener functional &. Consequently,

Elexp ---(o[,got,m)-exp sr-_,(cg=)l2
T

T

+exp {a2 Ir 2 }ga,m(X + Wt-r+r, T-t) dt

T

-2 exp r-t dt}].
The expression under the expectation sign on the right-hand side of the above equality
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is bounded in absolute value by exp (4a-) ---exp (4 T), and it is easy to see that
T T

g.,, (x + wt-r+, T-t) dt g (X + Wt-T+.r, T-t) dt, j 1, 2,

as m, uniformly on compact (x, ’) sets. Now (4.42) follows by the bounded
convergence theorem. Since V’) (x,.r) converges to V) (x, r), (4.39) follows from
(4.41) by a passage to the limit in the latter, as m .

PROPOSIWION 4.5. Representation of V] (x, r). V (x, r) admits the stochastic
representation

V (x, ) E[f"(x + w.) exp {- (, x, w) + ff_.(g)}],(4.44)

with

(4.45)
= (-, x, w)-- [x +w-bl-lx-s=()l/lx +w+b[-[x +s(z)l

T

+2It g(x + wt-r+,, T-t) dwt

T

+ 2 Ir-.r X{]x+w,_T+.rl<s’(T--t)} dp(t),

where {W 0 <= T} is a Wiener process on the underlying probability space (f, F, P), E
denotes expectation with respect to P, p(t)=-s(T-t), T-r<-_t<= T, is a bounded,
increasing and right continuous function and (_(ceg) is defined in (4.40).

Remark. The expression :(’, x, w) defined in (4.45) can be identified as the
analogue of Tanaka’s formula for the local time of the "solution process" x + wt-T/ at
the two branches of the free boundary +/-s (T t), T - -< =< T. For a definition of the
local time for the Wiener process, as well as a derivation of Tanaka’s formula in that
case, see McKean [1962].

Proof. According to the Feynman-Kac theorem (Friedman [1975, p. 148] and
Bene [1974]) the unique solution to the Cauchy problem (4.37), (4.38) satisfying a
polynomial growth condition in x admits the stochastic representation

T

V(xx’a) (x, -)= E[f’t(x + w.) exp {a IT- b,m(X + Wt--T+,r, T-t)dt}
(4.46)

exp sr-.(ag.,)]
subject to mild smoothness assumptions on the coefficients, such as Lip continuity of the
drift g,., and H61der continuity of the potential term b,., which are satisfied in our
case.

If
n, x + wt-T+.--s(T t) x + wt-T+. +p(t),

T-t<=t<=T;
Ot x + wt-T+. + s(T-t) x + wt-T+.-p(t),

an application of Ito’s formula gives

(4.47)

T

T
b,.,(x + w,-r+, T--t) dt=L(lT-)--m(qT)+m(OT-)--m(OT)

T T

+ IT-- m(SQt) dwt + fT-z m(Ot) dwt

T T
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Now we pass to the limit as m - c in (4.47). Observe that ,, (:) - sgn :, g,, () - [sl. It is
easily shown that

(4.48) m(’tlt)dwt sgn (’rlt)dw as m a3,

(4.49) m(rlt)dp,(t) sgn rt, dp(t) as m a3.

Both relations remain true if "r/t is replaced by 0t.
From (4.47), (4.48) and (4.49) one concludes that along some subsequence (ran),

T

fr b,,.,. (x + Wt-T+.r, T-t) dt
(P)

, [x-s=(z)l-lx + w-bl+lx +s()l -Ix + w+ bl
T

(4.50) + r [sgn (x + wt-r/ s (T t)) + sgn (x + wt-r/, + s (T t))] dwt

T

+fr [sgn (x +Wt_z.,--s(T--t)) -sgn (x +Wt_z.+s’(T-t))]dp(t).

But

sgn (x + wt_7.+,-s(T-t))+sgn (x + wt_7.+,+s(T-t))=-2g(x + wt-7-/, T-t),

sgn (x + wt-7.+-s(T t))- sgn (x + w-7-+ + s(T t))

and substitution into (4.50) yields

T
(P)

(4.51) B.n=a ba,m,,(X+Wt-T+-, T-t) dt ;B=-a((7",x, w),

where s(z, x, w) is the entity defined in (4.45). Since B.n =<0, a.s. (P), for any n N,
one concludes that B -<_ 0 or : (, w, x)=> 0, a.s. (P).

It has to be shown that the right-hand side of the representation of V(x"" (x, ’) in
(4.46) converges as m to that of (4.44), namely

(4.52)
E[f"(x + w,) exp B,,,, exp sr-_.(ag,,,,,)]

E[f"(x + w) exp B exp (_,.(crg,)],
n’l’oo

uniformly on compact (x, ’) sets. It is easy to prove that

P T(4.53) --(oga,m.) (Tr_(crg) as n ,
and that

(4.54)

EIf"(x + w) exp B,,, exp _,(ag,,,)-f"(x + w) exp B, exp

<=K. E]exp srrr_.(ag,,,.,,,,)- exp sr._.(cg,)[
+ K. E[exp srrr_.(cg,)[exp B,,,,-exp B,]].
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Evidently,

E[exp sr_,(aga.,,,)] E[exp 7-’r_,(cg)] 1,

by (4.43). Lemma 6.7 in Lipster and Shiryayev [1977] asserts that E[exp r

exp rr_(ag)l tends to zero as n -+ oo. As for the second term on the right-hand side of
(4.54), observe that exp rrr_(ag)[exp B,,.m, -exp B[ _-< 2 exp ’-_(ag,); convergence
of this term to zero as n’oo follows from (4.51) and the dominated convergence
theorem.

This establishes (4.52); a passage to the limit as n + oo on both sides of (4.46) yields
the desired representation (4.44).

We are now in a position to prove the following important result.
PROPOSITION 4.6. Propagation of uniform convexity. There exists a positive

function k T), T > O, independent of a [0, 1], such that

(4.55) V(Z (x, 7.) => k (T) > 0, (x, 7.) 6 R x [0, T].

Proof. From obvious estimates, one finds

aa(r,x,w) (-_(ag)<2lwl+4[m(l+[K+-]7-) b] r-(r-(-ag), a:s. (P).

Therefore, by virtue of the representation (4.44),

Ix, ex /_4 [m
T(4.56) ’[e -21%1 exp ’r-, (-cg)].

We consider a family of probability measures P on (, F), 0 1, defined by
T(4.57) P(dw) exp C-,(-g) P(a).

According to Girsanov’s theorem, for each 0 1, the process

(4.58) lt---(T-.r) Wt_(T_r) -Jr-Og IT- g(x + WX-T+, T-A) dA, T-r<=t<_T

is a Wiener process on the space (f, F,/5,). Obviously, from (4.58), Iwl I1+, a,s,

(P), because the measures P, P,, are equivalent. Therefore, from (4.56),

(4.59)

But

Vx])(x, 7.)>-k. exp {-4 [m(l+[K
,[exp (-2171)] E[exp (-21wl)]- 2(2rr)-a/2 e2r I2 e-x2/2 dx

2(2rr)-a/2
1/2 7.)1/2r +(1+

where we have used the estimate Ie -x212 dx>--2e-a212/(a+(4+a2)112) due to
Komatsu (Ito-McKean [1974, p. 17]). So, finally,

V (x, r) _-> k (T)
(2rr) a/2

exp {-4 [m(l+[K+] T)-b]-T}
(1 + T) a/2

(x, r) R [0, T].
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COROLLARY. For any 0 <--_ a <-_ 1, s (r) is continuous on [0,’T].
Proof. We already know that V(x) (x, z)c as xc (relation (4.18)). Now (4.55)

gives the additional information that, for any 0 _-< r =< T, V() , r) is strictly increasing
and therefore s (r) is unambiguously defined through

(4.60) V(; [s (r), r] 1, 0 _-< r -< T.

Consider 0_-<r_-< T and a sequence of points {rn} in [0, T], rn r. By (4.25),
{s(r,)} is a bounded sequence so we can extract a convergent subsequence {s(r,k)}
thereof, converging say to s*. By continuity of V((x,’r), V()[S(r,k),r,k]
V( (s*, r) as k c; hence V( (s*, z) 1. From (4.60), one gets s* s (r). Thus, any
convergent subsequence of {s(rn)} converges to s (r); the same holds true therefore
for the whole sequence, which establishes continuity of s (r) on [0, T].

In later sections (6, 7) it will be shown that s (r) is actually continuously differen-
tiable on [-0, T]. The "a priori" bounds established below will play a crucial role in the
proof of this fact (proof of Theorem 2.2, 7).

PROPOSITION 4.7. A priori bound on [Is’all. The function s(r) is Lipschitz
continuous on [0, T], with a constant independent of 0 <= a <- 1.

If s () is also continuously differentiable on [0, T], then ]’or any 0 <-a <-_ 1,

L
(4.61)

IIs’ll sup [s’ (r)[ <-_
O--,rT k(T)

where k (T) is the positive constant in (4.55).
Proof. Suppose O<=.r<-r+e <- T; by definition, V(>Es(r), r]= V(>[s(r+e),

r + e 1 and consequently,

o=< v;> [s(-+ ), -]- v> [s(-), -]= v> [s(-+ ), ]- vy>Es(+ ), +]

for any 0 N N 1, by (4.17), Proposition 4.1.
On the other hand, there exists a number s* between s (r) and s ( + e) such that,

by the mean value theorem,

v2>Es(,+), ]- v> Es(,), ]= vZ (s*, )[s(, + )-s()],

and therefore,

K+ e K+
"-"--’--E,O<--s(r+e)-s(r)<- V((s*, r)- k(T)

whence Lip continuity and the a priori bound (4.61) on the derivative.
COROLt,AR. If S(Z) is continuously differentiable on [0, T] and w(r)

V("[s(r), r], then

(4.62)

L
K+-

2 K
sup Iw’()l <-----/W

ta

0-r-T k (T) 2
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Pro@ The proof is an immediate consequence of (4.61), (4.15) and the fact that
w () s () + 1/2 vZ [s (), 3.

Collecting the various pieces together we can now prove Theorem 2.1.
Proof of Theorem 2.1. The Cauchy problem (2.6), (2.7) has a unique C2,a solution

on R x [0, T] which actually belongs to the space H2+t3,1+t3/Z(lT), 1 and Qr any
bounded rectangle in lit. Strict monotonicity and unbounded increase of the gradient
V(2 (x, r) follow from Proposition 4.6 and (4.18), respectively, and so the boundary
points s (-), 0_-< r <_- T, are unambiguously defined through (4.60)" V(2 [s(’), r] 1.
The boundary is monotone increasing, localized by (4.25), continuous (Corollary to
Proposition 4.6) and Lip (Proposition 4.7).

g. The integral eeltions. In the first two paragraphs of this section, we prove the
following proposition:

PROPOSITION 5.1. The free-boundary problem (2.15)-(2.20), with a continously
differentiable free-boundary ]’unction s(r), is equivalent to the problem of finding a
continuous solution [s’(r), w’(r)] to the pair of integral equations (5.10) and (5.17)
below.

In 5.1 we prove the necessity and in 5.2 the sufficiency of the pair of integral
equations. The latter are used in 5.3 to study the special case f(x) x and in 5.4 to
prove the strict monotonicity of the free boundary.

g.1. Anlys|s. Suppose that the free-boundary problem (2.15)-(2.20) has the
solution s(r), V()(x, -) in the sense of Definition 2.1, with s(r) continuously
differentiable on [0, T]. We introduce the fundamental Gaussian kernel

)]-/2 [l(x--)2](5.1) K(x,",u)=[27r(’-u exp - .- a’ x,:R, 0<_-u<",

along with Green’s and Neumann’s functions for the half-plane x > 0,

(5.2) G(x, ’; , u)= K(x, r; , u)-K(x, r;-j, u)

and

(5.3) N(x, r; , u)=K(x, r; tj, u)+K(x, r;-j, u),

respectively. Each one of them, designated by the generic symbol M, satisfies the heat
equation M,=Mxx (M, +1/2Met=0) in the forward (backward) variables. Also,
Kt=-Kx, Nt=-Gx.

In the region D*(0) we use the standard method (for problems of the Stefan
typesee Friedman [1959]) of integrating Green’s identity

)0__ (NV) NeV,))
___

u
(2NV, O,(5.4)

0:
over the domain 0 < " < s (u), 0 < e < u < " e letting e + 0, we get the representation
of V()(x, ’) in D*(0),

2 V")(x, r)= Nix, r; s(u), u]{V)[s(u), u]+ 2 V()[s(u), u]s’(u)} du

(5.5) b

+ Gx[x, r (u), u]V()[s’(u), u] du + 2 N(x, r; , 0)]’(:) d:.

By assumption, V()[s(r), r] V()[s(r), r]= 1; introducing the notation

(5.6) w (r) V()[s (r), r],
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one gets

S2 V(’)(x, r) [x, r (u), u][1 + (u)s’(u)] du
b

(5.7) Gx[X, r; s(u), u]w (u) du + 2 N(x, r; s,.O)[(s) ds,
and upon differentiating with respect to x,

f
[_

S2 V]) (x, r) N,[x, r" (u), u] du + 2 G[x, ; s(u), u]w (u) du

(5.8) b

+ 2 J0 G(x, r; , 0)[’() d, (x, r) D*(0).

The free boundary {s(r); 0 N r N T} is assumed to be continuously differentiable
on [0, T]. For such functions (or even Lip on [0, T]) the "jump relation" below is valid
(see Friedman [1959], Rubintein [1967]):

;s(5.9) lim N[x, (u), u]p(u) du =0(r)+ N[s(r), r s(u), u]p(u) du,
x?str)

p(r) being any continuous function on [0, T]. An application of the jump relation (5.9)
to the representation of the gradient in (5.8) with p(r)= 1 yields the integral equation

1 N[s (r), r (u), u] du + 2 G[s(r), r s(u), u]w (u) du

(5.0)
b

+ 2 J G[s (r), r; , 0]. [’() d(.

Let us now represent V()(x, r) in D(-). The function

(5.11) F(x,r;,u)=K(x-r,r;-u,u), x,eR, ONu<NT,

satisfies the equation

(5.12) lFxx-aF-F’=0 Fee+aFe+Fu=0
in the forward (backward) variables. In D(-ce) we integrate Green’s identity

0s
(FV)_FeV()_2aFV(,,))_ 0

u (2F V( =-2aF

over the region s(u)<tj<M, O<e<u<r-e. Since V()(x,r)<-K(x2+r) (see
(4.12)) we obtain the following representation for V()(x, r) in D(-a), by letting e +0,

2 g()(x, r) K[x -cr, r; s(u)-au, u]{1 + 2w"(u)[s’(u)-a]} du

(5.14) K,[x-cr, r; s(u)-au, u]w(u) du

+ 2Ib K(x at, r; , 0)/() d
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Differentiation of (5.14) with respect to x gives the representation for the gradient
in D(-a),

(x, 7.)= -I’o K,[x-aT., 7.; s(u)-au, u]2V) du

(5.15) -2 K[x -aT., 7.; s(u)-au, u][w’(u)-a] du

+ 2 | g(x-aT., 7.; tj, 0)f’(:) d.

We now let x $ s (7.) in the above expression. The "jump relation’" now takes the form
(see Rubintein [1967, p. 99])

(5.16)

lim Kx[x-aT., 7.; s(u)-au, u]p(u) du
xSs’(r)

-0(7.)+ gx[s(7.)-aT., 7.; s(u)-au, u]p(u) du,

for any continuous function 0(7.) on [0, T]. An application of (5.16) to the represen-
tation (5.15) for 0(7.) 1 in the limit as x + s(7.) gives the integral equation

1 Kx[s(7.)-a7", 7.; s’(u)-au, u] du

(5.17) -2 K[s(7.)-aT., 7.; s’(u)-au, u][w"(u)-a] du

+ 2 I K[s(7.)-aT: 7.; ’ O]f’(sc) d:.

5.2. Synthesis. To prove sufficiency of (5.10), (5.17) for the free-boundary prob-
lem, it is assumed that the system of equations possesses a solution pair Is (7.), w (7.)]
with both functions continuous on [0,T], s(0) b, w(0) f(b), and a solution to the
free-boundary problem in the sense of Definition 2.1 is constructed from them. We
make explicit use of the fact, established in Proposition 4.2, that the boundary function
s (7.) is increasing on [0, T].

Indeed, let [s’(7.), w’"(7.)] be such a solution to the system of equations (5.10),
(5.17) and define the function V(’)(x, 7") in D*(0) by

2 V()(x, 7.)= Nix, 7.; s(u), u][1 + 2w’(u)s’(u)] du

+ Gx[x, 7. (u), u]w (u) du

b

+ 2 Jo N(x, r; , 0)f(() d(,

in accordance with (5.7). It is easily checked that V((x, r) thus defined satisfies the
heat equation (2.15) in D*(0), along with V()(x, 0)=f(x), 0-<_x <_-b (compare with
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Lemma 9.1). Differentiation with respect to x yields, in accordance with (5.8),

Io Io2 V (x, ’)= N[x, z; s(u) u] du + 2 G[x, ’; s(u), u]w’(u) du

b

+ 2 J0 G(x, z; so, 0)f’() dsc,

from which it is obvious that V]) (0, z) 0, because Nx(O, ; , u) G(O, z; , u) O.
Therefore (2.17) is also satisfied. It remains to check the conditions of Definition 2.1
along the boundary. Let x s () in the above expression for the gradient. Using the
jump relation (5.9) and the integral equation (5.10), we get

2 V])Es(r), r]= 1 + N, Es(r), r; s(u), u] du

+ 2 G[s(r), ; s(u), u]w’(u) du

b

+ J0 a[s(l’ ; ’ 0]’(
=2

whence the condition (2.20).
Now we integrate Green’s-identity (5.4)over the region 0<x < s(u), 0< e < u <

r e, using the initial and boundary data V((x, 0) (x), 0 N x N b, V (0, ) 0 and
Vl[s(r), r]= 1, 0NN T. In the limit as e 0, we get a representation analogous to

(5.5) which, compared with the above definition and with p(r) V([s (r), r]- w (r),
yields

;s(5.18) {G[x, s(u), u]+2s (u)N[x, (u), u]}p(u) du =0 inD*(0).

We aim to show that p() 0 on [0, T]. Let xs(7) in (5.18) and get, from the jump
relation (5.9),

(5.19) p() + F(, u)p(u) du O, 0 r T,

where F(r, u)= G[s(), r; s(u), u]+ 2s’(u)N[s(r), r; s(u), u]. If V is an upper
bound on IIs’ll Supols’()l, then b Ns(,)Nb + VT, for any 0NrN T, and

IF(r, u)lN3V[2(,-u)]-/+ 2V+
r-u

[2(r-u)]-/ exp 2(r-u)

[ 4(b2gr)] (, )-1/2 q
N (2)-/ 3 V + b5 (_ u)/.

Applied to (5.19), the previous result gives

lp(u)l
p()l q

( u)/ du, 0 T.

Now Cannon and Hill [1967, Lemma 7, p. 7] guarantees that p(r)=0, 0NrN T.
Therefore V[s(r), r] w(r), 0 r T. In a similar fashion, one can construct a
solution V((x, r) of (2.16) in D(-) and verify all requisite conditions.



306 IOANNIS KARATZAS AND VACLAV E. BENE

5.3. Remarks on a special case. In the important special case of a quadratic final
cost function f(x)--x-(b =1/2) the system of integral equations (5.10), (5.17) for the
fully controlled case c 1 takes the form

1 N[s(r), r; s(u), u] du + 2 G[s(r), r; s(u), u]w’(u) du

(5.20) 1/
+ 4 | G[s(r), r; , 0]d,

Jo

1 Kx[s(r)-r, r; s(u)-u, u] du

-2 g[s(r)-z,r;s(u)-u,u][w’(u)-l]du

+ 4 | g[s(r) r, r; , 0]d.
1/2

In an attempt to solve this problem, R. C. Davis [1968] came up with the answer
s(r) =1/2+r for the free-boundary function. However, the method and particularly
the argument on p. 71 of the above-mentioned paper are wrong. Here, we show that the
result is also wrong, namely that for the particular choice s(r) 1/2 + r, 0 <= r <-_ T, there
exists no continuous function w’(r) on [0, T] in such a way that (5.20), (5.21) can be
simultaneously satisfiedfor all 0 <-_ r <= T.

Suppose the contrary is true; (5.21) then becomes the Volterra integral equation of
the first kind: (r- u)-/2[w’(u) 1] du 2r1/2, 0_-< r -< T, whose solution is found, by
inspection, to be w’(r)= 2, 0 <= r <- T. Substituting this value into (5.20), we get

(5.22)

Noticing that

1= N +r,r;-+u,u +4G +r,r;-+u,u du

+4 K r+,r;:,0 d.-1/2

[2rr(r u)]-/2 2+

Io ( )[2rr(r- u)]-1/2 exp _r- U du 2(rl/2) 1,
2

1 + r + U] exp{r-u

(1 + r + u)2}2(ru)
1/2)],du 211 -(r1/2 + r-

where &(x)= (2rr) -1/2

some simple algebra,
exp(-x2/2), (x)=_oo&(:)d, we get from (5.22), after

4(1 -r)(r/2) +4(1 + r)OO(r/2 + r-/2)

6 +2(2rr)-1/2 (r--u)-1/2 exp [ 1_ .+_ _r. _+. _u_)2]
2(r- u) J

du

_4(2rr)-/2rl/Z[e-/2 e-{’+12/2]
1/2
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The last inequality above is a consequence of (5.22). It is not satisfied, however, for all- > 0; e.g., for the choice - 1 the left-hand side is approximately equal to 7.82 and the
right-hand side to 7.70. The contradiction implies that the function s(’)=1/2+"
cannot be the free boundary for this problem.

Figure 2 is a plot of the free-boundary function s(-) obtained by numerically
solving the Bellman equation (2.6) subject to the initial condition V(x, 0)= x 2, and
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FIG. 2. The ]’ree boundary curve in the special case o" a quadratic terminal cost.

identifying the points where Vx(x, ’) 1. The MOL1D (Methods of Lines) package for
solving partial differential equations was utilized for this purpose (see Hyman [1976]).
The following truncation scheme was used. Since by (4.18)

2x 2- -< Vx (x, -) -< 2x,

it seemed appropriate to truncate the problem at a large number M, impose the
(approximate) boundary condition V,(M, -)-2M-" and solve the resulting initial-
boundary value problem for (2.6) on the strip 0 =< x =< M, 0 =< - -< T. For sufficiently large
M, the solution to the above problem would hopefully approximate the one for the
Cauchy problem in the region of interest (x 0.5 to x 0.5 + T).

It turned out that M 16 is large enough for this problem. Also, for this choice of
M, the solution inside the region of interest is insensitive to changes in the boundary
condition imposed at x M; one gets identical plots of the free-boundary curve for
boundary conditions Vx(M, ’) 2M- 2-, 2M-- and 2M at x M.

The form of the curve suggests that it would be of interest to examine the
asymptotic behavior of the free boundary. A linear behavior as - oo clearly suggests
itself. On the other hand, it is possible to calculate explicitly the initial slope of the free
boundary by using representation (4.39), Ito’s theorem, Girsanov’s change of measure
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and a stopping time argument. It turns out that s’(0)= 1/2, in striking accordance with
Fig. 2.

5.4. Strict monotonicity of the free boundary. One can differentiate with respect
to x in the representations (5.8) and (5.15) of the gradient of the value function and get
the representations for V (x, r) below"

(5.23)

V(x] (x, r)= Gx[x, r; s(u), u][w’(u)-s’(u)] du

b

+ Io N(x, r; , 0)f"(s) d in D*(0),

(5.24)
V<Z (x, )= Kx[x-r, r; s(u)-au, u]Ew’(u)-s’(u)] du

+ Ib K(x-ar, r; , O)f"() d in D(-a).

Using the jump relations (5.9) and (5.16), along with the fact that V(x)[S(r), z]=
2[w’(r) s’(r)], one gets the integral equations

(5.25)

w’(r)-s’(r) a[s(),r (u),u][w’(u)-s’(u)]du

b

+ | N[s(r), z; , 0]f"() d,
30

(5.26)

w’(r)-s’(r) g.[s(r)-r, ; s(u)-u, u][w’(u)-s’(u)] du

+ I, g[s’ (’) or. r; , 0]f’() d.

It can be shown that the above system of equations is actually equivalent to the
free-boundary problem (2.15)-(2.20), but we shall not pursue this line of approach
here. Instead, we shall use these equations to prove the following result:

PROPOSITION 5.2. The free boundary s(r) for the original problem (a 1) is strictly
increasing on [0, T].

Proof. It has already been shown that the boundary is increasing (Proposition 4.2).
In the region D*(0) {(x, r); 0 < x < s(r), 0 < r < T} the function u(x, r) Vx,(X, r)
satisfies

1.,- - Uxx in D*(0),

.(0, -) 0, 0<r< T,

1
f"(xu(x, 0)= ), 0<x<b,

and we already know (Proposition 4.1) that u(x, z)_-<0, in D*(0). Suppose there exist
two points 0 _-< r’ < r" <_- T such that s(r) s (r’), u(x, r) 0, for all r’ _-< r _-< r". Then on
the line segment x s(r), r’ <- r <- z", u(x, z) 0, and by the strong maximum principle,
u(x, z) 0 first in the rectangle {(x, r); 0 < x < s(z), r’ < r < r"} and then in the whole of
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D*(0). Therefore, s(z) =- s(z’) for all r [z’, z"] for some 0 < z’ < r"<_- T, implies
s(z) b for all z [0, T].

The latter is clearly impossible if, for some $, 0 < $ < b, f"($) < 0, because then also
u(, 0)<0, a contradiction. It remains to be ruled out also for the case f’"(x)=0,
0_<-x _-<b, which implies that f(x) is quadratic on [0, 21-] (b =21- for simplicity, f(x)=x 2,
0-< x -<_ 1/2) and continuous with decreasing curvature on [1/2, oo), if(x)<-_ 2, 1/2 <-x < oo. One
gets from (5.25), (5.26) with (s, r)- 1/2

(5.27) w’(r) (2rr)-1/2 If (r- u)-3/2
-1

exp [2(r- u)] w’(u) du + [2(r-1/2) 1],

(5.28) w’(r)<--(2rr)-/2 (r-u)-/2 u)] w’(u) du + 211- (r1/2)].

Equation (5.27) is Volterra of the second kind in w’(r) and can be readily solved:
w’(r) 1, 0 _-< z _-< T, for which value the right-hand side of (5.28) becomes

(2r)-1/2 exp (- u/2)u

a contradiction to (5.28).

-1/2 du + 211- (rl/2)] 3-4(r1/2) < 1 w’(r),

O<’<T,

6. A homotopy of compact operators and a convex class of homeo-
morphisms. The integral equations (5. I0) and (5.17) do not lend themselves (at least in
an obvious way) to a direct analysis that might establish the existence of a fixed point
(s’, w’) through the contraction mapping principle or Schauder’s fixed-point theorem,
as is the case with the Stefan problem (see, for example, Friedman [1959]). The main
reason for this difficulty is the form of the free-boundary condition; in our problem, the
free-boundary function is implicitly defined via the relation Vx[s(r), r] I, whereas in
problems of the Stefan type the free-boundary condition is of the form s’(r)=-
Vx Is (r), r] which not only renders the corresponding integral equation(s) amenable to a
straightforward fixed-point analysis, but also provides valuable and explicit information
about the smoothness of the free boundary (Schaeffer [1976]).

In our effort to prove smoothness of the free boundary in the problem under
consideration, we are thus led to use more sophisticated tools such as topological
degree theory. More specifically, we take the continuous functions c, u on [0, o,], define

(6.1) s(r)=b+ c(u) du, w(r)=f(b)+ v(u) du, O<-_r<-r,

and consider the space X Co, x Co,? of pairs of functions (c, v) normed by

(6.2) II(c, )ll-Ilcll+ll ll-sup [c(r)l+ sup lu(r)[.

Under this norm, X is a Banach space. We also consider the linear space Z, subspace
of Co,, consisting of all functions f(r) Co C(o. satisfying [/(r)l <-- Crl/2, 0 <= r <-

i/2 ,(z)[ < c and for which lim,+o rl/2f’(r)o" for some positive constant C, supo<,__< z I1
exists and is finite.

Let this space be normed by

-1 1/2 ft(6.3) Ilflll/a= I10 rl/2f’(r)l+ sup r /21f(r)[+ sup r (r)[.
O<rr O<rr
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It is assumed that the interval [0, o-] is "sufficiently small," namely, that (6.4) below
is satisfied (see (8.1), (10.5)):

b 1 2 3bK ](6.4) o--<_min
2V’2(1+V)2’(1+V)21n3bK-1

where K =f"(O)=maxxRf"(x), f’(b) 1 and V is an upper bound on [[(c, )ll.
We now consider the integral operators defined for each a 6 [0, 1] onX by (5.10)

and (5.17), namely,

(6.5) l(r;c,p)=k(r;c)+h(r;c,’), 0----<7"----<o

(6.6) (7";c,,)=k’(7";c,,)+h(z;c), 0<=7.<-o-,

where

(6.7)

(6.8)

(6.9)

where

(6.10)

(6.11)

kl(7.; c)- Nx[s(T), 7"; s(u), u] du,

k’(7"; c, u)= Kx[s(7")-aT", 7"; s(u)-au, u] du

-2 g[s(7")-aT", 7"; s(u)-au, u][,(u)-a] du,

h1(7"; c, t,) A (7"; c, t,) + 3’(7"; c),

b

3"(7"; c)= 2 fo O[s(7"), 7"; st, O]f’() ds- 1,

h (7"; c, u) 2 G[s(7"), 7"; s(u), u],(u) du,

h(7"; c)= 2 Ib g[s(7")-aT", 7"; j, 0]f’(:) d:- 1.

The operators (6.5), (6.6) can be written in a more compact form as

&(c, u)= k’(c, u)+ h’(c, ),(6.12)

where

k(c, p)--[kl(C), kt(c, p)], h=(c, p)= [hl(c, p), h’(c, u)],

eta(c, p)--[1(c, p), (c,

denote mappings from the Banach space X into the Banach space Y C[o,] normed
by (6.2).

It should be pointed out that if (c , t,) is a solution of the system of integral
equations (5.10), (5.17) for any particular value of a, 0 _-< a _-< 1, then (c, ,) 0, i.e.,
(c ", u) is a 0-point of the transformation , and vice-versa. By Proposition 4.7 and its
Corollary it is known "a priori" that all possible 0-points of the transformations , for
any 0 _-< a _-__ 1, lie in the set

(6.13) G {(c, v) e X; II(c,  )11 < rV} for some r > 1,
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where

2K+L K
(6.14) V= V(T)= -k(T) 2"

In the remainder of this section, we study the properties of the integral operators in
(6.12). It is proved (Proposition 6.1) that, for each 0<-a-<1, k’(c, v) is a compact
operator from X into Y and that h (c, v) is a homeomorphism from X into

z =zxz
(Proposition 6.3). It is also proved that the family of operators {b (c, ,); 0 <= a <- 1} is
jointly continuous in [(c, ,), a] when viewed as a mapping from M x [0, 1] into Y,
where M is an arbitrary bounded subset of X; i.e., the family {d) (c, ,); 0<=c <= 1} is a
homotopy of continuous operators from X into Y (Corollary 6.1). Finally, the family
of homeomorphisms {ha(c, u); 0-<_a-<_l} is shown to be convex in the sense of
Definition 6.1 (Proposition 6.4).

For operators of the above form (compact plus homeomorphism) a topological
degree (generalized Leray-Schauder degree) can be defined, for which all the basic
properties of the Leray-Schauder degree carry through; see Browder [1976], Cronin
[1964]. The degree is invariant under homotopy, equal to +/- 1 for homeomorphisms and
if G is open, G

_
X, p Y"

(6.15) deg Ida, G, p] # 0 :ff ::lq G, s.t. &(q) p.

Proposition (6.15) is the basic "existence result" in degree theory. We use the above-
mentioned properties of topological degree in 7 (proof of Theorem 7.1). First, it
is verified that the operator d(c, v) is a homeomorphism (endpoint a 0, uncontrolled
case) and therefore deg [d, G, 0]= +1, G being defined in (6.13). Second, this degree
knowledge is extended to the other endpoint (a 1, fully controlled case) by virtue of
the fact that {b(c, v); 0-<a _-< 1} is a homotopy indexed by a" deg [bl, G, 0]= +1.
Finally, the basic existence result (6.15) of degree theory guarantees the existence of a

0-point of the transformation b b in G, thus proving the existence of a continuously
differentiable function s(7-); 0-< 7--<tr. Continuation of the solution into the future is
then possible, mainly because of the propagation of uniform convexity (Proposition
4.6).

PROPOSITION 6.1. For each 0 <- a <-_ 1, the operator k (c, t,)" X >Y is compact.
Furthermore, the family {k (c, t,); 0 _-< a <_- 1} is a homotopy ofcompact operatorsfrom X
into Y.

Proof. By the Ascoli-Arzela theorem, compactness of the operator k1(7-;.c)"
Co,-> Co,1 is equivalent to equicontinuity and uniform boundedness of the set
kl(M), for any bounded set M

_
Co.,3.

Suppose V is an upper bound on II(c, ’)11, for example, V(T)in (6.14). By virtue of
inequality (8.20) we have, for any c Cto,,l, IIcll- v,

1k1(7-" c)[ < (V +6b -1) 1/2r 0_-< r_--< or,

which proves uniform boundedness. On the other hand, if 0 7" < 7"2 O’,

f’ s(u), u]-Nx[s(7-1) 7-1, s(u) u]} duk1(7-2, c) k1(7-1, c)= {Nx[s(7"2), 7"2"
0

+ N[s(’2), ’; s(u), u] du,



312 IOANNIS KARATZAS AND V,CLAV E. BENE

and upon using (8.15), (8.20) we obtain for 0 < e < 1/2

[kl(’r2; c)-k1(7"1; c)l < + V+6b (r2- zl),
1/2-e

which proves equicontinuity. In a similar manner, we can establish compactness of the
operators k’(c, u), O<-a -< 1. Indeed, assuming (c, ) xll(c, )11_-< v and using (8.19)
we get

Ik (’; c, ,)l _<- 3(1 + V)7"/2, O<=.r<-o",

while using (8.11), (8.14) and (8.19) we can show that, for O<-r < r2-< or, O<e <1/2;

+3(1+V) (r.-r),Ik2 (,2; c..) k2 (7"1, C. /7)1
1/2- e

and thus establish uniform boundedness and equicontinuity. Consequently, the whole
operator kS(c, u)=[k(c), k’(c, u)] is compact. Let us now prove joint continuity of
k’(c, u) in ((c, u), cr)eXx[O, 1], uniformly with respect to (c, u), II(c, u)ll--< V. It is
easily seen from (8.7) that

Ikl(r, t)-k1(7; c)l<-2(1 +85b-n)ll-cllra/2, O<r<r.=

On the other hand, we have

Ik(r; , u)-k(r; c, .)1 <_- 4lie- cll/=, 0_-< -<_ ,
from (8.3), (8.6), (8.1),

]k2.(r’, c, u)-k(r,2 c, u)l < 6]d -air1/=,-
from (8.9), (8.10), (8.1), and finally,

Ik(r;2 c. )- k"(r;2 c. ,)1 < 211- ,11, /=, 0 -< -< .
Combining the last four inequalities together, one gets

II/ (. ;) k (c. )11--< 2(7 + 85b -4)o-1/=[11(, ) (c. )ll / I 13.
which proves joint continuity.

PROPOSITION 6.2. The family {h"(c, u); 0_-<a _<-1} is a homotopy of continuous
operators from X, into Y,.

Proof. We have to show joint continuity of h(c,u)=[h(c,u), h(c)] in
[(c, u), ce] X, x[0, 1], uniformly with respect to (c, u)e X,, II(c, )11--< v, From (9.3), we
get

I,(,; )- ,(,; c)l-<- 2lie- CII7"1/2, 0 7" O’,

and, using (8.5), (8.1),
1/2Ix (,; . ,)- a (,; c. )1-< 2( + 4b-4)lle ell, 0 _-< -<_ .

Also,

I, (,; c. )- (,; c. )1 _-< 211,; ,,11-/2, o -<_ _-< .
Therefore, by (6.9) we obtain

Ihl(r; , tT)-he(r; C, u)1_-<2(3 + 14b-4)[1(, if)-(c, u)[lr 1/2, 0<r<r.-

On the other hand, one gets from (10.4), (10.4’)

Ih(,;2 e)-h(,; c)lg(2/gb)(lle- -c[l/l -1),/2, 0,-.-
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Therefore,

Ilh s (?, 7)- h (c, )11-<- [g(2 / 3b) / 2(3 /

which proves joint continuity.
COROLLARY 6.1. The family {&"(c, v); 0_--<c--<_ 1} is a homotopy of continuous

operators from X into Y.
PROPOSITION 6.3. For each c, 0 <= a <- 1, h (c, v) is a homeomorphism from X to

Zr.
Proof. First, we establish the existence of the inverse operator of h (c). Suppose

the function h (r), 0 <-r-< tr, from Z is given; we are seeking a continuously differen-
tiable function s(r), 0 <= r <= tr such that

2 Ib K[s(r)-ar, r; , 0]f’() d:- 1 h(r), O<--r<_cr.

We put y(r)= s(r)- a-, and consider the function

F(y,r)=2Ib K(y, r; , O)f’() d-l-h(r),2 (y, r) 6 R x [0, o-].

The problem is to determine a continuously differentiable function y(r), 0=
satisfying F[y (r), r] 0, 0 =< r -< tr. F( y, r) is continuous on its domain of definition and
satisfies F(b, 0)= 0, so that y(0)= b. Besides,

Fy(y, r)= 2 I, Kx(y, r; j, O)f’(:) d

=2K(y, r; b, O)+2 [b K(Y’ r; s’ O)f"(tJ) d>O on R x [0, o’],

since it is assumed that f"(x)>-k >0. On the other hand, F,(y, r) also exists, is
continuous on (0, tr] and rl/2F,(y, r) is continuous on [0, tr]. By the implicit function
theorem, there exists a continuously differentiable function y(r), 0 <= r-< tr, satisfying
F[y(r),r]=O,O<=r<=o". It suffices then to take s(7")=y(r)+ar, s’(r)=c(r)=
y’(r) + a,

Assume that h(r)= [hl(r), h(r)] are given from Z. Once c(r) C[0,] has been
determined from h(r), y(r; c), where 0<-r-<cr, is also determined by (6.10) and
belongs to the space Z (Corollary 9.1). Then also, A (r)= hi(r)-y(r; c) belongs to Z,
since both h(r) (by assumption) and y(r; c) do. For such a function A (r), the integral
equation (9.9)

2 G[s(r), r; s(u), u],(u) du A (r), O__<r_--<o-,

has a unique solution u(r)e C[0.] (see Lemma 9.5). Therefore, starting with h (r)=
[hl(r), h(r)]e Z, we get a pair (c, ,) X such that

(6.16)

hi(r) 2 G[s(r), r; s(u), u],(u) du

b

+ 2 Io G[s(r), r; , O]f’(sc) d- 1,

(6.17) h(r) 2 Ib K[s(r)-ar, r; , O]f’(s) ds- 1, O<=r<_a.,
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be satisfied, with s(-)=b+oC(U)du, O<-z<-o-. Thus, the inverse operator (h)-1
exists.

It remains to check that (h )-1 is also continuous. Suppose we are given two vectors
h (hi, h),/ (/1,/) in Z. It is clear from the above discussion that there will
exist two vectors (c, v), (t, 7), respectively, such that (6.16) and (6.17) be satisfied.
Relation (10.6) of Lemma 10.2 implies that

while (9.8) of Corollary 9.1 gives

Since hl- y, we have

IIX 111/2 [1 h xllx/2 + 6B41[ h [11/2"
Finally, because of (9.10) of Lemma 9.5,

II-.llB(lle-cll+llX-all/2)B(llfi1-h1111/2+
where B7 B5[1 + 6(1 + B4)]. Therefore,

II(, )-(c, )11 (6+ B)ll(fi, fi)-(h, h)lll/e;
i.e., the inverse operator is continuous.

DEFINITION 6.1. Let X, Y be Banach spaces and H a class of homeomorphisms
from X to Y. is said to be convex, if for each open subset G of X and any pair of
elements h0, h , the restriction of the class on G, the mapping
defined by hx (x) (1 A)h0(x) + Ah(x), x G, A [0, 1], also belongs to Ha.

PROPOSITION 6.4. The [amily o[ homeomorphisms {h (c, p); 0
into Z is convex in the sense o[ Definition 6.1.

Pro@ It is sucient to show that {h(c);0NaN1} is a convex family of
homeomorphisms from Cto,] into Z. Indeed, consider a , e [0, 1 and 0 N N 1. We
have to determine a continuous function c(. on [0, ], such that s(r) b + o c(u) du,
0 N N, satisfies

xh (r) + (1 x)h(r) h. (r) e Z.

Consider the function

F(s, r)= 21 J K(s-ar, r; , 0)f’() d

+2(1-x) J K(s-a,r;,O)f’()d-l-h,(r) onRx[0,].

The condition above can be formulated as F[s(r), r]=0, O Nr. F(s, r) is
continuous on its domain of definition and satisfies F(b, O)=
2 .+2(1-).-1 =0, so s(0) b. Observe that

F(s, r)= 2 K(s-r, ; b, 0)+ 2(1-). K(s-azr, r; b, O)

J
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is positive on R [0, r], since f"(x) _-> k > 0. Besides, F,(s, r) also exists, is continuous on
(0, o-] and rl/2F,(s, r) is continuous on [0, o’]. By the implicit function theorem, there
exists a continuously differentiable function s(r), 0<= r <=r, satisfying F[s(r), r]=0,
0 =< r-<_ o’. Therefore, the inverse operator hl exists. Its continuity is proved as in
Proposition 6.3.

7. A method for studying the integral equations by homotopy and topological
degree. In this section, we substantiate the topological degree method for proving
smoothness of the free-boundary function s(r), 0 -<_ r =< T which was briefly outlined at
the beginning of 6. Existence of a continuous solution pair (,’, w’) to the integral
equations (5.10), (5.17) for a 1 is first established for small times (Theorem 7.1) and
then extended into the future (proof of Theorem 2.2).

LEMMA 7.1. In the case a 0 (absence of control) the integral operator defined in
(6.6), with s(r)= b +o c(u) du, O<-_r <- T,

bz(r; c, u)= K,[s(r), r; s(u), u] du -2 K[s(r), r; s(u), u]u(u) du

(7.1) + 2 Ib K[s(r), r; , 0]/’() d- 1,

cn equivalently be written as

b(r; c, u)= N,[s(r), r; s(u), u] du -2 G[s(r), r; s(u), u]u(u) du

(7.2) + 2 Ib G[s(r), r; , 0]/’() d- 1.

Proof. Given the pair (c, u) in C[0,T]X C[0,T we construct the functions s(r)=
b +I c(u) du, w(r)=f(b)+Io u(u) du, O<-r <- T, and consider the solution of the heat
equation: V2 1/2Vll in the domain {(x, r); x > s(r), 0< r< T} subject to the initial
and boundary conditions V(x, O) f(x), x >- b and V[s(r), r] w(r), 0 <- r <= T. V(x, r)
is supposed to satisfy a polynomial growth condition in x. If we integrate Green’s
identity (O/O)(KV1-KV)-(O/O)(2KV)=O in the domain {(, u); e < u <r-
e, s(u)<<M}, where M>x>s(r), and then let e$O, M’, we get the following
representation for V(x, r), in accordance with (5.14):

2 V(x, r)= K[x, r; s(u), u]{Vl[s(u), u]+ 2w(u)s’(u)} du

+ fo Ke[x’ r; s(u), u]w(u) du + 2 fb K(x, r; , 0)f() d,

and differentiation with respect to x gives, in accordance with (5.15),

i0 i02 gl(x, r) K,[x, r; S(U), /.g] gl[S(b/), U] du 2 K[x, r; s(u), u]w’(u) du

+ 2 Ib K (x, r; , O)f’(:) d.
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Now, letting x Ss(r) we get, by the jump relation (5.16),

(7.3)

ViEs(7.), 7.] KxEs(r), r; s(u), u]V[s(u), u] du

-2 g[s(r), 7.; s(u), u],(u) du

+ 2 | g[s(r), r; , 0]"(:) d.
Jb

Equivalently, we can integrate Green’s identity (O/O)(NVa-NeV)-(O/Ou)(2NV) O,
where N is Neumann’s function (5.3), and finally come up with

(7.4)

ViEs(7"), 7"] NxEs(7"), 7"; S(bl), bl]Vl[S(U), bl] dbl

-2 G[s(7"), 7"; s(u), u]u(u) du

+ 2 | G[s(r), r; ’, 0]f’(’) d.

The right-hand sides of (7.3), (7.4) are therefore equal for any possible assignment of
the value of the gradient V[s(u), u] along the curve =s(u), in particular for
VI[S(U), U]= I.

TI-IEOIFM 7.1. Existence of a continuously differentiable free-boundary function,
for small times. For a terminal costfunction f(x) satisfying assumptions A. 1-A.3 of 2
and initial step o- satisfying condition (6.4), there exists a solution (c, ,) in X
Co.] x Co. to the integral equations (5.10), (5.17) with s(7") b + c(u) du, w(7")=
[(b) + ,(u) du, 0 <- 7" <-_ tr, for the fully controlled case c 1, and hence a solution to the
free-boundary problem (2.15)-(2.20) on R+ x [0, tr] with continuously differentiable
s(r), O<-r<-cr.

Proof. We have written the integral equations (5.10), (5.17) in the operator form

(6.12) b (c, ,) __a k (c, ,) + h (c, ,) 0,

and reduced the problem of solving them to that of finding the 0-points (c, v) X. of
the transformations b, 0 =< c -< 1.

It has been shown that the family of mappings {k (c, ,); 0-< c <- 1} is a family of
compact operators from X to Y, and that the family of homeomorphisms {h(c, ,);
0 -< c -< 1} fromX to the subspaceZ ofY is convex in the sense of Definition 6.1 (see
Propositions 6.1, 6.3, 6.4).

For operators of this form, a topological degree can be defined (Browder [1976])
which generalizes the notion of the Leray-Schauder degree (Cronin 1964]) and inherits
all its basic properties. Let us denote the degree of the 0-point 0 in the Banach space
Y with respect to the mapping b and the open set G eX by

(7.5) deg [b", G, 03.
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Because of the fact that family {4 (c, t,); 0 _-< a -<_ 1} is a homotopy of continuous
transformations fromX into Y (Corollary 6.1), the degree (7.5) is invariant under the
homotopy, i.e., independent of a, 0 _-< a -<_ 1, if we select the set G in such a way that, for
any a [0, 1], all possible 0-points (c a, ,) of 4 ", i.e., points for which d (c, t,)= 0,
lie within G.

The selection of such a set G is made possible by the "a priori" bounds of 4,
established in Proposition 4.7 and its Corollary. It is proved there that if the boundary
function s has a continuous derivative c and u w ’a, w (r) V(a[s (r), r], i.e., if
(c a, u) is a possible 0-point of the transformation 4 in view of Proposition 2.1, then

(7.6) II(c , )11 IIcll + I111 sup Ic (-)1 + supl (-)1 v,
0_--<-r=<o 0=

with

2K+L K
(6.14) V= V(T)=

(zk’T
---+-;’’

for any a [0, 1]. This a priori bound enables us to take as set G, with respect to which
the topological degree will be considered, the set

(6.13) a ={(c, )X; II(c, )ll<rv} for some r> 1.

Now, since "no 0-points of d, 0-< a _-< 1, can escape through the boundary OG of G,"
the degree deg [b a, G, 0] is independent of a, 0_-<a _-< 1 (Cronin [1964]).

Let us calculate the degree at the endpoint a 0. In this case, the integral operators
(6.5), (6.6) take the form (see Lemma 7.1)

41(r; c, ,)= Nx[s(r), z; s(u), u] du + 2 G[s(r), z; s(u), u]u(u) du

b

+ 2 fo G[s(r), r; se, O]f’(sc) dsc- 1.

b’ (r; c, ,)= N,[s(r), r; s(u), u] du -2 G[s(r), r; s(u), u],(u) du

+ 2 f, G[s(r), r; , O]f’(:) dsc- 1,

or, equivalently, (6.5) together with

(7.7)

The function s(z) is now obtained through d (r; c) 0; 0 _-< r _-< r. This "decoupling"
of the integral equations is not surprising, because in the uncontrolled case we are
essentially solving the heat equation with initial condition V(x, 0) =/(x); the solution
is V((x, r)

_
K(x, r; s, 0)f(sc) ds, its gradient V (x, r)= So K(x, r; s, 0)f’(sc) ds

and the function s(r) is characterized by So K[s(z), 7-; sc, 0]f’(s) dsc 1, 0 _-< r _-< o-.
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0!We exploit the special structure of 4= (b, b 2 ); it can be seen, by a repetition of
the steps in the proof of Proposition 6.3, that the whole operator b is a homeomor-
phism fromX into Z g Y. Thus, by a familiar property of the Leray-Schauder degree
which also holds in this generalized context,

(7.8) deg [b o, G, 03 + 1,

and by invariance of degree under homotopy,

(7.9) deg [b , G, 03 deg [,;b o, G, 03 + 1.

The fundamental existence result of degree theory [Proposition (6.15)] guarantees the
existence of a point (c, u) G such that

(7.10) (1 (C, P) 61 (C, /) 0.

In view of Proposition 5.1 and with the identification (s’, w’) (c, u), (7.10) means that
there exists a solution to the free-boundary problem (2.15)-(2.20) in the sense of
Definition 2.1 on R+ [0, o’], with s(-) continuously differentiable on [0, o,].

We now extend the result of Theorem 7.1 to any finite time horizon T > 0. Use is
made of the results in 4, such as the monotonicity of the free boundary and the
propagation of uniform convexity.

Proof of Theorem 2.2. It is proved in Theorem 7.1 that the free-boundary
problem possesses a solution on R+ [0, r] in the sense of Definition 2.1 with s(r)
continuously differentiable on [0, o’], provided o- is sufficiently small, namely,

[ b 1 2 3bK ](6.4) cr-<-min 2’ 2(1+ V)2’ (1 + V)2 In 3bK-I
where V is the a priori bound (6.14).

We now apply the proof of Theorem 7.1 step by step. In order to show that an
extension of the solution up to any finite time horizon T > 0 is possible, we have to
establish the following fact: If the free-boundary problem has a solution on R+ [0, t]
with s(r) continuously differentiable on [0, t], for some 0 < < T, there exists an r/> 0,
independent of t, such that the free-boundary problem has a solution on R/ [0, + r/]
with s(-) continuously differentiable on [0, + W].

Indeed, the method used in 5 can be applied again to show that the free-boundary
problem on R+ It, T] is equivalent to the system of integral equations

it1 N[s(r), r; s(u), u] du + 2 G[s(r), r; s(u), u]u(u) du
(7.11)

s(t)

+ 2 ] G[s(), ; , t]Vx(, t) d, Zo

1 K[s(r)-’, r; s(u)- u, u] du

(7.12) 2 K[s(’)-r, r; s(u) u, u][u(u)- 1] du

+ 2 I K[s (’r) -r, "r; , t]V(, t) d,
(t)
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in accordance with (5.10), (5.17). The function V(x, t) inherits all the basic properties of
f(x) which enabled us to prove the existence of a solution to the integral equations
(5.10), (5.17) on [0,]; V(x, t) is even, twice continuously differentiable, with a
Lipschitz continuous second derivative satisfying the uniform convexity condition,
Vxx (x, t) >_- k (T) > 0 (Proposition 4.6). Thus, if we proceed with the method of Theorem
7.1 but start from r upward (instead of r 0), then by analogy we are able to solve
the free-boundary problem with continuously differentiable s(r) on [t, +r/], where

(713) rt<=min[S(t) 1 2 3Ks(t) ]2 V’ 2(1 + V)2’ (1 + V)2 In
3Ks(t)- 1

In view of the results of 4 (inequalities (4.25)) it suffices to take

r/= min
1 2

2(i + V)2’ (1 + V)2 In
3Kin(1

3Km(1 +

independent of t. Therefore the process of extending the solution into the future can be
carried out.

Uniqueness follows from Theorem 2.1 in view of Proposition 2.1.

8. Appendix A. In this section we collect together some basic continuity proper-
ties of the kernels encountered in the integral equations (5.10) and (5.17). We make
extensive use of these properties in studying the nature of the integral operators in 6.
It should be noted that they are valid only for "small times"; more specifically, it is
assumed throughout this section that 0 =< r N o-, where

[b 1](8.1) ’-<min
2 V’ 2(1+ V)

V is an upper bound on Ilcll- sup Ic (-)l on 0 <- r <- r, s(r) b + Io c(u) du. We use taditly
the fact that cr <1/2, which follows from 2(1+ V)2o-_-< 1. On the other hand, it is
immediate from the inequality 2 Vo-_-< b that

b 3b
-_-< s(-)_-< -, o_-<-<_.(8.2)
2

EMMA 8.1. For any c, Co, with Ilcll, I111 v, any 0 <- a <- 1, 0 <- u <- r <-_ r and
s(r) b + o c(u) du, g(r) b + (u) du, 0 <-_ r <- or, the following estimates hold"

(8.3)
IK[g(’r)- cr, r; #(u)-au, u]-K[s(r)-ar, r; s(u)-u, u][

<_-2(1 + v)lle-cll(,-u) ’/=,
(8.4) [K[Y(r), ’;-#(u), u]-K[s(r), ;-s(u), u]] <-28b-[1-cl[( U)3/2,

(8.5) laid(r), ,; g(u), u]-G[s(r), ; s(u), u]1-2[1 + V+ 14b-S][l-cll(r-u)/,

(8.6)
IK[f()-, ; f(u)-u, u]-K[s(r)-r, r; s(u)-au, u]l

_-<ll,-cll(-- ,;-/

(8.7) lNx[g(’), ’; g(u), u]-NxEs(r), ’; s(u), u]l=<(1+85b-4)ll-c[l(-u)-/,
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Proof. The difference of the two kernels on the left-hand side of (8.3) can be
written as

K.[f(r)- cr, r; g(u)-u, u]
(8.8)

[1-exp {[g(r)-g(u)-a(r-u)]Z-[s(r)-s(u)-a(r-u)]2}]2(r- u)

The difference of the squares in (8.8) is bounded in absolute value by I[g(z)-s(r)]-
[g(u)-s(u)]l" I[g(z)-ar] + [s(r)-ar] [g(u)-au]- [s(u)-cu]l<-2(l+ V)I[?
c[l(r- u)2. Therefore, if x denotes the expression in the second braces of (8.8), we have
Ix] <-- (1 + v)ll?- cll(r u) -<_ 2 v(1 + V)r < 2(a + v)= _-< 1, by assumption (8.1). Note at
this point that Ixl =< < 1 implies I1- e <_-et. Consequently, the expression in (8.8) is
bounded above in absolute value by

(27r)-l/.(z u)-1/211 eXl_<(2rr)-l/2 )1/=e (1 + V)lle c [l(r u

<2(1 + r)ll- cll(,- u) /=.
To prove (8.4), the difference of the kernels is written as [g(z)-

s(r)]Kx[s*(r), r;-g(u), u]-[g(u)-s(u)] K[s(r), r;-s*(u), u], by virtue of the
mean value theorem, where s*(r) and s*(u) are numbers between s(r), g(r) and s(u),
g(u) respectively. Note that because of (8.2)

[ -b2 ] )3/2,IKx[s*(r), z’, -g(u), u]l <= (2r)-1/z(r- u)-/2 3b exp 2(z--u) <= 14b-S(r u

where use has been made of the fact that x3e <-_ 1.4, x -> 0. A similar estimate holds for
Kx[s(z), r;-s*(u), u], whence the validity of (8.4).

Inequality (8.5) follows directly from.(8.3), (8.4). As for (8.6), the difference of the
kernels on the left-hand side is equal to J1 + J2, where

J1 (g(r)-g(u) )-a (K[Y(r)-ar, r; (u)-au, u]-K[s(r)-ar, r; s(u)-au, u])

and

[()- s(,)]-[(u)- s(u)]
J2 K[s(z)- at, r; s(u)-au, u].

Using (8.3) and the fact that 2(1 + V)2r-< 1, we get the estimate

)1/2IJl--<(llll/) e(2)-1/2(1/ v)ll-cll(,-u
<_-(1.1)(1 + v)ll cll(- u)-1/2

_-< 0.ssll- cll( )-/.

On the other hand,

IJzl-<-II- cll. (27r)-/z(r u)-/ <- 0.4011- cll(r-/,/)-1/2.

A combination of these two estimates yields (8.6).
Finally,

Nx[s(’), z; s(u), u]-Nx[g(z), z; g(u), u]= J +J’,
where

J= Kx[s(r), ; s(u), u]-K[g(), ; f(u), u],
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and J’ is J with [s(u), g(u)] replaced by [-s(u),-(u)]. An estimate for J is already
available in (8.6). To estimate J’ we write it as J +J, with

{K[g(7-), 7-;-g(u), u]-K[s(7-), 7-;-s(u), u]},

E(r) s (r)] + E(u)- s(u)]

Using (8.2) and (8.4) one gets the estimates

and

K[s(r), 7-;-s(u), u].

28b-5115 cll( -/1)3/2 84b-4[1 cll(,-/1) 1/2

-b 2

]<=b-nll-cll(r-u)1/2IJ’21<=ll-cll(2rr)-a/2(r-u)-/2exp 2(r7)
where the inequality x2e-X<= 0.6, x => 0 has been used. A combination of the estimates
for J, J;, J gives (8.7).

COROLLARY 8.1. For any c C[o,] with Ilcll--< v, any c, [0, 1], 0 _-< u =< r < o’,

and s(7-) b + o c(u) du, 0 <= 7- <- r, we have

IK[s(r)-r, r; s(u)-u, u]-K[s(r)-ar, r; s(u)-u, u]l
(8.9)

_-<2(1 + V)15 a 1(7-- u) 1/2,
IKx[s(r)-Sr, r; s(u)-du, u]-Kx[s(r)-ar, r; s(u)-au,

(8.10)
__< I,-,1(-- u)-/2

LEMMA 8.2. For any c Cto,,,]; Ilcll--< V, 0 < < , 0-<_ = -<_ a and any 0 <= u <-

rl < r2 <= r, we have

IKEs(r2)-r2, "2; S(U)--U, u]--K[s(7"I)--G7-1, 7-1; S(/1)--ogu, u]l
(8.11)

<-- (7-2 rl) (7-a u -/-,
)1/2(8.12) IK[s(r2), r2, -s(u), u]-g[s(7-1), 7-1, -s(u), u]l <Bo(r2 rl)(r2 u

(8.13) IG[s(r2),r2, s(u),u]-G[S(rl),rl,s(u),u]l<(l+Bo)(r2" 7-1)e (7-1 u)-l/2-e
IKx[S(7-2) o17-2, 7"2; S(/1)--0!/1, u Kx[s(7-1) GT-1, 7-1; S(U tl,

(8.14)
)-l/2-e< (1 + 2 V)(7-2 7-1) (7-1 u

(8,.15) INx[s(r), r2; s(u), u]-Nx[S(rl), 7-1; S(/1), u]l<--Bl(r2-rl)(rl-u)-1/2-,
where Bo (4b3V + 3(962+ 1))/b 6 and B1 is the constant introduced in (8.18).

Proof. We first prove (8.11); the difference of the two kernels can be written as
J + J2, where

J1 K[s(7-2)-Gr2, r2; s(u)-Gu, u]-K[s(r)-oerl, r2; s(u)-Gu, u]

J2 K[S(rl)-arl, r2; s(u)-ou, u]-K[S(rl)-Oerl, rl,; s(u)-oeu, u].

Besides,

(8.16)
J1 K[s(r2)-a,2, r2; s(u)-au, u]

[1-exp {-[s(rl)-ere-S(U)+eu]2-[s(r2)-er2-s(u)+eu]2}]2(r2- u)
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The difference of the squares in (8.16) is bounded in absolute value by

Is (r2)-s (rx)-ce (r2-rl)l" [s(rz)-S(U)-ce(rz-u)+s(rl)-S(U)-(r-u)l
-<2(1 + V)2(7"2 ’7"1)(7"2 -/.g),

so that, if x denotes the expression inside the inner brackets in (8.16), then evidently
Ixl--< (1 + v)Z(rz-rl)-< (1 + V)2r < 1 and upon using again the fact that I1 eXl--<
et, Ixl-<- < 1 we have, IJll--< (2rr)-/Ze(1 + V)’ (r2- r)(2- u)-/. But

(8.17) (7"2 rl)(r2 u)-1/2 <_ o’(r2 rl) (r2 u)-1/2-,

which by virtue of 2(1 + V)2cr =< 1 gives the final estimate IJll -<
(0.55)(r2- rl) (rl- u)-1/2- On the other hand, (27r) 1/2" J2[ -<

(rl u)-1/2-(r2 u)-1/2 <= (r2- rl) (rl- u)--1/2-. Combining the estimates for J1, J2,
one easily gets (8.11).

To prove (8.12) we write the difference of the kernels by virtue of the mean
value theorem as 11+12, with 11=[s(r2)-s(r1)]Kx[s*,r2;-s(u), u], 12=
(r2-rl)K,[s(rl), r*; -s(u), u] where r* and s* are numbers between 7"1, 7"2 and s(rl),
s(r2), respectively. Note that, because of (8.2),

IIl V(r2 rl)
3b

)3/2 exp(2rr)l/2(r2 u 2(r2- u)2

_<- 8(2,/7")-1/2b -3 V(’r2 rl)(r2 U

On the other hand,

so that

K(x,;,u)=
(x-)-(r-u)

2(r- u)2 K(x,r;,u),

< r2-rl 9b2+1 [ -b2 ] 6(9b2+1) 1/2[121 2gi72 (r*- u)/2
exp 2(%-22 u)

<= --g-g17 (r2-rl)(r*- u)

The estimates of I1, I2 together give (8.12). Equation (8.13) follows directly from
(8.11), (8.12) and 8.(17).

We are now in a position to prove (8.14); we put

KEs(r2)-ar2, r2; s(u)-u, u]-KxEs(’rl)-ce’rl, 7"1; s(u)-oeu, u]=/1 +/2--/3.

where I1, I2, I3 along with their estimates are given by

S (7"2) S (’/’1)
11 KEs(r2)-cer2, r2; s(u)-ceu, u],

7"2 U

V r2-rl V (r2- rl)
Illl <-- rr)a/2 )3/2 ,/.g)l/2(2 (7"2 u (2 (rl-u)

I2 [S(rl)--s(u) ]-o {KEs(r2)-oer2, r2; s(u)-ceu, u]
7"2-- U

-K[S(rl)-Cerl, 7"1.; s(u)-ceu, u]},
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and, by (8.11),

Ihl (1 + V)(r2 rl (rl-) u)-/-
r2-r s (’rl) s (/A)

I3 K[S(rl)-cerl, "/’1 S(Ig)--OgU, l,t],
2-- U 1-- U

V r2--rl V (r2-- rl)
lI3l )1/>.(2)/2 (r-- u)l/2(r2 u) (2)/2 (rl u

Combining the three estimates above, one gets (8.14).
Finally (8.15) is proved. The difference of the two kernels is I+I’, where

l Kx[S(rl), rl; s(u), u]-Kx[s(r2), r2; s(u), u] and I’ is I with s(u) replaced by -s(u).
An estimate of I is given by (8.14); to estimate I’, the latter is decomposed as
I’= I + I& -I;, where I, I& and I; are as I1, I2, I3 above with a 0 and s(u) replaced
by -s(u). We estimate I by the same quantity as for I1, while for I&, I we have the
upper bounds

II&l r=-3bu "Bo(2

3b(r2-rl))s/2 exp N3b-3 -/2 -3 (r2)1)+(e)*/(l- u a(Z u) (-1)(,1- u) 3b
(1- u

where (8.2), (8.12), (8.17) and the inequality x2e N0.6, x 0 have been used.
Combining all estimates together and introducing the constant

(8.18) B 1 + 3 V + 3b -3 + 3b-S[463V + 3(9b 2 + 1)],

one verifies the validity of (8.15). The proof of the lemma is complete.
LeptA 8.3. For any c

m we have
1 /2(8.9) IK[s()-,, ,;s(u)-u,u]l(+ V)(,-u) 0u<,,

1
(8.2o) Ig[s(r), r; s(u), u]l(g+gb

9. Appendix B. In this section we discuss some properties of the integral operator
b

(9.) r(; c) 2 Jo a[s(),

where s(r) b +g c(u) du, c e Co., Ilcll supo, Ic(r)l r and satisfies (8.1). We
also establish the solvability of the Volterra integral equation (9.9) below.

LEMMA 9.1. Under the above assumptions,

(9.2) I(r;c)lN 2V+K+ r

As an immediate consequence, y(0; c) lim,,o (r; c) 0.
Pro@ Because f’(b) 1, we have y(r; c) I1 + I2-h, with

b

I {g[s(r), r; , 0]-g(b, r; , 0)}f’()d,
b

b -b

b
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The following estimates hold"
1/2

I3 1 -dP(2br-1/2) <= (2rr)-1/2
7"

2b’
b

Ihl<-KI_ (b-()K(b, z; , O) d(<-K(2r)-l/2z1/2,
b

I/al
Is()-bl ff Is* :lK(s*, r; ’, 0) d: <- 2 V(27r)-l/2r 1/2

7" b

where s* is a number between b and s(r). Equation (9.2) follows from these three
estimates.

LZMMA 9.2. Continuity of y(r; c) in c. For any c, C[o,] such that Ilcll, I111 <-- v,

1/2 1/2(9.3) IT(r;g)-3’(r;c)l<-2lg(r)-s(r)lr _-<2{Ig-cllr 0----<r<----m

Proof. Consider c, as above, along with s(r)=b+(c(u)du, g(r)=
b +o ((u) du. By the mean value theorem, there exists a number s* between s(.r) and
g(r) such that

b

y(r; )-y(r; c)=[g(r)-s(r)] I_ Kx(s*, r; , 0)f’(:)
b

Therefore,

g(r)-s(r) If (-s*)K(s*, r; , 0)/’() d..
7" b

I/(r;.g)-,(r; c)[-< 1()- s()l I_ I- s
7" b

-1/2< 2lg(r)- s(,)l r

*lK(s*, r; , o) d:

LEMMA 9.3. For any c Co.], Ilc[l v, (r; c) is a continuously differentiable
function on (0, r]. There exists a positive constant B2 B2(b, V, K, L) such that

1/2(9.4) sup r IT’(r; C)[ <-B2,

,4o
f"(b).

_Proof. We have

/’(r; c) 2[s(r)--c(r)-f"(b)] K[s(r), r; b, O]

(9.6)
-2[s(r) + b

r-c(’r)-f’(b)] K[s(r), r;-b, O]

b

+ 2c(r) f_ K[s(r), r; , 0]f"(s) d
b

b

K[s(r), r; tj, O]f"’(:) dsr.
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Just as in Lemma 9.1, it can be shown that there exists a positive constant such that

Also,

b b

2 b 2
1/2_-< const.r

-c(r) (b) K[s(r),r" b,O]<(2r)-l/Z(3b+ v+g)’r-3/2 exp
-9b2

"r 8"r

I/2y’(r" c) is bounded on (0, o’], uniformly in c, whichas r+0. From (9.6), it follows that r
is precisely the assertion of (9.4). On the other hand, passing to the limit as r0 and
observing that lim,+0 "r/2K[s(r), "r; b, 0] (2r)-a/z, one gets

lim r f"(b).
$0

LEMMA 9.4. There exists a positive constant B3 B3(b, V, K, L), such that for any
c, C[0.] ]lc[I, I111 <-- V we have

1/2 ]/,(9.7) sup It’(*; e)- (, c)l <Blle cll.
ON,rNo-

Proof. From (9.6) one gets the decomposition, ,/’(r; )-y’(r; c)= Y.--11i, where

I1-- 2 / ff(’r) S (’/’)- [(’r)--C (’/’)] / g[ff(’), "/’; b, 0],
J

-1/2II] -< 4(2r)-/211- cllr

I2 2[s(r)- b ]-c(r)-f"(b) {KEg(r), r; b, 0]-KEs(r), r; b, 0]},

IIzI=4(2V+K)(I+ v)ll -cll by(8.3),

-I3 2 ((r)-s(r)_[.(r)_c(r)]] KEg(r), r;-b, 0],
\ /

_b2

113l--< 2(2rr)-1/z exp \(---r/I1 cll,

-I4=2[s(r)+-c(r)-f"(b)] {KEg(r), ’; -b, O]-K[s(r), r;-b, 0]},

and by (8.4),
1/21/41-<- 2815b + 2(V + g)]b-5. II - cll 

b

15 2E(r)-c(r)] f_ KEg(r), r; , O]f"(:) dsc,
b

lI, l<-2gll-cll,
b b

b b

b b

17 2 K[(r), ,; e, 0]f’"(e)dtj-I_ K[s(r), r; e, 0]f’"(e)de.
b b



326 IOANNIS KARATZAS AND VCLAV E. BENEg

The last two terms can be estimated, as in Lemma 9.2, by [I6 + I7[ -< const. [[-cl[r 1/2.
Combining all estimates together, we get (9.7).

COROLLARY 9.1. For any c Co.,, y(r; c) belongs to the space Z defined in 6
[see (6.3)]. Furthermore, if c, Co,,, Ilcll; I111 - v, there exists a positive constant
B4 B4(b, K, L, V) such that

(9.8)

In the remaining part. of this section, we establish the solvability of a certain
Volterra integral equation of the first kind.

LEMMA 9,5, For ally E C[0,r], Ilcll----< rand A g, IlAll/=--< A, me Vo#erra integral
equation of the first kind,

(9.9) 2 G[s(r), r; s(u), u]. u(u) du a (r), 0 <- r <-_ o’,

has a unique solution u(r) e CEo.,?. The dependence of this solution on the pair (c, A) is
continuous, in the sense that if u is the solution corresponding to the pair (c, A) and the
solution corresponding to (, 2) with Ilcll, Ilell <-- v; IIx I1/, IIi11/--< A, there exists a constant

Bs Bs(b, V, A) such that

(9.10)

Proof. Consider (9.9) with replacing r, multiply both sides by (r-t)-1/2 and
integrate the resulting equation from 0 to r. We come up with the new Volterra
equation of the first kind,

(9.11) M(r, u; c)u(u) du =0(r; A), 0--<_ r <-or,

where

(9.12)

(9.13)

0__<u <-<__o

integration by parts in (9.12) yields

(9.14) M(r, u" c)= r./x(u, u; c)+ 2 tan-1
t-u

txl(t, u; c) dt,

so that

(9.15) M(r,u,c)=
l I(t-ul/2---t) /zl(t, u; c) dt.

It can be shown that M,(r, u; c), 0_<-u < r_<-cr is a bounded, continuous kernel,

In the equivalent form (9.11), the integral equation can be reduced to a Volterra
equation of the second kind and thus be solved by iteration, as is presently shown. Since

0[ 2 tan_l( z _ut)1/2]Ot t" (r- t)-l/2(t b/) -1/2,
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continuously dependent on c. Indeed,

[(r-u /2 r-u
-2c(r) K[s(r),r;s(u),u]

(9.16)

(7" U
/2

"/’-- U
-2c(r) K[s(z), z;-s(u), u],

and it is not hard to get the bound [tx1(’,u;c)l<=(2r)-X/Z(3vZ+29b-2). Therefore,
M(-, u; c) is bounded:

(9.17) IM.(r,u;c)l <- (3V+29b

To conclude continuity in c, we use (8.3), (8.4) to get

(9.18) IiXl(-,u;)-ia(Z,u;c)l<=ll]-cll, z=3V+4V2(l+ V)+343b -3,

whence

(9 19) IM,(r, u, ) M,(r, u, c)[[-cl f" t-u 1/2

Finally, we compute M(r, r; c)= lim,,, M(r, u;c).
Write M(r, u; c)= (2/zr)/:(I-I), with

!
"=I,

exp
[ ------2-i-- }

(r-t)l?2(t’’-u) /3 dt,

and 12 similar to 11, with -s(u) instead of s(u). Note that

0=</2--<exp 2(Z) (,r-t)l/Z(,r-u)1/2=’n’’eXp 2 --u)’

h Z. Therefore

(9.22) 0’(z; ) ’(u)(r u)-/2 du, 0 <- r <- o’,

and hence

(9.23)

sup 10’(r; A)[ <_- 77"11[[1/2 7rA,
0’rcr

(9.20)

[ VZ(r-u)]If dt [- vZ(r- u)] </1< rr.exp
2 (._t)/z(t_u)l/Z= r exp

2

Therefore lim I2 0 and lim 11 r as u ’ r, and so

M(r, z; c)=(2r)/.

Now, one can formally differentiate both sides of the integral equation (9.11) with
respect to z and get

(9.21) (27r)/2u(r)+I’o M.(z,u;c)u(u)du=O’(z,h), O<-r<-r,

where O(r; h) h (u)(r- u)-/2 du 2 0 h (u)(z- u) 1/2 du by partial integration,
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The integral equation (9.21) is Volterra of the second kind in u(r), and can be solved by
iteration. Continuous dependence of the solution to (9.21) on the pair (c, h ), and hence,
(9.10), is a direct consequence of (9.19), (9.23).

10. Appendix C. In this section we discuss the properties of the mapping

(10.1) h(r;c)=2Ib K[s(r)-ar, r;,O]f’()d-l, O<=r<=o",

where S(T)= b +o c(u) du,.c C[o,], ]]c][=< V and r satisfies (8.1).
LEMMA 10.1. Under the above assumptions,

(10.2) [h(r; c)[<=K[l +(l + V)(2+3b)]r 1/2,

Proof. Because" f’(b)=l, h(r;c)/2=Ii+I2, with I=b K(b,r;,O)
[f’()-f’(b)] d andI1 =b {K[s(r)-ar, r; :, 0]-K[b, r; :, 0]}f’(:) ds. The following
estimates hold’

and

]I2]<--KIb (-b)K(b, r; , O) d=K(2rr)-l/2r1/2

[I1[ IS(T) b "F/K(S*, ’, es, O) Kse de
3b T

(0.3)
<=K(1 + V) Jb Is*-lK(s*, r; se, O)d,

by virtue of the mean value theorem, where s* is a number between b and s(r)-ar.
There are two cases to be considered separately:

Case I. s* b. The integral on the right-hand side of (10.3) is

fb (-s*)K(s*’ "; ’ O) d= fb (-s*)aK(s*’ "; ’ O) d

+ s* J (-s*)K(s*, ; , O) d

+ br/:/(2)/

and therefore, ]I] K(1 + V)(1 + b/2)r/,0.
Case II. s*> b. The interval of integration is divided into two parts as follows.

i i +L Y + Ya, where

fs, 7I* 3bY1 (s*-)K(s*,z’,O)d--, (s*-)K(s*,z;,O)d2(2)/z
3b /Y= (-s*)K(s*, z; , O) dNr+2(2-)/v z

1/2in analogy with the estimate of I1. Therefore in any case I[ K(1 + V)(1 + 3b/2)z
Inequality (10.2) follows from the estimates of both I1 and I.

LEMMA 10.2. Continuity of h(z; c)in (c, a).Forany , c e Co,; Ilcll, Ilell Vane
a, e[0, 1],

[h(,; el- h(r; c)[ N g(2 + b)[f(z)-s(z)lr-/
(0.4)

g(2 + Bb)lle- cll, 1/,
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1/2(10.4)’ ]h(r; c)-h2(r; c)]<-K(2+3b)l-alr O<-r<-_m

Besides, if in addition to (8.1) the initial step o" satisfies the restriction

2 3bK
(10.5) cr-<ln

(1 + V)2 3bK- 1’

then

(10.6) ]5(r)-s(r)[3rl/2lh(r; )-h(r; c)l, 0 " r.

Proof. Consider any c, ( as above, s(r) b + o c(u) du, (r) b + o (u) du and
suppose s(r) <- g(r). By the mean value theorem, there exists a number s*, s(r) <- s* <-
g(r) such that, if x s*-at,

(10.7)

h(r;2 )- h"(r;2 c)= 2[(r)-s(r)] I Kx(s*-ar, r; , O)f’() d

=2 g(r)-s(r)r fb (se-l)g(x’ r; se, 0)f’() de.

by
Case I. Iz <= b. In this case the integral on the right-hand side of (10.7) is dominated

K fb (-I*)jK(I, r; , O) ds <-KI, (-/,)2K(/,, r; , 0) d

+Kb f (j-lx)K (x, r; , O) d:

b 1/2)<--K r+-r
hence,

(10.8) Ih(r; )-h(r; c)]<-K(2+b)[g(r)-s(r)]r-/2, O<r<m=

On the other hand,

I ( /x >K (/x, r; , 0>f’(> de_-> f ( /x )K (x, r; , 0> de

r
exp

2r

_-> (0.31)r 1/2

because

O<-_b-lx <-b-s(r)+ar<-(l + V)r,
27"

(1+ V)2o 1(1 + V)2r2

<
2r 2 -’4’

by (8.1). Consequently,

(10.9) h"(r,2 5)-h"(r’.2 c) >(0.62)=
f()-s(r)

,/.1/2
0__<r<__m
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Case II. /x > b. In this case the integral in (10.7) becomes I2-Ia, where

Ia (/z alg(/x, r; . O)f’(:) d: _-<f’ (. a)g(., r; a O) da

g. (-.)g(.. r; . 0)

+g. I. (-.)g(.. r; . 0) d.

and therefore.

Combining the estimates for Ia. 12. one gets in this case

(10.10) Ih(r; ?)-h(r; c)l<-K(2+3b)[g(r)-s(r)]r-a/2, 0<r<0-.=

Now (10.4) follows readily from (10.8), (10.10), while (10.5) is an immediate
consequence thereof. On the other hand,

1/2

and

11 K/x (/x :)K (/x, r; sc, 0) dsc

NK 1-exp

1/2

NK 1-exp -(I+V)
the last inequality being valid because 0 < Ix b <- g(r) at- b <= (1 + V)r, (1
b)2/2r <-_ (o’/2)(1 + V)2. Therefore

h2(r;)-h2(r;c)=2
f()-s()

(h-- I1)

>-2
Y(r)-s(r) r

1--- 1-exp (1 q- V)2

If 0" satisfies (10.5), the term in the brackets is not less than 5. So

s’()-s(r)
(r; c)>(0.38) 1/2 0<T<0""(10.11) h2(r )-h2

A comparison of (10.9) and (10.11) shows that the latter, and hence also (10.6), is true
in any possible case.
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LEMMA 10.3. For any c Co.1, Ilcll Vand 0-<a _<-1, h(r; c) is a continuously
differentiable function on (0, o’]. Besides, there exists a positive constant B6--
B6(b, V, K, L) such that

sup 7"1/21h (7"; C)l < B6.(10.12)
0<_-<

Also,

c(O)-a +f"(b)
(10.13) lim rl/2h.’ff (r; c)=

-$o (2rr) 1/2

Proof.

h2 (7" c) {2[c(r) a] [s(r)-b ] +f"(b) K[s()-, ; b, 0]
T

+ J K[s(r)-ar, r; , O]f"’()(10.14)

+2[c(r)-a] J K[s(r)-or, r; st, 0]f"(sc) dsc.

By analogy to Lemma 10.1,

I7 f"(b)[K[s(r)-at, r; , 0]f"(s) ds- 2

1/2f"’(b < const, r+ K[s(r)-ar, r; s, 0]f"’(sc) ds- 2

1/2 ’(r; c) is bounded in (0, o’] uniformly in c, aFrom (10.14) it follows that r h2
which gives (10.12). Passing to the limit as r$0 in (10.14), we get

c(O)- +f"()1/2 (,./.; C) 1/2lim r h2,o (2rr)

LEMMA 1 0.4. There exists a positive constant B7 B7(b, V, K, L) such that for any
a, c e [0, 1]; c, ? e Co.1; licit, IIll--< v,

(10.153 1/21h (r" ) h ’ff (r"oS<=U&

(10.16) 1/21 ,a ’a(r;c)l<la 1oS<U__<pr h2 (r;c)-h2

The proof of (10.15) is similar to that of (9.8), Lemma 9.4. Once (10.15) has been
established, (10.16) follows readily.

COROLLARY 10.1. For any a [0, 1], c Ct0., h (r; c) belongs to the space Z.
Furthermore, if c, Co,3, I[c[[, I111 -< W and , 0, 13, there exists a positive constant

B8 Bs(b, K, V, L) such that,

(10.17)
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Note added in proof. Recently, L. A. Caffarelli and A. Friedman (A free boundary
problem associated with a semilinear parabolic equation, to appear in Comm. Partial
Diff. Eqs.) gave a simple proof for’ the C differentiability of the free boundary in this
problem. Their method is similar to that of Schaeffer [1976].
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ON SOME IMPULSE CONTROL PROBLEMS WITH
LONG RUN AVERAGE COST*

MAURICE ROBINS

Abstract. Some particular impulse control problems with infinite horizon and long run average cost are
considered for Markov processes having "nice" ergodicity properties.

The main feature of the method is to start with discounted cost and then let the discount factor go to zero.

This also gives an opportunity to study the asymptotic behavior of some optimal stopping time problems when
the discount factor goes to zero. Probabilistic and analytical methods are used and examples are given,
especially for Markov jump process and diffusion processes with reflection.

1. Introduction. Let us consider a preliminary example. Assume that one has a
machine which deteriorates, and that its state is described by a Markov process xt. At
any time one can replace the machine (immediately) by another one which has the same
kind of evolution. There is an operating cost .f(x) and a replacement cost c (x), and it is
desired to minimize the overall cost or infinite horizon. Moreover, one can choose the
initial state of the new machine (eventually second-hand). That kind of stochastic
control problem is an impulse control problem as introduced in a general setting by
Bensoussan-Lions (see [2] and its bibliography) especially for diffusion processes.
Impulse control was studied in [11] for a general class of Markov processes and for
discounted costs or finite horizon.

The long run average cost.has been considered by Lasry [8] for particular diffusion
processes and with methods based on the maximum principle for partial differential
equations. For optimal stopping of diffusion processes and the corresponding varia-
tional inequalities, the same kind of problem was studied by A. Bensoussan and J. L.
Lions [3b].

In this paper, we shall study the long run average cost for some particular impulse
control problems allowing us to give results for a class of Markov processes having nice
ergodicity properties. The approach which is adopted is to start with a discounted cost
criterion and to study the limiting behavior of the problem as the discount factor goes to
zero. Section 2 deals with the basic definitions and assumptions, 3 with the main
results. We study successively the asymptotic behavior of the linear equation, the
optimal stopping problem and the impulse control problem.

Examples are given in 4, and in some cases quasi-variational inequalities (in the
sense of [3b]) can be obtained by analytical methods.

2. Notation, assumptions and statement of the problem. Let fl D(R +, E) be the
space of right continuous, left limited functions from R /

into E, a compact metric space.
Let xt(oo) o(t) for any w fl, F o’{Xs, s <= t}, F F, Ft, F the universally

completed o--field of Ft, F (respectively).
Let Ot be the translation operator on lq, and C the Banach space of continuous

functions on E.
Let X (fl, Ft, Ot, xt, P,) be a nonterminating homogeneous Markov process with

semigroup 4, (t).
We will assume"

(2.1) b(t) is a Feller semigroup (see Dynkin [5]).

* Received by the editors October 30, 1979 and in revised form June 12, 1980.
+ INRIA, Institut National de Recherche en Information et Automatique, Domaine de Voluceau, 78

Rocquencourt, Le Chesnay, France.
1..e., b(t)l Vt->0.
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(2.2)
We C, ck(t)f C,

Vfe C, lira ck(t)f(x) f(x) Vx e E.
t-O

Moreover, we are given

eC, _->k>0,
(2.3)

cEC, ck2>O.

DA will denote the domain of the infinitesimal generator A of b(t) in C.
Problem 1-Is. Let a > O. An admissible control v will be a sequence of stopping

times o"n and an element E E such that
n-1 o.nif r r + 0-,, then r

Then the cost is given by

+Ex Yn>=2 e-S’"-lEt(Io e-SSf(xs) ds+e-S"c(xn))"
The optimal cost function is defined by

(2.4) us(x) inf J (u),

and the control problem is to find an admissible control u* achieving the minimum in
(2.4).

Actually, it is possible to formulate I-Is with no restrictions on r and general
assumptions on the (instead of :), but the results of 11, Chap. 5] show that there
is no loss of generality in assuming that form which contains an optimal policy.

From [11], we have the following result:
THEOREM 2.1. Under the assumptions (2.1), (2.3) us is the maximum element of the

set offunctions w satisfying

(2.5)

w <= Mw, Mw =- c(x) inf w (:),

w <-_e (t)w + e (s)f ds,

wC.

Moreover, the following admissible control is optimal:

c inf (t >= O, us(xt) Mus(xt)),

arg min
(2.6) _

’" "]" -1- 00Tn--1 ’" t,

e-=.
Moreover, us is the unique solution of

(2.7) )us(x) inf Ex( e-SSf(x) ds + e-S’Mus(x,)
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It is convenient to introduce another expression for J. Let flN, / F(R)N,

From
h) ’() ’(w,),

2(#) (w1)+,2(w2) 0*w), etc.....

Then yt() xt(w,) for 6 [,-1, ,[, (0 0).
It is shown in [11, Chap. 5], that for an x E and u (", ),1 admissible, one

can construct a probability measure P on (fl, F) such that

Px(yo x)= 1,

P(y,-=)=l Vnl,

E[6(Yr"-’+t)X{r">,"-I+t}lP,"-] Et[O(xt)x">t], P a.s.,

for any bounded measurable function $(on E) (X is the indicator function of the
set B).

Intuitively, P gives the behavior of the controlled process which is, in some sense,
n-1"Markovian between , and with the semigroup $(t), and which takes the

value at r" for all n 1. Then,

(2.8) J ()=E e-(y) d + 2 C(Y-n) e
nl

Now the problem without discount should be

Minimize J(), where
(.9

T$ T

When one can restrict to be such that SUpxEEx< +, then it is enough to
consider (if

(2.10) jx(p)=liminf Ex ’f(x)+c(x’)+N [E o [(x) ds + c(x-)]
E+Z=2E

3. StuSy oI unSisounte8 problems.
3.1. Preliminary remarks. Because E is compact, &(t) has at least one invariant

probability measure; indeed, for any probability q on E,

O(F _1 q(dx) P(x
n

O converges weakly since E is compact, and any weak limit of O is an invariant
measure of (see the Appendix).

We will study the asymptotic behavior of H under the following additional
assumption.

There exist an invariant probability measure and positive
constants B and such that

(
I(x e r (FI e -’’,

(for any Borel set of E).

We will see below some examples for which this assumption is satisfied.
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This assumption implies that/z is the only invariant measure of (t)" indeed, if/2 is
any invariant measure,

(F) 2 (t)(F) (by definition)

implies (t)(F) -/z (F) when c, therefore/2 (F) (F).

Let us state some other useful consequences of (3.1). The proofs are given in the
Appendix.

LEMMA 3.1. Under (2.1), (2.3) and (3.1), there exist positive constants BI, "1 Sblch
that, for any bounded measurable g on E,

[b(t)g(x)-- fE g(x)lz(dx)[ B1
LEMMA 3.2. Under (2.1), (2.3) and (3.1), a necessary and sufficient condition for the

equation -Au f(f C) to have a solution (in DA) is that

f(xl(dx)=O.

LMMA 3.3. Any two solutions of the equation -Au fdifferfrom each other only by
a constant.

3.2. Asymptotic behavior of the linear equation. For f C, let u be the unique
solution of

(3.2) -Au + au f, u Da.
It is known that

(3.3)

Let

--Ot6Us(X) e (t)f(x) dt.

v(x) u (x)-min

LEMMA 3.4. Under (2.1), (2.3), (3.1) we have, as a$O,

the unique solution of

(3.4) -A6=f-f, min Y=O, where f= f(x)l(dx).

Proof. It is clear from (3.3) that II u ll is bounded by [[fll. Let g f-au then

(3.2) :ff -Aw g has a solution in Oa.

Therefore by Lemma 3.2 we have z g d/x 0, and any solution of this equation can be
written as

w fo c(t)gdt+c.

Let tT o 6(t)g dt. Since Ilgll_-<2llf[I, we have ll7ll =< constant (independent of
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a). In fact, by Lemma 3.1, we have

Therefore the integral its is well defined.
Now vs is also a solution of

(3.5) -Aw

(it is the solution of (3.5) such that min w 0); therefore, vs tTs -min tTs. Since t is
uniformly bounded, so is vs. Hence,

(3.6) aus h constant

(avs 0, so lims+oaUs(x)=lims+oa min us for all x E). Moreover,

gs dtx O: aus dtx f dlz f

therefore h f.
Define now gs 1- aus. We have s dtz 0, and gs 0 uniformly when a 0.

Let

5 t min t.
Then

Ilv -11 Jo 116(t)LII dt

1111’ constant (via Lemma 3.1).

Therefore, vs 7 in C, and the fact that t3 is a solution of -Aw f- f is a consequence
of Lemma 3.2.

Remark 3.1. We also have Avs Ag in C, and

iv= lim
&(t)fdt

T’oO T
since

f(x) (t)(f f) dt+ & (T)O,

T T

3.3. Asymptotic behavior of some optimal stopping problems. Let

[C, /_-> >0,
(3.7)

4, C.

We consider, in this section, the optimal stopping time problem

Y (7")= Ex f(Xs) ds +//tl(X.r)/’.r<eO
(.8)

v(x) inf Ja (z)
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In fact, since fl /S > 0, it is enough to consider the stopping times - such that

(3.9) Er-.

Indeed, we can restrict ourselves to " such that

jl (T)J1 (0)= =11111,

and, since fl O, we have

giving (3.9). Let us also define

v(x) if e-(xt) dt + e-’O(x)

We can now state the following:
THEOREM 3.1. Under the assumptions (2.1), (3.1), (3.7):

(i) v is the maximum element o the set ounctions h such that

hC,

(.0) h (t)h + / (S)fl ds,

(ii) inf (t, v(x)= O(x)) is an optimal solution o the problem (3.8).
(iii) v v uniformly.
Pro@ The proof will follow several steps. We first transform the problem to the

situation where

(3.11) =constant>0 and 00, (instead of [,

Indeed, let T inf 0, 0 0 T 0; we have

v (x)- if dt + O(x,)

Then let v be the solution of

0 0-Av =f1-]’1 with max v 0

then we have

(see 3.2)"

]w(x)=v(x)-y-v=in,fEx f-1 dt+qt(x,)

where 0 I/]2- vO -> 0,

Since fl -->/3 > 0, we have f fl d/x _->/3 > 0.
In the following, we will therefore study

(3.12a)

w(x) inf Jx(r) inf Ex f dt + 4,(x,)

f=constant>O and 4’ ->0, ,eC,
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and we will introduce

{I(3.12b) w,,(x) inf E f e-t dt + e-6(x,)

For problems like w,, we will need the following result proved in [11, Chap. 1]"
LEMMA 3.5. Assume (2.1), f, 9 C. Then

(i) w is the maximum element of the set offunctions h such that

he,C,

h<=6,

h < e (t)h + | e (s)f ds,

and ’ inf (t, w(xt)= 6(xt)) is an optimal solution.
(ii) The equation

(3.13) w;(x)= e-kb(t) --(w2-O)/ dt

has a unique solution, w; C, which has the following interpretation"

w;(x)=infJ’(,),

(3.14)
J," () Ex e -’t exp u ds +- dt,

where u is any adapted process with value in [0, 1].
(iii) w 2 Nw uniformly when e N O.
LEMMA 3.6. Under the assumptions of Theorem 3.1, assume e DA. Then:
(i) w is increasing to a function w when a NO.

(ii) w wl N
Proof ofLemma 3.6. We have

Clearly, under (3.11), w is increasing when a decreases; therefore, limo w; (x)
w (x) defines a lower semicontinuous function which also satisfies

Since w;(x)NJ2’(u) for all u, we get

(3.15) w(x)J2(),

since, when N0, for any u we have

uds +- dt

(which is eventually equal to +).
Now let

-r inf (t >= O, w (xt) >-_ J(Xt));

then w -<_ w implies w;(xt)<6(xt), for all tel0, -[.
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One can see from (3.13) that

-o,t (xs dse w,,,(xt)+ e --(w E,,,-g,)+

is a martingale. Hence, using w(xt) < g,(xt) for [0, rE[, we get

w(x) Ex e ds+e w(x.

When N0, this becomes

(3.16) w (x E[ f,, f ds + we (xtn

As for (3.9), one can see that

hence,

f
Now, since x, is quasicontinuous from the left, namely

x,^-xPx a.s. on{rE<+oO}, ast+m,

using Fatou’s lemma and the lower semicontinuity of we get

lim inf Exw (xt Ex lim inf w (xt
t t

Ew(x,).

Therefore, (3.16) becomes

and since w (x,) >_- 0(x,),

w(x)>-E,,( f ds+g,(x,<) =Jx(r),

and finally,

(3.17) w(x)>-w(x).

Now let r be any stopping time (one can assume Exr <-_ IIg’ll +f, for instance), and let v,
be the process

,,(t) 0 if < r,

u,(t) 1 if => r.

Then

(3.18) J2(v,)-Jx(r)=Ex exp l(s r) f+ ds g,(x.,.)
8 8

Now assume g, e DA.
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Then, using the Markov property, one can see that

s AO---tfi (x,+) ds,

is a martingale w.r.t. G, F,+,; therefore,

EO(x,)=E[f?exp(-s)(AO-O)(x,+) ds],
or

Bx(x) Ex[I exp ( 1--(se -’))(Ap-1--)(Xs)e ds].
Then (3.18) becomes

J (u,)-J(’r) E exp --(s -) ([-AO)(x) ds

(3.19) J (v,)-Jx(r)

Now using (3.15) and (3.17) we get

ww w +II-AI.
CorollAry 3.6. Under the assumptions o[ Theorem 3.1, we have w(x)w(x)

when 0 (and therefore w is lower semicontinuous).
Proofi Clearly, w(x) is increasing when 0. Now, from the previous lemma,

when D,

w(x)- w(x)l IIw wll + Iw (x)- w (x)l + llw wll
2l[-All+lwZ(x)- w(x)l.

Therefore, limo w(x)= w(x).
If now C, since DA is dense in C we can take

be the cost functions corresponding to ; we clearly have

IIwZ-wllll-ll, IIw-wllll-ll.
Therefore,

Iw(x)- w(x)l llw- wZll+lwZ(x)- w(x)l+llw wll.
Taking successively 0 and n , we obtain w (x)

Remark 3.2. Although this was not used in the proof of Lemma 3.6, we can show
that

w (x) if E exp u ds +- dr.

In fact, since

is a martingale,

( lffot ) IO ( lI0S ,7)[(1 )+
1 )]exp uds We(Xt)-[ exp u,d f- (w-O +-uw ds

is also a martingale.
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Therefore, taking u (t) 0 when w (Xt) < (/t(Xt), and u (t) 1 when w (Xt) ((Xt),
we have (1/e)(WE--g’)+=(1/e)UE(WE--). Hence,

[Io (lloS Edr)[f 1 0] ( 1o )w (x)=U exp +-- +exp ds w (xt

Since the first term on the right-hand side is increasing and must be bounded, we have
exp (-1/e ds)t O, and therefore, w (x) J (). We can conclude also that

w w uniformly when 0 C without 0 D, since, as in the previous corollary,

IIw wll Ilw w’" + IIw ’" wll + Ilw wll,

Ilw wll 211 11 + [Iw’ wll.
LZMMA 3.7. Under the assumptions o[ Theorem 3.1,

wC.

Proo[. We will use the discrete time analogue of our stopping time problem to
obtain the result.

Let >0, and define ym=Xa, G=Fma; then (y, G,P) define a Markov
chain with the transition probability P(x, F) P (xa F). We consider the stopping time
problem

z(x) inf (gr + (y)),

where g f. A and - is the set of G,,-stopping times with values in N.
Another way to write z(x) is the following: let

VA {r, stopping times w.r.t, the family (F,a, m ),
with values in (k A, k N)}.

Then we have, clearly,

(3.20) z(x) inf (fr + 0(x)).
V

Now, from [3c] (one can also use [12]) we can see that z is a solution of the equation

(3.21) z min {g,, g + Pz},

where Pz (x)= cb(A)z(x) by the definition of P(x, F). It can be shown that (3.21) has a
unique solution obtained by the iterations

0 k+lz 0, z min {4, g + Pz k},
and we have, by induction,

ozkzk+l{[, zkc lk.

Therefore z k (x)/ z (x), the 1.s.c., solution of (3.21) and the uniqueness is proved in [3c].
Now let us consider another iterative process. Define

O(b min {(b, g + P(b },

and
0z Og, min (g,, g + Pg,),
k+l k k, kz =Oz =min(z g+Pz ).
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We have _-> z_-> 0, ze C and, by recurrence,

/ >=z’ >=z’+l >-O, z’ e C ’qk.

Therefore, z ’ (x)Nz*(x) which is upper semicontinuous. In order to show that z*= z,
we take

Z
pO {Z, Z

pk k-1.OZ

from (3.21), we have z ’k= z, for all k. But since z-< 0, we have z’k-<_ z , for all k.
Therefore, we get z _-< z*. But since z*_-< 0, we have also z*<-_ g +Pz*, which gives
easily, for any stopping time

z*(x) <-E,[gr + $(x,)],

which would mean z *<- z. Therefore, z*= z. We conclude that z is continuous. Now
take A 2-n, and denote by z the solution of (3.21) for A 2-. Then

z’(x) inf E,[fr + O(x,)],

where

Vn {stopping times w.r.t, the family (F2--, k e N),
and taking values in (m 2-n, rn N)}.

Then, since V, + __p_ Vn, it is clear that z" is a decreasing sequence and 0 _-< z <_- z -< ,
zC.

Now any stopping time in V, (for all n), is an F, stopping time; therefore

z>=w.

Let z(x) lim, z"(x); then z is upper semicontinuous (3.22) and z _-> w.
We will show z w, which will give the lemma. We have

z" <-[Exr + ExO(x) Vr V,

and, since z" Nz,

z <=f. Exr + Exg,(x) Vr e tO V.

Let r be any F, stopping time with finite expectation (since it is enough to consider
such that E,,r <-_ K with K large enough); then r is the decreasing limit of the sequence of
F, stopping times

ri= m2-iX[(m-1)2-,<__r<m2-i]
rn>=l

(see, for example, [14]).
We have r V., and therefore

z <=fEar + Eg,(x,;).

Using the right continuity of xt and rJN r, we get

z <-_J,(r) =fExr + E,&(x).
Therefore z _<- w, and with (3.22) we have z w. Since w is 1.s.c. and z is u.s.c., we have
w continuous. 71
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LEMMA 3.8. Under the assumptions of Theorem 3.1,
(i) w / w uniformly,
(ii) v v uniformly.
Pro@ Since w (x)/ w(x) pointwise and w and w are continuous, (i) is clear.
Define v’ v-y- v. Recall that y inf 01 and v is chosen such that

We have, for any r,

and

Therefore,

-Av f f, (f f-1) and v<-0.

ExV(x,) e v(x) + Ex e-S[Av-av] ds

0v,, inf e- (f av ay) ds + e-’O(x,)

Since v N 0 and since one can assume without loss of generality that y N O, we see that it
is enough to consider those r such that

Ex e ds <= II ’11 < II0ll w <= o,

for o small enough (and the same is true for w). Then

1
(3.23) [Iv wll (1111 + Irl). I111 ,
Therefore, since v v y v and w v y v,
and we obtain (ii) from (i) and (3.23). [3

The end of the proof of Theorem 3.1 is now strictly identical to the discounted case
described in detail in [11, Chap. 1], first with w and then, by translation, with v.

Remark 3.3. Examining the proof of Theorem 3.1, one can see that instead of
fl =>/3 > 0, one can slightly generalize in assuming only fl d/x > 0. On the other hand, if
fl =>/3 > 0 and 1 => 0, the assumption (3.1) is not necessary to obtain the theorem. 73

3.4. Asymptotic behavior of II,. Let us go back to the problem II and define
v u,,- min us, which gives

(3.24) ]v =in,f E e-"t(f(xt)-a min u,,) dt +e-’c(x,)

From (2.5), we have

0 -< V,, --<c,
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and therefore

(3.25)

One can notice that

cu - A constant independent from

O=<A=<f sinceu

In the following, we will have to consider separately the cases

A<f and A=f.

THEOREM 3.2. Under the assumptions (2.1), (2.3), (3.1) and if < f, then"
(i) v --> in C, as c ,0, where

(3.26) 5(x) in,f Ex (f(x,)- A ds + c(x,)

(ii) - inf (t _-> 0, 5(xt) c(xt)) is an optimal solution for the problem (3.26).
(iii) 5 is the maximum element of the set offunctions h such that

(3.27)

heC,

h<=c,

h <=&(t)h +| &(s)(f-A)ds;
Jo

moreover,

min 0.

(iv)

f(Xs) +
A=

Ex?
when g arg min ,

(3.28)

A inf [lim inf
Ex (ft^" ]Jo f(xs) ds + c(x,,))

,.x t, Ex(rt)

Proof. Let v be the solution of -Av=f-{ such that max v= O, and define

(3.29) w g v if (- A dt + O(x,)

where 0 c v. Since v < 0, we have 0 > 0. Then we can use the results of Theorem
3.1 for this case; this immediately gives (ii) and (iii). Now let

[fow inf Ex e -at(f- A) dt + e-*$(x,)

Then from Theorem 3.1 w/ w uniformly, and we define

0 --ct(f O) or’riDv=v,-v =in.fEx e -aminu,-av dt+e- (x,

Now, since f > 0 and min u - , for o small enough, we have f- a min u 6 >
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0 and f-A _-> 8 for some 8. Therefore, it is enough to consider r such that

Hence

and

I1 11 II’ wll I1’ wll + II wit,

which gives (i) of the theorem.
Proof of (iv). min v,, 0 and v --, z7 uniformly ;mplies min f 0; therefore there

exists with f(Y)= 0. A consequence of (3.27) is that the process

f(xt) + Jo (f(x)- A ds

is a submartingale. Therefore,
rT

Since (x)N c(x) and g O, we get

Io(x t+c(x,l
h Vx, T,r.

EzT
Moreover, from the optimality of ,

(x) E, Jo (f(xt)- h) dt + c (x),

which completes the proof of (iv) when written for x .
Remark 3.4. One can also consider the case where the cost for changing the state

from x to is given by

Cx(X) + c(), (instead of c(x)).

Assume that c(x) + c (X) k > O, c 1, c2 C c2 DA. Let

c(x)=cx(x)+c(x).

With that cost, the discounted cost function will be the maximum solution of

u c (x) + inf (c() + u ()),

u e-’(t)u + e (s)(x) ds.

Now let (x) ca(x) + u (x) since c Da; we get

a N c(x) +inf a (),

as <= e-’&(t)a + Io e-S&(s)fds’



IMPULSE CONTROL PROBLEMS WITH LONG RUN AVERAGE COST 347

where f-Ace + ac2. Since

we get a problem similar to the one we have considered before.
Remark 3.5. (3.28) shows that h is the minimal "cost per cycle" when the cycle is

the period of time between two "replacements".
THEOREM 3.3. Under the assumptions of Theorem 3.2

, -inf Yx (u), (defined in (2.9)),

and the [ollowing impulse control is optimal [or the problem in (2.9):

= Vnl
(3.30)

" arg min .
Pro@ The proof is essentially identical to those of discounted impulse control

problems (see [11, Chap. 5], [3a]); therefore we give only a brief outline of it.
From the optimality of for (3.26), we have

Since ()= 0, this is also

But

Hence,

Ex Io f(Xs) ds + Ex Io f(Xs) ds + E,c(x) + Exc(x) + g(Y)

and more generally,

F_,(o f(X) ds + c(x)) + nEx(Io f(xs) ds + c(xs))
E+ nEx

when n oe; we have (see (2.10)) h J(), where is defined by (3.30).
To prove h _-<Jx(u) for any admissible control, we use the fact that

O(x)<-E, (f(x)-h) ds +c(x,)

and since 5 (x) => min O,

for u (r n, ’n),el; then we have to express Y(l) with the same kind of inequality. We
refer to [11, Chap. 5] for details.
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THEOREM 3.4. Under the assumption of Theorem 3.2, for any 0 <= 3 < f, the set of
functions w satisfying

wC,

(3.31) w<-c,

<= cb(t)w + Jo c(s)(f -6) dsW

has a maximum element ) given by

(3.32) (x) in,f E (f(x)- ) ds + c(x,)

But there is only one value o , namely, , such that # satises
min # 0.

Pro@ By the argument already used for v, we can check that, since 8 < , it is
enough to consider Nr NK large enough. Then # will be the uniform limit of the
discounted cost

w if E e-S((Xs)-)ds+e-’c(x,)

and therefore will be continuous and will be the maximum solution of (3.31). Now if
min # 0, the proof of Theorem 3.2 (iv) implies

r im inf
E o r(x)ds + c(x,r)].inf

x,r [ T$ Exr A T J
therefore, 8 =.

We now investigate some conditions on the data (namely, (t), f, c) under which
< f We will denote by g0 the unique solution of

-Ag f =fd, O DA, ming=0

(see Lemma 3.4).
THEOREM 3.5. Under the assumptions (2.1), (2.3), (3.1), and if, moreover, for any

open set E, the first hitting time r is such that

(3.33) sup Ex’ < +c,
xEE

then

(3.34) {>c} <=>
Proof. Sufficiency. If {t7 > c} Q3, let ? be the first hitting time of {5 > c}. Using the

properties of v, we have

v(x) <=Ex(f e-S(f(xs)-a man ua) ds + e-c(x)).
Since v(x)>= 0, we get

Exlo e-Sc minuds<__Ex[ e-(x) ds+e-c(x)
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Since Ex < +ee, one can go to the limit (a - 0) to get

Then by the definition of

AE<EX[fof(x)ds+ (x)].
Since EO(x)= (x)-E (f-f) ds, we get

ae <fe+ o(x).

Since c k >0, Y (such that g(Y) 0 as before) is in {O<c}; therefore, E>0 and
since go(y)= 0, we get A <

Necessity. Suppose A < f and that o N c on E. Then o satisfies

-0vC,

min o 0,

c,

o= (t)oo + o (s)(-3 as.

Going back to the proof of Theorem 3.2 (iv), we conclude that

(with the optimum obtained for r +), which would imply I , contradicting the
assumption. Therefore, {go> c}

We now investigate the case lim,0u
LEMMA 3.9. Under the assumptions (2.1), (2.3), (3.1), then

(3.35)
0

Pro@ We have seen that
the lemma is clear. (Notice that this does not involve the property (3.33) as the proof of
necessity in Theorem 3.5..)

The following result is also an easy consequence of the previous theorems"
LEMMA 3.10. Under the assumption oLemma 3.9, ithe property (3.33) is satised,

then

(.6) a =c.
ToaM 3.6. Under the assumptions (2.1), (2.3), (3.1), and imoreover, o Nc on

E, then

inf J(p),

and the policy "do nothing" is optimal.
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Proof. Under the assumptions of the theorem, go satisfies
-0v C,

min 0 0,

-0 0 I.,v (t) + (s)(-) /s,

-0

and the proof is identical to the proof of Theorem 3.3.
Remark. Of course a slightly different version of such a result is "if A f and (3.24)

is satisfied then f inf J,(u)".

4, Examples,
4.1. Jump Markov processes. LetX be a jump Markov process defined by the rate

of jump a (x) and the law of jump q(x, dy), such that

aC, a(x)n>O qx,
(4.)

?q(x, dy)g(y) C Vg bounded, measurable on E.3

The generator is given by

Let us recall the following result (from Doob [4, p. 197]).
LEMMA 4.1. Let O(x, F) be a probability transition unction (F a Borel subset oE).

Assume that there exists a measure such that (F) > 0 [or some Borel set F in , and that
there exists k > O, > 0 such that

(4.3) O(x,)>8() VcF, VxE.

Then there exists an invariant measure or 0 such that

(4.4) 0(x, r- (rl < ( (/-.
Notice that, under the assumptions of the lemma, O has only one invariant

probability measure.
LEMMA 4.2. Assume (4.1) and that q(x, satises the assumption o the previous

lemma. Then there exist constants B, and an invariant measure such that, iP(t, x, F)
is the transition unction o the lump Markov process,

(4.5) IN(t, x, F) (F) B

(As seen before, is the only invariant probability measure o(t).) Moreover, i is the
only invariant probability measure o the kernel q, then

(4. . (rl a g(axe.

Pro@ First, let us prove that, under the previous hypothesis, there is a T such that

(4.7) P(r, x, F) ’q (x, F) for some 8’ > 0,

where k is the number involved in Lemma 4.1.

It is assumed here that E is a metric compact space as before (not necessarily a finite set).
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We have, for all T, F,

P(T, x, F) _-> Px (xzk F, zk < T, z+

and the right-hand side is equal to
T

Y=I0 Pk(ds) Ivqk(x’dy)Ir-s a(y) e

if pk,, (8) P,, (z " d6), a (y) <M implies

Y >-q(x, F)" P,(r < T)" e-MT;
now

Px (r < T) 1 P (rk > T) -> 1

> T),

do’,

ExT

But a(y)>_-rt >0 for all y; therefore, Er <-k/rl. Then, if k/rtT<l, we get

Px (r < T)=> 1
k

r/T’

.e q (x,F),

hence

and (4.7) is proved.
Therefore, applying Lemma 4.1 to P(nT, x, F) we obtain that there exists an

invariant probability/x for P(T, x, F) such that

IP(n T, x, F) tx (r)l
for some 0 _-< p < 1.

The end of the proof can be done in the same way as in Theorem 4 of Freidlin [6]
using the continuity of P(t, x, F) with respect to t.

Now, we know that invariant for is equivalent to

Here, this means

x(dx)Ag(x) O VgDA.

IEl(dx)a(x)(y q(x, dy)g(y)-g(x)) 0,

i.e., a /x is invariant for q.
Since/x is the only invariant probability measure of q, and since 0 < rt --< a (x) _-< M,

we get (4.6) by normalizing a p.. VI
Therefore, the results of the previous sections can be applied.

4.2. Diffusion process with reflection. Let C (), and ={xl(x)>O}. It
will be assumed that

(4.8)

Let

isbounded and ]V[_->lonOff.

aq e C C(), i, j 1, d,
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such that

(4.9)

(4.10)

aq aii
d

Y. aii(x)ii >= a Il2 V E d,
i,i=l

biEC, i=l,d,

(4.11)
di Lipschitz functions on 0 such that

(d(x), Vck(x)) >=fl > O Vx 0.

Denote by A the operator

a 02g a Og
Ag= aii + Y bi

i,j= OXi OX i= OXi

Then it is shown by Stroock-Varadhan [13] that there exist
a unique probability measure on (fl, ) (with the notation of 2),
a process :, adapted to t, continuous, (increasing only at those times such that

xt 0), such that, for any g C2(6),

(4.12) }Exg(Xt)- g(x): E,{ Io Ag(xs) ds + (d, 7g)(x) d

THEOREM 4.1. Under the assumptions (4.8), (4.9), (4.10), (4.11)"
(i) (fl, txt, Px) is a continuous (strong) Feller process.
(ii) For any f Lp (), p > d + 1, the equations

-Au + au f, Y di
Oft

0 07l O

have a unique solution in W2,p () given by

(4.13) w(x) E Io e-’f(Xs) ds.

Proof. See Stroock-Varadhan [13] for (i) and [2] for (ii). (4.13) is a consequence of
the generalized Ito formula as in Bensoussan-Lions [2]. See also Puterman [10]. El

LEMMA 4.3. Under the assumptions of Theorem 4.1, if moreover aii is H61der
continuous, then there exists an invariant probability measure I and constants B and y
such that

IP(t, x, F)- zz (F)[ <- B e -vt,

for any Borel sub/ect ofE .
Proof. See Kogan [7]. [3

As before, this implies that is the unique invariant probability measure of 4(t).
We are now going to look at a direct proof of results such as those of 3 using partial
differential inequalities.

Beginning with the problem II of 3, we have"
THEOREM 4.2. Assume that X is the diffusion process described above with the

hypothesis of Theorem 4.1 and with c W2"’, p > d + 1. Then us is the unique solution of
the quasi-variational inequality
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(4.14)

-Aus+aUs<-f one,
Us <= Mus
(-Aus + aus -f)(us -Mus) =0,

Ou.] =0, uW’().

Proof. We will only sketch the proof, since it is an easy example of methods
developed in Bensoussan-Lions [2], [3a] (see also [11]).

Let us begin with the variational inequality, for 6 W2,p,

-Aus +aUs -< f one’

(4.15)
u_-<0,

(-Aus + aus f)(us ),

d,--x! 0 on 0, us W2,p.

From [3] and regularity results like Theorem 4.1, there is a unique solution to the
penalized equations

_Au 1+ =f, d, =0 on 07.
e

Then as in 3, Lemma 3.5, we have

1
us c=< constant, u; =< constant.

E

Then IlAu;llLp--<constant (in fact, this is true in Loo). Therefore, by estimates of
Agmon-Douglis-Nirenberg [1 ], we get that Ilu; 11.,2, <__ constant, and this allows to go to
the limit e - 0 in W2’p weakly to obtain (4.15). Uniqueness can be proved for example
by the stochastic interpretation (using the generalized Ito’s formula; see Bensoussan-
Lions [2]).

The existence of a solution of (4.14) is shown by iteration as follows"

since Mu2-1 c(x) + inf b/ha-1 () W2,p. And as for the variational inequality, one gets
W2’ estimates which are uniform w.r.t, n, allowing the limit n oo.

Again, uniqueness results from the stochastic interpretation.
THEOREM 4.3. Under the assumptions of Theorem 4.2,

lim aus h, constant,
s-0

vs us min us converges to some v in W2"p weakly when a O,
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and

(4.16)

-Av+A <=f,

(-Av + A f)(v -c) O

a.e. in,

Proof. As in 3, we have 0=< v =<c; therefore cu constant, denoted by A.
Moreover, the method used for Theorem 4.2 gives here

[IAv][L <-- constant, independent of e and a.

Therefore, v is bounded in W2’", and this allows us to go to the limit of

-Av +au<=f,

V, <= C,

(-Av, + ou, f)(v, c) O,

( 0v =0,

to obtain (4.16). [3

Remark 4.1. Extensions. The previous results can be extended to

Mu(x) C,(x)+ inf [C2()+ u ()].

But this can be reduced to the previous case by taking

a(x)=u(x)+C(x), c(x)=C(x)+C(x).

A more general case would be

Mu(x) inf [c(x, ) + u (:)].

Then the previous method is not usable, but if, for example, [c(x, )- c(y, )[ =< klx Yl
uniformly in , and if we assume that A can be put in divergence form, then we can
obtain a quasi-variational inequality when a-O, though in a weaker form (v E

H’()). 71

4.3. Spin flip process. This example is likely to be an academic one in the present
context (namely, replacement-type problems). We refer to Liggett [9] for a detailed study
of such kinds of processes.

Let S be a countable set and E {0, 1}s with the product topology. Define for u E S
and r/E E

I rt(x) if x v

1-W(x) if x-v, xES.

For u E S define A" C --> C by

Af(r/) =/(rt) -f(rt)



IMPULSE CONTROL PROBLEMS WITH LONG RUN AVERAGE COST 355

and

Ca(E) {f C,

Given c(x, r/)->_O, continuous and bounded on S E and defining A on CI(E) by

Af(rt) E c(x, n)Axf(rl),

one can show (see [9]) that A generates a unique Markov semigroup, at least when

(4.17) {c(x, rl), x e S} is a bounded set in CI(E).

Let

c(u) inf [c(u, n) + c(u,

c inf c(v),

M sup E IIA c (x, n)ll.

Then (see [9]):
THEOREM 4.4. Assume that M-<supx IIIc(x)lll< +o. Then the closure of A

generates a unique Markov semigroup ok(t) and, ifM < c, then the correspondingprocesses
are ergodic with unique invariant probability measure tx on E and

(t)g- I g dl

Therefore, the results of 3 can be applied.

Appendix. Invariant measures of Feller processes. Let &(t) be a semigroup on
C(E), corresponding to a transition probability P(t, x, F), F B(E), the Borel tr-field
of E compact metric space.

LEMMA A.1. Any weak limit of the sequence Qn(F) 1/n o P(t, x, F) dt (which is
relatively compact in the space of measures in (E, B(E)) since E is compact), is an
invariant probability measure ]’or & (t).

Proof. Recalling that

tx tx : IEAfdlx 0 fDA

(which is a consequence of the Hille-Yoshida theorem), we have, for any f DA,

AfdO l--[ck(n)g-g
n

(since ck(n)g g +o ck(t)Ag dt). Therefore, when n oo, the weak convergence of O
to/x gives z Afd/x 0, which gives the result. El
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Remark. One can also take

lion fEdq(x)P(t,x, F)dt
n

for any probability measure q on E.
LEMMA A.2. Assume that ok(t) has an invariant probability measure tx such that

(A1) IPx (xt E r) -/. (r)l <= e

for some constants B > 0, 3’ > 0. Then there exist Ba, ya > 0 such that, for any bounded
measurable functions f on E,

[b(t)f- IEfd/x] B1 e-3’lt[[f[[.

Proof. (See, for example, Friedlin [6]). It is enough to take f such that II ll 1;let

i-1},/, y,->:(y)-->
n n

Then

+" /P 1
4)(t)f(x)- Y. (t, X, ’Yi) <--

i=-nn n

fdl, E Iu "Y <--
-nn n

and

+
<- ck(t)f- E i-p(t, x, "Yi)

n

+ -P(t, X, i)- E
n n -nn

Idb "}/ I fdtx

Therefore, by (A1),

4)(t)f f&x <--+ 2nB e
n

Taking n---e vt/2, we get the result.
LEMMA A.3. Assuming, (A1), a necessary and sucient condition for the equation

-Au f (f E C)

to have a solution in DA is that

Proof. Necessity (which does not use A1). If -Au f has a solution in DA, then
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for any/x invariant by b(t)

I fdl I Au dtz I lim
1

,o -;(4,(t)u u)

-lim -1 1 [b (t)u -u]
t+0

=-lim1-[Ito b(t)u dlx -I u dlx]
--0.

Sufficiency. Assume fdx 0 and (A1). Let us take

(A2) u(x) Io (t)f(x) dt.

Since by (A1)][qb(t)fll<=B1 e-"llf[I, (A2)is well defined and, since the integral is
uniformly convergent, u(x) is continuous. Then we have

cb(hlu(x) Io d(h)qb(tlf(x) dt

fo qb (t + h)f(x) dt

Ih 4(tl(x) clt.

This implies
h

qb(h)u(x)- u(x)= -Jo qb(t)f(x) dt.

Since f C, c(t)f(x) is continuous w.r.t, t; therefore (l/h) oh cb(t)f(x) dt f(x) when
h 0. Therefore -Au =f. 71

COROLLARY. U(X)= qb(t)f(x) dt is a solution of
-Au =f.

LEMMA A.4. Under the assumption (A1), any two solutions of -Au =f, when
fdl O, differ from each other only by a constant.

Proof. It is enough to prove that if Au 0, then u constant. But Au 0 implies

k(t)u(x) u(x), for any t.

Then by (1), k(t)u - u dl when -* oo. Therefore, u(x) u d constant. [-!
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BOUNDARY CONTROLLABILITY OF HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATIONS*

TUNC GEVECI

Abstract. It is shown that for a large class of first-order hyperbolic systems with constant coefficients,
including strictly hyperbolic or symmetric systems, and where the boundary conditions result in well-posed
mixed initial-boundary value problems, any initial state Uo s H1(f) can be steered by boundary control to any
final state ur HI(f) at any time T > To (where lq c In, n => 2, is a bounded domain with smooth boundary
and To depends on the system and on f) provided that all rays escape to infinity.

1. Introduction. Russell [17] has obtained fairly comprehensive results on the
boundary controllability of first-order symmetric hyperbolic systems in one space
variable. A comparable theory for such systems in more than one space variable has yet
to be developed. Some results are available for the wave equation 16], 17] and similar
equations [5]. Clarke has obtained approximate controllability results for symmetric
hyperbolic systems [2], and Littman has obtained exact controllability results for strictly
hyperbolic systems with constant coefficients [9]. Our result is comparable to Littman’s
results, but the method is entirely different.

We use a technique due to Russell 16] and obtain controllability for a large class of
homogeneous first-order hyperbolic systems with constant coefficients, including
strictly hyperbolic or symmetric systems, subject to boundary conditions which result in
well-posed mixed initial-boundary value problems.

It is shown that any initial state uoeHa(f) can be steered to any final state
/AT HI([) at any time T> To, where To> 0 depends on the system and on D,
provided that all rays escape to infinity. We do not have to assume nonzero speeds of
propagation, as is required in Littman’s method [9].

In 2 we state the controllability result and discuss our hypotheses. In 3 we prove
a theorem along the lines of 16]. We give a short and almost self-contained proof of the
crucial lemma (Lemma 3.1) on the decay of the Ha-norm of the restriction to compact
sets of the solution of the Cauchy problem with compactly supported H initial data.
We hope that the inclusion of the proof will be convenient for the reader, since at
present such information can be extracted only from long, technical papers on the
theory of hyperbolic differential equations [1], [10], [13]. In 4 we discuss possible
extensions to nonhomogeneous equations with variable coefficients.

2. Statement of the controllability theorem and the basic hypotheses. We
consider a mixed initial-boundary value problem

(2.1)

Ou Ou
O--/(t, x)= A-xi (t, x),

/’=1
(t, x)e [0, T]xO,

M(x)u(t,x)=g(t,x), (t, x)e [0, T]xal,

u (0, x) Uo(X), x f,

where x (x a, x 2, x n) s [n (n >= 2), f c !I is a bounded domain with smooth (say,
C) boundary 0f; u(t, x) and Uo(X) are Ck-valued functions; g(t, x) is a Ct-valued

* Received by the editors November 8, 1979, and in revised form June 19, 1980. This work was partially
supported by a grant from Control Data Corporation.

? Mathematics Division, National Research Institute for Mathematical Sciences of the CSIR, P.O. Box
395, Pretoria, South Africa.
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function; each A/., ] 1, 2,..., n, is a k x k matrix with complex entries; and M(x) is a
smooth, x k matrix-valued function defined on Ol-l.

We shall first state and discuss our hypotheses concerning (2.1).
(H.1) There exists a smooth invertible k x k matrix-valued function F(), :=

(SOl, 2, ,) e N, \0, homogeneous of degree 0 in , such that, for each e Nn \0,

(2.2) F-I()A()F(") =diag (h1(), h2(:),’’’, hk ()),

where A()= /.--a /.A/. and the eigenvalues h/.(), j-1, 2,..., k of A(:) are real
smooth functions of s and are homogeneous of degree 1.

Hypothesis (H.1) ensures that the Cauchy problem

--0-;
u Ou

O +x) Z, a/.-;-7(t, x), (t, x)
/’=1 OX"

(2.3)
u (0, x) uo(x), x

leads to a strongly continuous group in Hom (H (")) for any s e , and is satisfied, for
example, if the system is symmetric or strictly hyperbolic (i.e., if the eigenvalues /. (:),
] 1, 2,.. , k of A() are real and distinct for e 0,\0) [18].

(H.2) O’mi := min [VA/.()[ > 0,
/’=1,...,k

where

is the gradient of
(H.2) ensures that the decay property (Lemma 3.1) holds, and corresponds to the

geometric condition, mentioned in the Introduction, that all rays escape to infinity. A
ray corresponding to A/.() is given by

x(t; h/.(’)) Xo + (t- t0)VA/.(:), e ,
for some to e and x0 e 0", so that the condition

lim Ix(t; A/.(())J ,
for each h/.(:), " ,\0, is equivalent to (H.2) since 7hi(), 1, 2,. , k, are smooth
functions, homogeneous of degree 0 in .

If

G:=A 0

j=l OX j’

is assumed to be elliptic, i.e., each hi(S) 0, $ e ’0, ] 1, 2,..., k, then (H.2) is

automatically satisfied, since each hi(S) is homogeneous of degree i in and we have the
Euler identity

2=1 ()=h(), ] 1,..., k.

Littman has to assume ellipticity in his paper [9]. The importance of (H.2) instead of the
ellipticity of G as far as the asymptotic behavior of the solutions of (2.3) is concerned is
discussed in a recent paper by Rauch [13].
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The important special case of linearized shallow-water equations [11],

where 0< U2+ V2< (I), satisfies (H.1) and (H.2). If we denote the variables dual to x
and y by : and r, respectively, the eigenvalues of

A(, r/) -"  ii00 1
are

; (, n) -(u + n v),
2,,(, n) -(u + n v) + c4+ n

It is readily seen that

]VAI(’, n)l2- UZ+ V2>0,

Ia,3(, 1 ->- (u + v ,/u + v
> o,

for (2_[_ 72 1, whereas A 1( ") may be zero.
(H.3) The matrices Aj(/" 1, 2, , n) and M(x) are such that the mixed problem

(2.1) can have at most one strong solution if UoE L2() and g E L2([0,
For the precise definition of strong solutions and for the discussion of conditions

under which (H.3) is valid, we refer the reader to [4], [6], [12], [14]. We emphasize that
(H.3) is only a uniqueness hypothesis, and make the following remark concerning the
way in which (H.3) will be utilized.

Remark 2.1. Assume u solves the Cauchy problem (2.3) with uoHl(Rn). Since
U C(,;HI(n)) by (H.1), v, the restriction of u to [0, T] fl, is in C([0, T); HI()),
so that we can define g(t, .) as the trace of M(.)v(t, .) on 01". We have that g
C([0, r]; H1/2(0)) since M(.) is smooth. Let Vo Uo]cHl(fl). Afortiori, v is a
strong solution of the mixed problem (2.1) with L2-data {Vo, g}, and the uniqueness
hypothesis (H.3) ensures that it is the unique solution of (2.1) corresponding to the data
{vo, g}.

We can now state the controllability theorem.
THEOREM 2.1. If (H.1), (H.2) and (H.3) are valid and To > 0 is sufficiently large

(To-- To(A1, A2,’", An, 1")), then for any T> To, uoEHa(l’) and uH(l’) there
exists g C([0, T]; H/:(Of)) such that the solution of the mixed problem (2.1) with
initial condition Uo and boundary data g satisfies u(T, )= u-(. ).

We shall prove Theorem 2.1 in the next section.

3. Proof of the controllability theorem. We first present the lemma on the decay
of the Hi-norm.

LEMMA 3.1. Under (H.1) and (H.2), and given q6 C (n) there exists T’o >
O(T’o T’o(A1, A2," ", An, q)) and, for IT[> T), Cs(T)>0 (Cs(T)=C(T;A1,.
An, o), s ) such that

(3.1) lim C(T) 0
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and for any uo6HS(R") with q(x)= 1 for all x in a neighborhood of supp (Uo), the
solution u of the Cauchy problem,

(3.2)

satisfies
(3.3)

for IT-tol > T’o.

Out, x) AJ-x (t, x), (t, x)
Ot i=1

U(to, x)= Uo(X), x ",

Ilq (,)u (T,.)llnn G(T-to)lluoll.(

Proof. We can assume to 0. We can also assume that UoC ("), since for
general Uo H (l") with supp (Uo) c int {x " q(x) 1} we can find, by means of
regularization, a sequence u") Co (R"), with supp (u")) cint {x n. q(x) 1}, j
1, 2,..., and lim u)= Uo in H(n). Since the Cauchy problem is well-posed in
HS(n), lim u(i)(t, .)=u(t, .) in H() for each t, u (i) being the solution cor-
responding to u). Thus inequality (3.3) for ug) C (R") yields the inequality for Uo.

Denote the Fourier transform of u(t, x) with respect to x by t2(t, ’) and the Fourier
transform of Uo(X) by t2o(), : ,. From (3.2) (with to 0) we obtain

O--(t, )= iA()g(t, ), ,
(3.4)

in the notation of 2. Let iT(t, )= F-l(sc)t(t, $), so that, by (3.4),

O--(t, sc) iF- (sC)A()u(t, )

(3.5) iF-()A(sC)F()v(t, )
iA(:)tT(t, ),

where A(sX) := diag (hl(), h2(:),’’’, hk()) by (H.1). From (3.5) we obtain

(t, ) eitA(i)(O, ),
and therefore

(3.6) g(t, ’)= F(:) eitA()F-l()to(), ,\0.

From (3.6) we obtain formally, with (x, :) denoting Yin=l iX i,

1 i(x,) itA()u(t, x)=
(2r)

e r() e r-X()ao() d

1 f(I i(x_y,, irA(,) r_(3.7)
(2)

e F(f) e (f)uo(y) dy df

l J(y’(x-,,e)F()eU(e)F-x()d4uo(y)dy"
This formal calculation is justified when the integrals are interpreted as oscillatory
integrals, as defined by HSrmander [3 ]. In our case, corresponding to the equations with
constant coefficients, the meaning of (3.7) in terms of oscillatory integrals coincides, of
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course, with its meaning as the convolution of the distribution x (F(’) ei’A(e)F-l(:))
(-1 denoting the inverse Fourier transform) with Uo.

We have thus represented the distribution kernel R (t; x, y), which is the Riemann
function corresponding to the Cauchy problem (3.2) (to 0), by the oscillatory integral

1)n ei<X-Y’e>F() eitA(g)F-l() d.(3.8) R(t; x, Y)
(2rr

From (3.7) and (3.8), since o(x)= 1 for x supp (Uo), we obtain

(3.9) o(x)u(t, x)= I o(x)q(y)R(t; x, y)uo(y) dy.

Now, making the change of variable :’ t’, we have

1 I i((x --y)/t,’) iA(’)(3.10) R(t; x, y)= (27r)n[tl
e F(s’) e F-I(:’) ds’,

since A() diag (h 1(), h 1(), /.k ()) is homogeneous of degree 1 in " and F() is
homogeneous of degree 0 in .

Letting

(3.11) R (x)
(27r),

e i(x’ e>F() eiA(gF-() d,

by (3.9) and (3.10) we have

(3.12) o(x)u(t, x)=- otx)o(y)R .x-t y uo(y) dy.

Assuming for the moment that R (x) is infinitely differentiable for Ix[ < O’min (see (H.2)),
(3.12) yields

(3.13) II0 (’)u(t,"

for any s , and [tl> T6 := diam (supp )/min, since we then have [(x--y)/t[<min
for x, y supp . (3.3) is, then, a special case of (3.13).

Since A()=diag (AI(), A(),..., h()), to show that R(x) is C in [X]<gmin
we need to know that an oscillatory integral of the form

(3.14) A(x) ei((’e>+(ea() d,

where a () is a (scalar) smooth function of , homogeneous of degree 0, and h () is one
of the eigenvalues of A() (homogeneous of degree 1 in ), is C for

IXl<mi( min IVI()I).
]=1,...,k

This is concluded immediately by appealing to Proposition 1.2.3 in H6rmander’s paper
[3], since (x, )= {x, }+ I () has gradient Ve (x, )= x + VI (), and Ve (x, ) 0 if

and
We have thus established Lemma 3.1, and can now prove the following null-

controllability result.
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LEMMA 3.2. Under (H.1), (H.2) and (H.3) we have null controllability for T> To,
To To(A 1,’", A,, q), in the sense that"

(A) If uoe Hl(lq), there exists g C([0, T]; H1/2(0)) such that the solution o]the
initial-boundary value problem (2.1) with data {Uo, g}, satisfies u(T, x)=0 a.e. in f.

(A’) I" ur H(f), there exists g C([0, T]; H/2(c3)) such that the solution u of
(2.1) with Uo(X) 0 a.e. in I), and boundary data g satisfies u (T, x) UT(X) a.e. in f.

We shall prove only (A). The reader will then readily appreciate that (A’) can be
proved similarly, since in the statement of Lemma 3.1 (T-to) may be positive or
negative. This, in turn, is tied up with the fact that the Cauchy problem (2.3) leads not
only to a semigroup but to a group.

Proof o]:Lemma 3.2(A). Since 01q is smooth and lq is bounded, there is a compact
set K containing fi in its interior and a continuous linear extension operator p" Hi(D.)-
HI(") such that (pu)(x)= u(x) a.e. in f and supp (pu)c K for each u Hl(lq) [8].

In particular, there exists a constant C(f)> 0 such that

(3.15) IlpullHl C(KDIlulIHI,
for each u

Let us fix two functions q, 0 in C() such that (x)= 1 for each x in a
neighborhood of K, 0(x) 1 for x D, and supp K, and choose T > 0 in accor-
dance with Lemma 3.1. (T T (A ,. ., A,, q) is therefore T (A 1, A,. ., A, f).)
We then define LT’HI(Iq)HI(Iq) for T> T as follows.

Given u0 HI(Iq), determine w as the solution of the Cauchy problem

(3.16)

Ow
(t, x)- Gw(t, x) O, (t, x) ,+1,

0t

w (0, x) (puo)(x), x "
(G Y.."I=1 A/O/Ox i, and the equalities hold for almost all x).

We then determine z as the solution of the Cauchy problem

(3.17)

az
(t, x)- Gz(t, x) 0,

Ot

z(T,x)=O(x)w(T,x),

(t,x)"+a,

Then

(LTu0)(’) := z (0,.)In
By applying Lemma 3.1 to (3.16) we obtain, using (3.15),

I1 (")w T,. )11-" <= C(T)llpuoll,_,<
<-_ C(T)C(f)lluollu,,

and therefore

(3.19) lid:(" )w(T, ")IIH<- C(T)C(mC(O)lluoll.l).
By applying Lemma 3.1 to (3.17) we obtain

(3.20) I1(" )z (o,.)11.<.>_-< c(-T)II0(" )w (T,.)liNd<n-).

Combining (3.19) and (3.20), and letting C’(T)= C(T)C(-T)C(f)C(O), we have

<C(3.2a) IIw(’)z(0,’)ll--- (T)lluoll..,
with limT-oo Cr(T) 0.
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Since q (x) 1 for x , by the definition of LT- (3.18) and by (3.21), if T > T is
sufficiently large, say, T > To, we have

(3.22) litUollHn --< T)II Uoll.
with 0<a(T)<l, for all uoeH(f) (notice that we indeed have To
To(A1,"’,An, O)).

By (3.22), for T> To, I-Lr’HI()-HI() has a bounded inverse. Given
uoeH(l), determine to e H(D) such that (I-Lr)to Uo.

From the definition of Lr, replacing Uo by o in (3.16), we see that v := w-z
satisfies

O---v (t, x)- Gv(t, x) O,
Ot

(t,x)n+l,

(3.23) v(T, x) O, x fl,

v(O, x)= (I-L)ao(X)= Uo(X), x fl,

since q(x) 1, 4t(x) 1 for x I), and (pu)(x) u(x) a.e. in fl, for all u HI().
We now let u rico, 7-1a, and let g(t,. be the trace of M(. )v(t, on 0fl. By (H.3)

(see Remark 2.1), u is the unique solution of the initial-boundary value problem (2.1)
with initial value Uo and boundary data g, and furthermore u (T, x) 0, x

We have thus established Lemma 3.2, which immediately yields the controllability
theorem, Theorem 2.1.

Proof of Theorem 2.1. By Lemma 3.2(A), if T>To, there exists
C([0, T]; H1/2(O)) such that v determined by

--(t, x)- Gv(t, x) O, (t, x) [0, T] fl,
Ot

(3.24) M(x)v(t,x)=gl(t,x), (t, x) [0, T] 0f,

v(O, x)= Uo(X), x f

satisfies v(T, x) 0, x e .
By Lemma 3.2(A’), there exists g2 C([0, T]; H/2(OI’)) such that w determined

by

Ow
(t, x)- Gw(t, x) 0,

Ot
(t, x) [0, T],

(3.25) M(x)w(t,x)=g2(t,x), (t, x)6 [0, T]OO,

w(0, x) =0, xfl

satisfies w (T, x) uT-(x), x
Setting u v + w and g gl + g2, we see from (3.24) and (3.25) that g is as

required.
Remark 2.2. We could have assumed the initial and final values to be in H (l)) for

any s > 1/2, since the decay result is valid in any H -norm and the trace theorem can be
applied for s > 1/2.

4. Remarks concerning equations with variable coefficients. Let us consider the
generalization of the mixed initial-boundary value problem (2.1) to nonhomogeneous
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systems with variable coefficients,

(4.1)
Ou

(t, x) ,a At(x)
Ox

(t, x)+ B(x)u(t, x)

where At, ] 1, 2,. ., n, and B are C matrix-valued functions with

Ai(x)=AiO (a constant matrix), ] 1, 2,. n,

B(x) 0,

for Ix I> R, for some R > 0.
Clearly, if the uniqueness of the solution of the mixed problem (H.3) is assumed,

and if the decay result (Lemma 3.1) is valid with (2.1) replaced by (4.1), the control-
lability theorem (Theorem 2.1) holds in the more general case.

It is not to be expected, however, that we may be able to obtain a decay result for
the perturbed system (4.1) under general hypotheses comparable to (H.1) and (H.2).
Far reaching results concerning the asymptotic behaviour of the solution of the Cauchy
problem for the perturbed system have been obtained by Rauch [13]. With a hyper-
bolicity assumption generalizing (H.1), an assumption generalizing (H.2) and guaran-
teeing that the singularities of the Riemann matrix are not trapped in any compact set,
and the assumption that the group associated with the Cauchy problem is contractive in
a space H (which is L2([n) equipped with an inner product inducing a norm equivalent
to the usual norm), Rauch proves the following result:

There exist at most finitely many wi , wi 0,/’ 1, 2, , m, for which there
exists H, 0, with G iwiq, where

G=Ai/Bo
i=1

The span H of such eigenfunctions is finite dimensional. Let Ho be the closure of the
kernel of G. Then, H _I_H (j # k, j, k 0, i,..., m). Let H H0 Ha" H,, be
the space of bound states, using the terminology of scattering theory, and let
H be the space of scattering states. Denoting the propagator associated with the
Cauchy problem by P(t), the projection onto H by ri, j=0, I,..., m, and the
projection onto H by vr, we have

(4.2) P(t)q P(t)(rrsq + rroO +
i=1

and
C

11 ,
logr

for any H with supp q c B, a ball in N". Hs and Hb are invariant under P(t).
This result shows clearly that the validity of a decay result is tied up with the

nonexistence of eigenvalues and triviality of the kernel of G. Incidentally, Lemma 3.1
shows that, in the homogeneous constant-coefficient case that we have considered,
Hb {0}. Direct determination of Hb is difficult and general results are not available. In
classical scattering theory perturbations of the Laplacian are examined in detail. The
following sample result illustrates what can happen even in the case of apparently trivial
perturbations:

Assume V C (") (n 1, 2), V <-0 and that V is not identically zero. For any
A > 0, -A + V has eigenvalues (even though -A has none) [15, p. 100].
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Lax and Phillips have considered symmetric systems where G is elliptic [7]. They
assume a unique continuation property which eliminates nonzero eigenvalues but does
not guarantee the triviality of the kernel.

Let us finally remark that Rauch’s result enables us to determine a subspace of
controllable states, namely those q Ha(D,) for which pC Hs (p being the extension
operator of 3). Since Hs is invariant under P(t), the proof of controllability holds for
initial and final states having extensions in the space of scattering states.

5. Conclusion. We have extended and clarified the scope of the technique used by
Russell in [16]. At the same time, the use of the concept of oscillatory integrals has
simplified the implementation of the technique.

The method is based on the local decay property of the solution of the Cauchy
problem and the discussion concerning the case of variable cofficients establishes the
link with scattering theory. The only aspect of the mixed initial-boundary value
problem that was needed was the uniqueness of the solution. In order to obtain results
for general L2-data and results concerning the case when control is exercised only on
part of the boundary, the mixed problem itself has to be understood better in the case of
more than one space dimension, in a way that is comparable to the case of one space
dimension 17].
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GLOBAL AND ASYMPTOTIC CONVERGENCE RATE ESTIMATES FOR
A CLASS OF PROJECTED GRADIENT PROCESSES*

J. C. DUNN5.

Abstract. Projected gradient processes of the Goldstein-Levitin-Polyak type are considered for con-
strained minimization problems, minn F, with f a convex set in a Hilbert space X and F:X- [1 a
differentiable functional. Global and local convergence theorems are established for a large class of these
processes, including those generated with implicit step length rules proposed by Bertsekas and Goldstein. In
this analysis, traditional uniform strong positivity conditions on the Hessian V2F are replaced by weaker
pseudoconvexity conditions and growth conditions on F. When F has a unique minimizer in 1, convergence
rates are shown to depend on how rapidly the function 3’(0-)= inf {r F(x)-F()]x f, IIx- 11>- } grows
with increasing o-> 0. If 3"(0")=> B0- for some B > 0, the processes {F,} in question converge to inf F like
O(n-"/("-2)), linearly, superlinearly, or in finitely many steps according to whether u > 2, u 2, 2 > u > 1, or
u 1. The growth properties of 3,(0") are in turn dependent upon the structure of F, l) and the norm on X.
Close connections also exist here with a hierarchy of extremal types constructed in a recent study of
conditional gradient algorithms, and with long-standing notions of singularity for constrained optimal control
problems and unconstrained minimization problems on Rn.

Introduction. The projected gradient methods of Goldstein [1] and Levitin and
Polyak [2] are useful successive approximation techniques for certain constrained
minimization problems of the general form

(1.1) min F(x),

with f a nonempty closed convex subset of a real Hilbert space X, and F"X [1 a
Fr6chet differentiable functional. These methods generate iterate sequences {xn} in D.
via the simple recursion

(1.2) Xn+l P(xn -a,VFn), Xo f,

where TFn is the gradient of F at x,, P(z) is the unique projection of z X into f, i.e.,
the unique solution of

(1.3) I[z -P(z)[[ min IIz y[[,

and where {an } is a sequence of nonnegative step lengths related in some suitable way to

xn and/or the iteration index n. The scheme (1.2) is embedded in a still larger class of
relaxed projected gradient methods,

(1.4) Xn+l--Xn-b(.on(P(xn-Ol.nVn)-Xn), Xof, wne[0, 1],

treated by Demyanov and Rubinov in [3]. In a general way, (1.4) resembles the tangent
manifold projection process of Rosen [4], [5] and the geodesic projection method of
Luenberger [6]; all three methods reduce to classical steepest descent when I)-X;
however, no one method contains any other for arbitrary I)cX. Only the basic
recursion (1.2) is considered here.

Goldstein and Levitin and Polyak apparently were the first to formulate Hilbert
space convergence theorems for (1.2) with simple open loop step length rules of the
threshold type, viz.,

(1.5) O<a <-an<-_a,

* Received by the editors August 9, 1979. This investigation was supported by the National Science
Foundation under Research Grant ENG 78-03385.

5" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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with a "sufficiently small." In particular, it is shown in [2] that Fn-infa F O(n-1),
provided that D, is closed convex and bounded, F is convex and bounded below on
VF is Lipschitz continuous on 13, and

2
(1.6) O<a <=an<-a <-,
where L is a Lipschitz constant for VF. Moreover, if F is twice continuously differenti-
able with a Hessian V2F satisfying

(1.7) maxl[yll2 (VF(x)y, y) _-> min[lyll2

for some/-min > 0, all y e X and all x in D,, then F has a unique minimizer , and the
iterates of (1.2) converge linearly to ’, provided

(1.8a) cn =a

with

2
(1.8b) 0<a<--

L

and L _->/,/,max. Unfortunately, in order to implement the threshold rule (1.6) or (1.8) one
must first have a value for the Lipschitz constant L, and this may present serious
difficulties in practice (see Polak’s comments in [7]). Open loop step length rules of the
type

(1.9a) lim a O,

(1.9b) an=
n=0

require no Lipschitz constants, but even when (1.7) holds, the corresponding sequences
{xn} generated by (1.2) converge slowly [8], [9], [10]. The implicit line minimization rule
treated in 13] and [11], namely

(1.10) F(P(xn anVFn)) min F(P(xn aVFn)),
or>0

also requires no Lipschitz constants and in the unconstrained case, f X, is known to

produce linearly convergent steepest descent sequences when (1.7) is satisfied [12],
[13]; however, (1.10) has serious practical shortcomings of its own. Bertsekas
elaborates on this last point in [14], and proposes an alternative implicit rule of a type
devised originally by Armijo [15] and Goldstein [16] for unconstrained steepest
descent. Goldstein investigates a closely related implicit scheme for (1.2) in [17]. When
f is a Cartesian product of Euclidean hypercubes or balls (a common circumstance in
optimal control problems [3][14]) the projection operation in (1.3) is virtually trivial
and the Bertsekas-Armijo and Goldstein rules are then readily implemented for (1.2).

In Bertsekas’ generalized Armijo rule, the step length cn is determined by the
condition

(1.11a) an
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with m. the least nonnegative integer rn satisfying

(1.11b) F. -F(P(x. (B.)’a.VF.)) >-_ 6.(VF., x.
where a., /3., and 8. are specified numbers in (0. ), (0. 1) and (0, 1), respectively.
Actually, a.,/3, and 8. are set equal to constants for all n in the original version of (1.11)
[14]; however, for reasons which will become apparent later on, certain practical
advantages may accrue from allowing these parameters to vary during the course of the
iteration. In the analogous Goldstein version of (1.11), the given numbers a. and 8. fall
in (0, ) and (0, 1/2] respectively. One puts a. a. if

(1.12a) F. F(P(x. a.VF. )) >= 8. (VF., x. P(x. a.VF. )),

or else chooses any a. (0, a.) satisfying

(1.12b)
(1-6.)(VF., x.-P(x.-a.VFn)>>=F.-F(P(x.

>_- 8. (VF., x. P(x. a.VF. )).

Both rules are feasible (i.e., (1.11) and (1.12) actually have solutions a, (0, a,]) at a
general vector x, in a general convex set 1), without continuity restrictions on VF. These
points are developed at greater length in 2.

By construction, the projected gradient sequences {x,} obtained from Bertsekas’
rule (1.11) or Goldstein’s rule (1.12) satisfy the condition

(1.13)

with 8. >0 for all n->0, and this is also true of the threshold rule (1.6) when VF is
globally Lipschitz continuous on ft. In all cases where (1.2) and (1.3) hold, there are two
simple prerequisites for "fast" convergence of the sequence {F.}, namely, that

(1.14a) 8.>=6

and

(1.14b) a.>-a
for some positive numbers 8 and a, and all n _-> 0. It is shown in 3 that increasing values
of the product 8a are associated with more rapidly convergent upper bounds on

F.- infn F; even more specifically, if one puts

(1.15 a) 8 lim inf 8.

and

(1.15b) a lim inf a.,

then larger values of the product (Sa) are associated with better asymptotic con-
vergence rates for certain upper bounds on F, -infa F. Condition (1.14b) is explicit in
the threshold rule (1.6), but (1.14a) must be deduced from (1.14b) and (1.6); this is
indeed possible (see 2). On the other hand, for (1.11) and (1.12) one chooses the
parameters 8, in accordance with (1.14a) and then tries to deduce (1.14b). When VF is
Lipschitz continuous on 1), and when a, a > 0,/3, fl (0, 1) and 8, 8 (0, 1) for all
n, Bertsekas establishes (1.14b) with

2/(1-8)}a min a,
L
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where L is any positive Lipschitz constant for VF. His argument works equally well for
variable parameters 6n and an, and in this case one readily obtains (1.14b) with

(1.16) a =min a,
L

where a is now a positive lower bound on the upper thresholds an, fl is a positive lower
bound on fin and d [6, 1) is an upper bound on 6n. Similarly, for the Goldstein rule it is
shown in 2 that (1.14b) holds with

(1.17) a >-min {a,6}.
From (1.16) and (1.17) it is just a short step to analogous lower bounds on limn_ inf an
in (1.15b), except that now a,/3, d and 6 are replaced by limn_ inf an, limn- inf fin,
limn_ sup 6n and limn_ inf an respectively, and the global Lipschitz constant L is
replaced by a limit of local Lipschitz norms.

According to what has just been said, there are (at least) three different step length
rules capable of generating projected gradient sequences satisfying (1.13) and (1.14)
under reasonable continuity conditions on VF. In all such cases, it turns out that the
convergence properties of {xn } and {Fn } depend mainly on the quantities a, 6, ao and 60
and the local structure of lq and F near minimizers of F in lq. This justifies the broader
viewpoint adopted in 4, whose principal convergence theorems are formulated for the
general class of projected gradient sequences {xn } satisfying (1.2), (1.3) and (1.14), with
no explicit reference to specifics of the method used to generate the step lengths an, or to
global Lipschitz continuity conditions on VF. When F is bounded below and continu-
ously differentiable on the closed convex set fl, it is shown in Theorem 3.1 that all such
sequences {xn} have the descent property relative to F, and every subsequential limit
point : of {xn} is an extremal of F in fl; i.e.,

(1.18) (VF(), x s) >-_ O

for all x lq. This extends Bertsekas’ result in [14] for constant parameter sequences
an a,/n fl and 6n 6 (in particular, Theorem 4.1 applies to the case, an -, which
is not susceptible to Bertsekas’ method of proof). At this level of generality, Fn may
converge to some limit f>inf F and {xn} need not converge at all. However, it is
possible to say much more if F satisfies certain conditions of the pseudoconvexity type,
e.g.,

F(x)-F(y) > 0 =), (VF(x), x y) _-> K(F(x)-F(y))

for some : e (0, 1 and all x, y e D,, or the still weaker requirement,

(1.19) inf inf
(VF(x), x y)

> 0
xa ya F(x)-F(y)

o-F(x)>inft F F(x)>F(y)

for all tr in F(f) with cr > infa F. When (1.19) holds, F is pseudoconvex and therefore
strictly quasiconvex on fl [18]; hence the level sets of F in fl are convex and every
extremal of F in ll is automatically a global minimizer of F in D,. Moreover, it is shown
in Theorem 4.2 that {Fn} always converges to infa F, that Fn -inf F O(n -1) if {x,} is
bounded, and that Fn -infa F o(n -1) if {xn} converges. Still more can be said when F
has a unique minimizer :; here everything depends on how fast F(x) grows as x moves
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away from : within fl. If the uniform growth condition

(1.20) 0<y(tr)= inf F(x)-F()

holds for o->0, then {x,} converges to sc and consequently F,-infnF=o(n-).
More specifically, if 3’(’ satisfies

(1.21) li+( inf Yo.())>0
s->0 s>cr>0

for some > 0, then: (i) F, infn F O(n-/<-), or (ii) F infn F O(A") for some
A [0, 1), or (iii) F, infn F for n sufficiently large, according to whether (i) u > 2, or (ii)
2 => > 1, or (iii) t, 1. Furthermore, if TF is locally Lipschitz continuous near , then
{x} converges superlinearly to sc for 1<u<2. These results are established in
Theorems 4.3, 4.4 and 4.5.

Close connections exist between the growth laws (1:20)-(1.21) and a hierarchy of
extremal types constructed in recent investigations of the conditional gradient method
[19], [20]. Convergence rates for conditional gradient sequences depend on how fast
the local linear approximation (F(), to F grows near ’; however, the counterparts
of (1.20)-(1.21) for (7F(sC), are purely manifestations of "curvature" in the boundary
of lq at sc. On the other hand, for projected gradient Sequences it is the growth rate of
F(. itself that matters, and (1.20)-(1.21) is jointly dependent on the local structure of
Ol) and F near sc. This difference between the two methods has important implications
when the minimizers of F are singular. For projected gradient sequences, {F,} may
converge linearly to F() even though is singular to first order (i.e., (F(’),.) has
multiple minimizers [9]); however, under the same circumstances an example of
Cannon and Cullum [21] shows that one may expect no better than O(n -1) convergence
for conditional gradient methods. Furthermore, even if is singular to second order
(i.e., the local quadratic approximation to F at " has multiple minimizers [22]), the
growth law (1.20)-(1.21) can still hold for some u > 2. In such cases the corresponding
O(n -/(-2)) estimate fills a conspicuous gap in existing convergence theories for
gradient processes, and suggests that the projected gradient algorithms treated here are
superior to analogous conditional gradient methods for constrained minimization
problems with singular solutions.

Taken as a whole, the theory developed in this article significantly extends the
convergence analyses for projected gradient methods in [1], [2], [14] and earlier
investigations of classical steepest descent processes in [23]-[27]. The present analysis
reveals a continuum of increasingly singular extremal types for constrained and
unconstrained minimization problems and shows clearly how the degree of singularity,
as measured by growth rate of f within 1" near a minimizer , affects the convergence
behavior of gradient processes. All the convergence rate estimates presented here,
including the standard linear convergence result, have been derived for a large class of
nonconvex functionals and are therefore more broadly applicable than the classical
results for convex functionals. Moreover, the O(n-/-) estimate for singular extre-
mals with > u > 2 is completely new (even for unconstrained steepest descent), as are
the superlinear convergence and finite termination theorems for constrained problems
with 2 > 6 _-> 1. The present theory also has certain interesting implications for bounded
optimal control problems, since a close connection exists between the growth rate of the
objective functional F near an optimal control ’(.), and the structure of the zero-
crossing sets for ’(. )’s switching functions; this point is discussed briefly in 4.
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2. Preliminaries. This section records a number of basic facts which have a
bearing on the analysis of (1.2) in 4.

Let lq be a nonempty closed convex subset of a real Hilbert space X with inner
product (.,.) and associated norm I1" II. Suppose that F :X 1 is Fr6chet differentiable
on f, with gradient 7F. Then is a minimizer of F in l) only if : is an extremal of F in lq,
i.e., : satisfies (1.18); moreover, if F is convex and is an extremal, then is a minimizer
[33.

For x X let P(x) denote the projection of x into f. Since I1" is convex and
Frchet differentiable with gradient 7(llull) 2u, condition (1.3) holds if and only if for
all z e ,
(2.1) (x-P(x),z-P(x))<=O.

It follows immediately from the Schwarz inequality and (2.1) that P’X- f is non-
expansive; thus,

Ilx yll liP(x)- P(y)ll > (x y, P(x)- P(y))

ellV(x)-P(y)ll,
and consequently

(2.2) liP(x) P(y)ll

for all x, y X. In geometric terms, (2.1) states that x P(x) falls in the cone of normals
to fl at P(x); i.e.,

(2.3)

where

(2.4)

x-P(x)Kn(P(x)),

Kn(u)={wXI(w, v-u)<-O, Vv e }.

For a > 0 and x e , put

x(a)=P(x-aVF(x)).

As an immediate corollary of (2.1), one finds that

(2.5) a (VV(x), z x (a)) _-> (x (a) x, x (a) z)

for all z e ; in particular, for z x this yields

1
(2.6) (VF(x), x-x()>_->--. Ilx()-xll_-> 0.

It follows from (2.5) and (2.6) that x is an extremal of F in f if and only if x x(a); i.e.,

(2.7) x =P(x-aVF(x))

for a > 0. Moreover, if x is not an extremal, the directional derivative (TF(x), x(a)- x)
is strictly negative at x for all a > 0; this suggests, but does not immediately prove, the
important descent property,

(2.8) F(x(a))-F(x) < O,

for small a >0 and x not an extremal. When xeInt f and a is small, one has
x(a) P(x -aVF(x))= x -aVF(x), and therefore

F(x)-F(x(a)) (VF(x), x -x(a))+ o(llx -x ()11)= IlVF(x)ll2 / o (,).
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Under these circumstances,

F(x)-F(x(a))
(2.9) lim

-o+(VF(x), x-x(a))
1,

provided VF(x) 0, in which case (2.8) certainly holds for sufficiently small positive a.

On the other hand, when x is on the boundary of f the issue is less easily resolved. If x is
not an extremal, one still has

o(llxF(x)-F(x(a))
_1 <-

(VF(x),x-x(a)) -(VF(x),x-x(a))
(2.10)

< o(llx x(o )ll)

in view of (2.6). Moreover, for 0 =< a <= a2 it follows from (2.2) that

(2.11)

and therefore

(2.12)

[Ix(ce2)-x(o l)ll llVF(x)[I. Ice .- cell,

lim x(a)-- x(O)-- x.
0

Consequently (2.9) follows from (2.10) if

IIx -x( )ll 0(1),

a condition which is automatically fulfilled when f is a "simple" convex set 17] and x is
not an extremal. Actually, (2.9) holds on any convex set f when x is not an extremal.
This can be seen by using (2.10) and (2.11) to obtain

F(x)-F(x(a))
_1 <- ..

(VF(x), x -x(a)) (VF(x), x x(a)} a

Evidently, (2.9) will follow at once if the positive quantity (VF(x),x-x(a))/a is
bounded away from zero as a -+ 0+. Therefore, suppose that this last condition does not
hold; i.e., suppose that

(VF(x), x x (ak))
lim 0
k-+oo tk

for some sequence of positive ak’S converging to zero. With (2.5), (2.6) and (2.11) one
then obtains

(VF(x), z -x)_-> -(VF(x), x-x(a)}-
IIx-x(  )ll

Ok

 --o , llVF(x)ll -IIz ((VF(x), x-x(a)).)1/2
Ok

for all z D. and all k, and thus

(VF(x),z-x)>-O

for all z e f/, which means that x is an extremal. This contradiction establishes (2.9) (and
as a consequence, (2.8)) at nonextremal points x in arbitrary convex sets f.
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As yet, no continuity conditions have been imposed on VF. When VF is locally
Lipschitz continuous, it is possible to improve the estimate (2.10) by observing that

,F(y)-F(x)-(TF(x), y-x).=ll F(x +tr(y-x)) dtr-(TF(x), y-x)

for some L > 0 and all y sufficiently near x. Together, (2.6), (2.12) and (2.13) produce

(2.14)
1F(x)-F(x(a))

1 < aL
(VF(x), x-x(a)) =-

for sufficiently small a.

When (2.9) is satisfied, the Goldstein rule (1.12) is always feasible. To see this,
observe that F is differentiable and therefore continuous, and that x (a) is continuous in
a with x fixed (see (2.11)). Hence, the quotient

(2.15) F -F(P(x -aVF))
<VFn, Xn P(xn aVF)>

is defined and continuous for a >0, provided xn is not an extremal. If the latter
provision is met and (1.12a) is violated, it then follows from (2.9) and the intermediate
value theorem that (1.12b) holds for at least one an in (0, a,). On the other hand, if xn
is an extremal, then (1.12a) is always true since both sides of this inequality vanish. As
there are no other possibilities to consider, the Goldstein rule is feasible whenever (2.9)
is satisfied 17]. The feasibility of the Bertsekas-Armijo rule (1.11) is also an immediate
consequence of (2.9).

Suppose that the sequences {xn} f, {a} (0, oo), {an} (0, o) and {6n} (0, ]
obey (1.2) and the Goldstein rule (1.12). It then follows from (2.6) that Fn -->Fn+l for all
n _-> 0, or equivalently, that Xn+l belongs to the level set Sn {x f[F(x) -< F(xn)} for all
n _-> 0. Suppose also that VF" is Lipschitz continuous on the convex hull of Sn, with
Lipschitz norm

IIVF(x)-VF(y)II
(2.16) L sup < o.

x#y

Then (2.13) is satisfied for x, y in Sn with L replaced by Ln in particular, if xn is not an
extremal and (1.12b) holds, one has

1 Fn -F(P(xn--anLn <- 1 <=
2 (VF, xn P(xn anVF.))

and therefore Lnan >= 26n.
In all cases, the parameters an, an, and 8n satisfy

(2.17)

max > max{- -an - a

=a>O,
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where a and 8 are positive lower bounds for {a,} and {8,} respectively. Moreover, if one
puts

(2.18) Loo lim L., aoo lim inf a., 800 lim inf

then (2.17) yields the asymptotic estimate

(2.19a) lim inf a, aoo,

with

(2.19b) aoo > {a { 2800/
if Loo 0,

min aoo,.Lool ifLoo>0.

Finally, suppose that {x,} converges to :, and that VF is locally Lipschitz continuous
near :, with Lipschitz norms

IIVF(x)-VF(y)II
(2.20a) L(r) sup <

for sufficiently small cr > O, where

Then for each small positive cr there is a corresponding N(tr) such that [Ix, ’[I -< tr and

(2.21) c _>- max
a,

for all n _-> N(tr). Since tr can be arbitrarily small here, one now obtains the asymptotic
estimate (2.19) with

(2.22) Loo- lim+ L(o-).
0

By a straightforward adaptation of Bertsekas’ arguments in [14], it is possible to
obtain estimates similar to (2.17), (2.19) and (2.21) for the Bertsekas-Armijo rule
(1.11), viz.,

(2.23)

max
a

-1

>_- max -,
a 2/3(1 d)

=>0

and

(2.24)

and finally,

(2.25a)

with

(2.25b)

an _>- max ,
a.

lim inf a. aoo,

aoo--> 2/3oo
min aoo,-(1 .-.oolim sup 8.)

if Loo =0,

if Loo > O,
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where a and/ are positive lower bounds for {an} and {/n}, d (0, 1) is an upper bound
for {6n}, B,=lim,-.inf/3,, and L is specified by (2.18) or (2.22) depending on
whether 7F is Lipschitz continuous on Co(S), or locally Lipschitz continuous near

lim, x.
It has just been shown that the Bertsekas-Armijo and Goldstein step length rules

generate sequences {a,} which satisfy (1.14b) under conditions of the Lipschitz
continuity type on 7F(x); for both of these rules, the constraint (1.14a) is satisfied a
priori. However, in the case of the simple threshold rule (1.6) the situation is reversed;
here (1.14b) is satisfied by construction, and it is necessary to prove that (1.14a) follows
from the rightmost inequalities in (1.6), viz.,

2
L

Again this follows easily from (2.14) under Lipschitz continuity conditions on VE If x,
is not an extremal and if L is a Lipschitz constant forF on the convex set , then (1.2),
(1.6) and (2.14) give

F, -F,+ 1 1
l- a,L>l aL.

<VF, .-.+1>-
Thus in all cases (I. 14a) is satisfied for all n 0, with

6 l-aL>O.

3. The modulus of pseudoconvexity. For gradient-like methods, theorems es-
tablishing the global minimizing property, Fn --> inf, F, are traditionally formulated for
convex functionals F; however, it appears that many of these results remain valid for a
substantially larger class of functionals which are pseudoconvex in Mangasarian’s sense
[18]; in any case, this is true for the main theorems in 4.

A differentiable function F"X --> [1 is pseudoconvex on fl cX if and only if

F(x) > F(y):><VF(x), x y> >0
for all x, y fl. If F is pseudoconvex, then the level sets of F in fl are convex (i.e., F is
quasiconvex) and every extremal of F in fl is a global minimizer ofF in fl. Every convex
functional F is pseudoconvex, since the inequality

(3.2) F(y)-F(x) >- <VF(x), y x>
holds for all x, y when F is convex. In a certain quantitative sense to be made precise
below, convexity is an extreme case of pseudoconvexity.

LEMMA 3.1. Let F" X--> [1 be pseudoconvex on the nonempty convex set i) X.
Suppose that

(3.3)

at some fixed x in fl, and put

(3.4) (x)

F(x) > inf F

inf
yell

F(x)>F(y)

<VF(x),x-y>
F(x) -F(y)

Then

(3.5) 0<__ (x)<_- 1.
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Furthermore, ifF is convex on fl then

(3.6) (x)= 1.

Proof. In view of (3.1) and (3.3), the infimum in (3.4) is finite and nonnegative. If
x, y l-I and F(x) > F(y), then

(VF(x),x-y)>O

and consequently

F(x)>F(x+a(y-x)),

for c sufficiently small and positive. Since lq is convex, it follows that x + a (y x) iq for
c [0, 1], consequently (3.1) and (3.4) give

(VF(x), a(x-y))>-(x)[F(x)-F(x + c(y x))]

>- (x)[(VF(x), a(x y))+ o(a)]

0+for small a > O. In the limit as a --> this yields

(VF(x), x y) >- (x)(VF(x), x y),

and therefore 1 >- (x). If F is convex, then (3.2) and (3.4) also imply (x) >_- 1.
DEFINITION 3.1. Let F’X be pseudoconvex on the nonempty convex set

f X. For o- > infn F, put

(3.7) (tr) inf (x) _-> 0,
tr>--_F(x )>inftF

where (x)is specified by (3.4). The function (. )" (infr F, )- [0, ] will be called the
modulus of pseudoconvexity for F on f.

The parameter n (or) arises in a natural way in the global and asymptotic analyses of
4; its principal characteristics are summarized in the following lemma.
LEMMA 3.2. Let F"X- be pseudoconvex on the nonempty convex set f X,

with associated modulus ofpseudoconvexity (. defined by (3.7). IfF is constant on
then (or) + for all tr > infa F. Otherwise, if F is continuous but not constant on
then (.) is nonincreasing, with

(3.8) 0 -<_ t (o-) <_- 1

for all tr > infa F, and consequently

(3.9) K (or) < lim K (o’) [0, 1]
(infc F)

for all tr > infa F. Finally, ifF is convex, and continuous but not constant, then

(3.10) (or) 1

for all tr > infa F.
Proof. For o" > infa F, put

S(r) {x I[r >=F(x) > inf F}.
If F is constant on l-l, then S(tr) is empty, and consequently (tr)= +. If F is
continuous but not constant on the convex set fl, it follows from the intermediate value
theorem that S(tr) is not empty for all tr < infa F, in which case (3.8) follows at once
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from (3.7) and Lemma 3.1. Furthermore, 002 >= O1 > infa F S(002) S(001) K (002)
K (001); therefore K(. is nonincreasing and converges upward to some limit in [0, 1-1 as 00

converges to infn F from above. If F is actually convex, then (3.10) is immediate from
(3.7) and Lemma 3.1. l

Theorems 4.2-4.4 in 4 are formulated for differentiable pseudoconvex
functionals with strictly positive moduli : (00) on the set F(lq)- {infn F}; these theorems
and the following lemma demonstrate that the class of such functionals is a nontrivial
extension of the class of all differentiable convex functionals.

LEMMA 3.3. Suppose that, for all x in the convex set f X,

F(x)=cb(G(x)),

where G"X x is bounded below, convex and continuously differentiable in the Frchet
sense on f, and dp.x is continuously differentiable, with

(3.11) dq)(t) > 0
dt

for all in the set G(f)+ G(f) LJ {infn G}. The composite function F "X--> x is then
bounded below, continuously differentiable and pseudoconvex on f. If G is not constant
on f then F is not constant on 1, and

(3.12) 0<(00)<- 1

for all 00 in the nonempty interval F(f)_ F(I))- {infa F}, where (. is the modulus of
pseudoconvexity in (3.7); moreover,

(3.13) lira x(00) 1.
o-(infnF)

Proof. G is continuous on , and fl is convex and therefore connected. Thus, by
the intermediate value theorem, G()+ is an interval containing its left endpoint
infr G-. According to (3.11), is continuous and strictly increasing on G()+;
therefore, the set F()+ F() U {infr F} (G()+) is an interval containing its left
endpoint infr F. Furthermore, has a continuous single-valued inverse -1 of F()+,
and

(3.14) F(x) > F(y): O(x)> G(y)

for all x, y tq.

Suppose that F(x)> F(y) for some x, y f. Since G is convex, the mean value
theorem, (3.11) and (3.14) give

d
0 <F(x)-F(y) =--fft(r)[G(x)- G(y)]

(3.15)
d

<=(r)(G(x),x-y)
dt

for some z in the interval

(3.16) [G(y), G(x)] c G(lq)+.

Moreover, by the chain rule, F is continuously differentiable on fl with F(x)-
d

(G(x))VG(x), and therefore
dt

d
(3.17) (VF(x), x y)= --;7(O(x))(VG(x), x y)
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for all x, y in ft. The inequalities (3.11), (3.15) and (3.17) now yield

d
(O(x))

(3 18) F(x)>F(y)
(vv(x)’x-y) dt

> >0
F(x)-F(y)- dc

dt

for some r in the interval (3.17) and x, y in . Thus F is pseudoconvex on .
If G is not constant on , the set F()_ is an interval with a nonempty interior and

d
left endpoint infaF>-. For fixed F()_, the continuous function (.)
attains its minimum and maximum values on the closed bounded interval
[inf G, -a()] m G()+. Furthermore, according to (3.11),

d
(3.19a) 0<m()= min (t)

-()tinfG dt

and

d
(3.19b) 0 < Mffr) max (t).

-l(o)=>t>--infn G dt

Consequently, (3.7), (3.19), (3.20) and Lemma 3.2 give

m (o-) _< (r) < 1(3.20) 0 <
M(r)

K

for all o- F(fl)_. Finally, since -1 is continuous and strictly increasing on F()+, one
has

and therefore

lim (I)-1 (o-) -1 (innf F) inf G,
(infn F) l’l

m(o-)
(3.21) lim 1

(infn F) M(cr)

Condition (3.13) is now immediate from (3.20) and (3.21). ]

Example 3.1. Let G X a satisfy the hypotheses of Lemma 3.3, and in addition,
let G(x) have nonnegative values as x ranges over a given nonempty convex set fl c X.
For [0, oo), put

a,(t) l+t"

Then

d
dt

1
(1 + t)>0

on [0, ). Consequently, the composite function

G(x)
F(x)

1+ G(x)

is pseudoconvex on . Notice that if G is a linear functional then the pseudoconvex
functional F is actually concave.
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Note 3.1. Reference [19] formulates a convergence theorem for certain condi-
tional gradient processes and composite pseudoconvex functionals of the type con-
sidered in Lemma 3.3.

4. Convergence theorems. The results in this section are formulated for projected
gradient sequences {x’} satisfying (1.2), (1.13) and (1.14). Lipschitz continuity of the
gradient of F is not invoked explicitly in Theorems 4.1-4.3; however, conditions of this
sort play an important (and perhaps essential) part in establishing (1.13) and (1.14) for
Goldstein’s rule (1.12) and for Bertsekas’ generalized Armijo rule (1.11) (see 2 and
[14]). Bertsekas obtains the counterpart of Theorem 4.1 below, for projected gradient
sequences satisfying (1.13) with 8" 6 a constant, and both threshold conditions in
(1.5). His proof is modified here in order to circumvent the upper threshold condition
and thereby permit an analysis of (1.11) and (1.12) with variable and unbounded upper
thresholds a" for such schemes, the associated asymptotic convergence rate bounds in
Theorems 4.2 and 4.3 are "optimized" in a certain sense when 8" +- and a" + c as
n m (see Notes 4.4 and 4.8).

THEOREM 4.1. Let fl be a nonempty closed convex subset of a real Hilbert space X,
and let F X 1 be bounded below and continuously differentiable in the Frdchet sense
on lq. Furthermore, let {xn}c 1 be a projected gradient sequence satisfying (1.2), (1.13)
and (1.14) with {6"}c (0, m) and {c’} c (0, m); i.e.,

x,,+t P(x’-a’VF’), Xo f,

Fn-Fn+l6n<VFmxn-Xn+l),

6 >- 6, ee, >= a

for some fixed positive numbers 6 and ee and all integers n >= O. Then {Iz’’ } is nonincreasing
and converges to some limit f >- infa F > -oo; moreover,

(4.1) lim (VF,,, x’-x’+a) =0,

and every subsequential limitpoint of {x’} is an extremal ofFin l) i.e., satisfies (1.18).
In particular, if xr is an extremal for some N >= O, then x" xN for all n >= N. Finally, if
ce" <= b for some b >= a and all n >= O, then

(4.2) lim Ilx +,-x.II 0,

Proof. Conditions (1.2), (1.13) and (2.6) give

(4.3)
Fn-Fn+l 6n{VFn, xn-xn+l)

8,,

On

for n -> 0. Thus {F, } is nonincreasing and bounded below, and must therefore converge
to a limit f => infa F>-. It follows that

lim (F" F,, + 1) 0.
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Equation (4.1) is now an immediate consequence of (1.14a) and (4.3).
Suppose that limko X,k : e f. Consider that for fixed z e f, (1.2) and (2.5) give

(4.4)
1
<Xnk+l Xn, X n+l Z> "+" (VF.k, x nk+l Xn>.

Og

Suppose that {x.+l} is bounded. Then (4.4), (2.6), (1.14b) and the Schwarz inequality
yield

C
<VF.,z-x.k> >- ---/z<VF.,x.-x.+a + <VF., x.k+ x.>,

where C is any upper bound on {llx,+l zll}. In the limit as k + o, it now follows from
(4.1) and the continuity of VF that

(4.5) <VF(sC), z so> => 0.

On the other hand, suppose that {x,+l } is not bounded. Then there is a subsequence
{x }forwhich"k

(4.6a) limx =,

while

(4.6b) lim I[x +111-c.

To simplify the notation, write m. nkj and consider that

2<x.,j+l- x,,, Xmi+l> --[Ix,,,+1- Xmil[2 q-Ilx.,,+lil=- [[x.,,ll2

_-> 11x,+1112- IIx,,,l[2

Because of (4.6), the right side of this inequality is positive for large/’; hence (4.4), (2.6),
(1.14b), and the Schwarz inequality give

<VF,,,, z -x,,,>->-a--f<VFm,, Xmj--Xm,+l> +<VF,, Xmi+l--Xmi

for f sufficiently large. In view of (4.1) this yields (4.5) once again, in the limit as ] m.
Thus (4.5) holds in all cases, and since z can be any element of , this means that is an
extremal.

If xu is an extremal it follows at once from (1.2), (1.14b) and (2.7) that x, x for
all n g N.

Finally, if a, b for all n g 0, then (2.6) gives

1

and (4.2) is now an immediate consequence of (4.1).
Note 4.1. If the level set So={Xe[F(x)F(xo)} is compact and if all

subsequential limit points of {x,} So are extremals of F in , then {x,} converges to the
set, E0, of extremals in So; i.e.,

lim (xinf [Ix, xll)= 0.
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Moreover, if Eo is finite and if lim,_oo I[X,+l-X, ll=0, then {x,} converges to some
specific extremal in E0 [16], [20].

Theorem 4.1 can establish the fact of convergence for certain projected gradient
processes, but it says nothing about rates of convergence. For pseudoconvex function-
als, it turns out that much of the convergence rate analysis for (1.2) ultimately reduces to
an investigation of the recursive inequalities rn -qnrk >- r,+l => 0, with n -> 0, q, positive
and k in the range 2 -> k => 1. When k > 1, a consideration of the differential inequality

dr
--<- -q(t)r
dt-

1-ksuggests the transformation s, r and indeed this transformation greatly simplifies
the proof of the following basic lemma.

LEMMA 4.1. Suppose that {rn}c [0, oo) and {q,}c [0, oo) satisfy

(4.7) r qrk, >-- r,,+l

]’or n >-_ O, with k a fixed exponent in the range (1 m). If
(4.8) lim inf qn >= qoo > O,

then

(4.9) lim sup r,n 1/(k-1) _-<[(k- 1)qo]

Moreover, if lim,_.oo q, oo then r o(n-1/(-1)); i.e., lim,_.oo rnn 1/(k-1)

(4.10) qn>=q>O

for O<-n <N, then

(4.11) r, _-<ro" [1 +(k-1)ro-lqn]

for O<-_n <=N.
Proof. If r,, 0 for some m _-> 0, then r, 0 for all n _-> m. If r, > 0 for 0 _-< n < m, put
1-ks rn for n in this range, and observe that the mean value theorem gives

k-1 k-1rn r,+l (k 1)’n-2 (rn rn+x)
Sn+X--$n

(rn" rn+l)k-l- (rn" rn+l)k-1

O. Finally, if

for 0_-< n < m- 1 and some ( in the interval

r, >-_ >= rn+l >0.

In view of (4.7), one then has

for k fixed in (1, ) and 0 N n < m- 1. Consequently,
n-1 n-1

Sn SO Z (Si+I- Si) (k 1) Z qi
=0 =0

for 0 N n < m. In all cases, therefore, one has

(4.12) 0Nr, Nro. l+(k-1)r-a). q
i=0

_->(k- 1)q,,
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for n _-> 0, and thus

[ nl ]
1/(1-k)

1/(k-1) -1 k-1 -1(4.13) O<--rn -ro n +(k-1)ro n q
i=0

for all n => 1. Since

lim inf qn => q => lim inf (n- n_i)y q->q,

the estimate (4.9) follows at once from (4.8) and (4.13). If qnc then (4.8), and
consequently (4.9), holds for all qo>0 no matter how large, and this means that

1/(k-l)rnn 0. Finally, (4.11) is immediate from (4.10) and (4.12). I3
Note 4.2. Demyanov and Rubinov [3] use a different method of proof to obtain the

estimate rn O(n -1) when (4.7) holds with k 2; the same estimate is derived in [19] by
a special version of the proof of Lemma 4.1. The principal content of Lemma 4.1 is
asserted without proof in [3, remark, p. 130] for general k > 1, but the result is actually
applied there only for the special case k 2.

THEOREM 4.2. Let f be a nonempty closed convex subset of a real Hilbert space X,
and letF"X R be pseudoconvex, bounded below, and continuously differentiable in the
FrYchet sense. Furthermore, let {xn} c fl be a profected gradient sequence satisfying (1.2),
(1.13) and (1.14) with {6n}c (0, ) and {an}c (0, o); i.e.,

Xn+l P(xn-anVFn), Xo ,
Fn-Fn+l n(VFn, Xn--Xn+l),

6n >---- 6, an >- a

for some fixed positive numbers 6 and a and all n >= O. Put

rn F. inf F,

and suppose that ro > 0 implies Ko > 0, where Ko K (Fo) and (.) is the pseudoconvexity
modulus in (3.7); i.e.,

(VF(x),x-y).)(r) inf inf
xn yn F(x)-F(y)

tr=F(x)infcF F(x)>F(y)

]:or cr > infa F. Then

(4.14) lim r O,

and every subsequential limitpoint of {xn} is a minimizer ofFin f. In particular, if ru 0

for some N >- O, then rn 0 and xn Xu for all n >- N.
Suppose also that {xn } has a bounded range with diameterD > O. Then, for all n >= 0,

(4.15a)

with

(4.15b)

Furthermore, if

rn <= ro 1 + roqn]-

q r6a. [D +(D2 +4oroa)X/2]-2.

(4.16) 0 < 6 lim inf 8n <
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(4.17) 0 <a lim inf a, < oc,

(4.18) 0 <D lim sup lim sup IIx Xm[[),

and

(4.19) 0 < K lim K (or) <- 1,
(inff F)

then

1
(4.20a) 0 <_- lim sup (nrn) <-,

/,/--)OLD qx3

where

(4.20b) q- \ D2 Ira.
Finally, if {x,} converges, or if lim,_. a, m, then r, o(n-1), i.e.,

(4.21) lim nr, O.

Proof. According to Theorem 4.1, F, converges monotonically downward to some
limit f, with

Fo >=F. finfF

for all n _->0; consequently, ro=O=>Fo=f=infnF. On the other hand, suppose that
r0 > 0 and f > infn F. Choose a z l-I for which

(4.22) f> F(z) >- inf F.

Then F,,-F(z)>-f-F(z)>O, and therefore (1.2), (2.5) and (3.7) give

o(F, -F(z)) <- <VF, x z)

(4.23)
(VF,, x, X,+l) + <VF,, x+, z)

_-< <VF,, x, x,+,> -1(Xn+l Xn, Xn+l Z)
Ogn

for all n _-> 0, with o> 0. Suppose that {x,} is bounded. Then by virtue of (1.14b), (2.6),
and the Schwarz inequality, one can carry (4.23) further to

C
o(Fn -F(z))<-(VFn, xn--Xn+l)-[-

(, )I/2(VFn, Xn --Xn+l) 1/2,

where C is any upper bound on {][x,+l- z[[}. By Theorem 4.1, both terms on the right
side of this inequality converge to zero as n - o, while F, converges to f. Consequently,

o(f -F(z))<-O,

which contradicts (4.22). On the other hand, suppose that {x,} is not bounded. Then
there is a subsequence {n} such that
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for all k => 0 (otherwise {llxll} is eventually nonincreasing and therefore bounded). It
follows that

2<x/--Xn, x/>- Ilx/- xll= / Ilx/ll=-- IIxll2

>0,

in which case (1.2), (1.14b), (2.6) and (4.23) give

Ko(F, -F(z)) <= <VF,,, x, Xnk+l>’+" 1I <VF,, x. --Xnk+l>1/2,

for all k _-> 0. Again, this produces a contradiction of (4.22) in the limit as k oo. Since
every alternative has now been considered, it follows that (4.22) is impossible; i.e.,
(4.14) holds in all cases (and because F is continuous, this means that every subsequen-
tial limit point of {xn } is a minimizer). In particular, if ru 0 for some N _-> 0, then xu is a
minimizer (and therefore an extremal) of F in 1, and consequently xn xu for all
n -> N, by Theorem 4.1.

Fix n and suppose that r, > 0. In view of (4.14), one then has

Fn >F -> inf F

for all large m, in which case (1.2), (2.5), and (3.7) give

(4.24)

.(F. -F.,) _-< <VF., x. -x..>
<VFn, Xn Xn+l> - <VFn, Xn+l

1
=< <VFn, Xn Xn + 1> -+--Ilx. x. /,1111x. +1 Xrnll

n

for all large m, where

,,, , (F,,) _-> , (Fo) ,o > O,

according to Lemma 3.3 and Theorem 4.1. In the limit as m +oo, (1.13), (2.6), and
(4.24) give

D
_-< <VF., x. x. +,> + 7; <VF., x. x.+,>’/

n

<o /
On

where

(4.25) D,,+, lim sup llxn+-xmll
m-eo

and

{ rn rn +1,
]

1/2
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Complete the square to obtain
2

Since 0, -> 0, this requires that

Equivalently,

(4.26a)

where

rn rn+l >= qr2 > O,

1/2 -2
2 [21n12 (’D2n+l(4.26b) q, K,6, + + s:,r, => q

and q is given by (4.15b). There are now just two cases to consider: either there is an
N _-> 0 such that rn 0 for n _-> N and rn > 0 for 0 _-< n < N, or else rn > 0 for all n. In either
case, (4.26) and Lemma 4.1 produce the estimate (4.15). In the first case (4.21) (and a
fortiori, (4.20)) is immediate. In the second case, the numbers n (Fn) exist for all n
and converge monotonically upward to in (4.19), hence it follows from (4.16), (4.17)
and (4.18) that (4.26) holds for all n ->_0, with

(4.26c) lim inf qn =>q

and qoo given by (4.20b). Finally, if {xn} converges, then Doo 0 and (4.26c) holds for
arbitrarily large q, which means that limn_, qn oo; this is also true if limn_,
The estimates (4.18) and (4.21) now follow once again from Lemma 4.1. I-]

Note 4.3. Goldstein’s article on unconstrained steepest descent processes [28]
contains a model for the proof of (4.14) in the special case f X and F convex. A
somewhat different version of the same basic argument was utilized earlier in the proof
of Theorem 4.1.

When the hypotheses of Theorem 4.2 are satisfied, and when F has a unique
minimizer : in fl, the sequence {xn} will converge to : if I) is compact, or if F is
uniformly quasiconvex in the sense of [3], or if F is convex and : is strongly nonsingular
in the sense of [19]. In any of these cases, and others besides, Fn -infa F will converge
to zero more rapidly than n -a. The question is, how much more rapidly? An inspection
of (4.25) and (4.26) in the proof of Theorem 4.2 suggests that the convergence rate for
will depend upon how quickly {]lxn sll} converges to zero. Some further consideration
reveals that the convergence rate for {l[xn 1[} is constrained by how rapidly F grows in
D. near s. These two simple observations are brought together in the following theorem.

THEOREM 4.3. Let X, 11, F, (.), {xn}, {6,} and {an} satisfy the hypotheses of
Theorem 4.2. In addition, suppose thatFhas a unique minimizer in 12, and satisfies the
uniform growth condition (1.20); i.e.,

0<y(o’)= inf r(x)
IIx-ll_->

for tr > O, where r(x)= F(x)-F(). Then {xn} converges to and rn o(n-a). Suppose
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that (1.21) also holds, with

(4.27)

and v fixed in [1, oo). Then there is a B > 0 such that

(4.28) r, >= Bl[x, :l[

for all n >- O. If v > 2, it follows from (4.28) that

r, -< ro" [1 + rr;qn](4.29a)

]’or all n >-O, with

(4.29b)

(4.29c)

and

(4.29d)

r=(v-2)/v,

q KoC8" [1 + (1 + Cr;)I/2]-2

C 4toB2/c.
Furthermore, if 6, a, and satisfy (4.16), (4.17) and (4.19), then

(4.30a) lim sup rn /" <- [Tqo]-l/r,

with

(4.30b) qo (ff2B2/Uac)m.

On the other hand, if lim,_. a, oo, then r, o(n-1/’); i.e.,

(4.31) lira r,n a/ O.

For u in the interval [1, 2], (4.28) gives

(4.32a)

]’or all n >-O, where

rn roAn

(4.32b) 0 _-< a max {0, 1 r;q} < 1,

with q specified by (4.30b). If v 2,/le r, > 0 for all n >- 0 and if 6, ao and o satisfy
(4.16), (4.17) and (4.19), then

(4.33a) lim sup r"+---2 <= A,

where

(4.33b) a 1

and

(4.33c) 0 < q’oo 4(:2Baa)oo(1 +[1 + 4(KBa)m]l/2)-2 < 1.

Finally, if v [1, 2), or if v 2 and lim,_.oo a, oo, then (4.33a) and (4.33b) hold with

(6)oo < 1(4.34) O<qo
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Proof. If x, does not converge to , there is an e > 0 and a subsequence {r/k} such
that IIx,k- 11 >= e for all k => 0. Since y(tr) is nondecreasing and positive for tr > 0, it
follows that rnk ->_ v(llx 11) ->- () > 0 for all k _-> 0; on the other hand, r, --, 0 accord-
ing to Theorem 4.2. This contradiction proves that x, + , and therefore that r,
o(n-1), by Theorem 4.2.

Fix B’ in (0, Boo). Since IIx 11 + 0, it follows from (4.27) that, for some sufficiently
large N -> 0,

n _-> N IIx :11- 0 or rn -> 7(l[x. :[[) => B’llx ll.
Consequently, sup {b [0, )[r _-> bl[x :ll , Vn _-> 0} is strictly positive. This
establishes (4.28).

Since IIx, ll-, 0, it follows that D,+I [[x,+ ][ in (4.25) and (4.26). If u > 2 and
r,+l > 0, put

(4.35) b, ,., 1/2 1/u 1/2B1/V./_,0/. r + 2

By Theorem 4.1 one has r, -> r,/l; therefore r, is positive and (4.26) yields

(4.36a) r, r,/l >=q,r2-2Iv,
where

2 1-2/v 1/2]-2(4.36b) q, K,6, [&, + (b 2 + tc,r, _-> q,

with q specified by (4.29c). According to Theorem 4.2, there are now just two cases to
consider: either there is an N _-> 0 such that r,, 0 for n _-> N and r, 0 for 0 =< n < N, or
else r, >0 for all n _->0. In either case, (4.35) and Lemma 4.1 produce the estimate
(4.29). In the first case (4.31), and afortiori, (4.30), is immediate. In the second case, the
numbers u, converge upward to u, therefore it follows from (1.20), (4.16), (4.17),
(4.19), (4.27) and (4.35) that (4.36) holds for all n =>0, with

(4.37) lim inf q, >-q

and qo given by (4.30b). Moreover, if a. - c, then b, 0 and therefore q, m. The
estimates (4.30) and (4.31) now follow from Lemma 4.1.

Finally, if u e [1, 2] and r,/l > 0, then r, > 0 and (4.26) yields

(4.38a) r, r,+l >- q,r, > O,

where
2. (2-v)/v /2]-2z E,b.r-/ + (qb,r,(4.38b) q, : ,6, + ,) > roq,

and r and q are specified in (4.29). In all cases, the estimate (4.32) follows from (4.38). If
r, > 0 for all n _>-O, then (4.38) gives

(4.39) 0 < r"+----2 -< (1 q,)r,,
r,

for all n ->_ 0, and this leads directly to the estimate (4.33)-(4.34). 71
The convergence theory developed in [19], [20] for conditional gradient

algorithms suggests that the linear convergence rate estimate (4.33)-(4.34) is probably
conservative for 1 _-< v < 2. This is indeed the case. If VF is continuous and condition
(4.27) holds at : with v 1, then the sequence {x,} actually terminates at : for some
value of n; moreover, if VF is locally Lipschitz continuous at sc and if (4.27) holds with
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v (1, 2), then {x,} converges superlinearly to s. These results are established in the
following theorem.

THEOREM 4.4. Let X, l, F, K(" ), {X}, {6,}, and {c,} satisfy the hypotheses of
Theorem 4.2. In addition, suppose thatFhas a unique minimizer in , and satisfies the
uniform growth condition (1.20)-(4.27) with v 1; i.e.,

for o" > 0, and

0<y(cr)= inf r(x)
IIx-ll_->,

(4.40) 0 <B li+
/
| inf y(r)}\ < 00,

s0 \ s=>o’>0 O" /

where r(x) F(x)-F(). Then there is a B (0, B] such that

(4.41)

for all n >= O, and an N, >= 0 such that

(4.42) n > N,
Moreover, suppose that F is Lipschitz continuous on the level set So
{x [F(x)_-< F(xo)}, and put

(4.43) q 4roKB26a [r/) + (ro + 4KoB2a)a/2]-2.

If q < to, then (4.42) holds for
In [ro(1 + aLo)/aB2]

(4.44a) N. _-> 1 +
In(l/Z)

where

(4.44b) 1 > 1 q/ro > 0

andLo is a Lipschitz constantfor VFon So. On the other hand, ifq >= ro, then (4.42) holds
with N. O.

Finally, suppose that 7F is just locally Lipschitz continuous at s, and that (4.27) is
satisfied with u fixed in (1, 2). Then either (4.42) holds for some N. >= O, or else {x}
converges to superlinearly, with ]Ix,, -11 > 0 for all n >= 0 and

(4.45a) lim sup

where

IIVF(x)-VF(#)II
(4.45b) 0 _-< Loo lira sup

o-_->llx-,ll:-0

(4.45c)

and

(4.45d)

(L/B)oo

+eL’]
(\ aB 1oo

a lim inf
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Pro@ It was established in the proof of Theorem 4.3 that (4.40) => (4.41) for some
B>0.

Since : 12, it follows from (1.2) and (2.5) that

Ilx+ 112 -c.(VF(s), Xn+ ) Ogn (YEn VF(:), Xn+ ) + (Xn , Xn+ )

(4.46)

Furthermore,

-< -c,, (VF(s), x,,+, s) + (ee,, IIVF,, VF()II / IIx 11)" IIx+l [I.

r(x) (VF(se), x ) + o(llx :11)

in the limit as x -+ so; consequently, (4.40) gives

and therefore

(VF(:), x so> >_- Boollx 11
for all x in the convex set 12. According to (4.46) one then has

(4.47) Ilxn+l- l[2 _-< Jan (-Boo + liVE. VF()II) / IIx -113" Ilxn+- 11.
By Theorem 4.3, x. - : and therefore VF. + VF(sC); for n sufficiently large, this means
that

-B+ liVE. VF(’)II < 0
and

(4.48) a, (-Boo + IIVF, VF(sC)ll) + IIx, sell <-- a (-Bo + IIVF, VF(sC)ll) + IIx, sell < 0.

Condition (4.42) is now immediate from (4.47) and (4.48). Furthermore, if Lo is a
Lipschitz constant for VF on $o, and if q < to, it follows from Theorem 4.3 and from
(4.41) and (4.48) that

(-Boo

_-<-c.B +(1 + a.Lo) ()
<_--a.B + (1+ a.Lo)()a ,

with specified by (4.44b). In view of (4.47) one therefore has X,+l sc if

cenB2 ceB 2

to(1 + c.Lo) ro(1 + oLo)"

This establishes (4.44) for q < to. On the other hand, if q to, it follows from (4.34) that
x. for all n 1.

Finally, if [[x.- [ > 0 for all n 0, then (4.46) yields

(VF(), x.+-)
Ilx.+l ll-IIx+-ll-.

IIVF. VF()II)
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or equivalently,

Ilx+l- :l[ [ 1 / (IIX7F VF()ll/llx 11) ]
/(-

(4.49)
iix lX_l) <_-

iix+x_ 112_ + :+1_1)_

for s (1, 2) and all n 0. If VF is locally Lipschitz continuous at , one has

r,+l (VF(), X,+l- ) + O(llx+- 112)
in the limit as n (see (2.13)); consequently, for (1, 2),,

(VF(), x+ ) r,
lim inf > B,(4.50) ,lim inf

IIx+-ll IIx+-ll:

in view of (4.27). The estimate (4.45) now follows at once from (4.49) and (4.50).
Note 4.4. Suppose that {a,} is generated by Goldstein’s rule (1.12) with 6, 6

(0, ]. When VF is locally Lipschitz continuous, formulas (2.19) and (2.22) provide a
lower bound on the quantity a lim, inf a, appearing in the error estimates of
Theorems 4.2, 4.3 and 4.4. In particular, when the upper thresholds a, diverge to +,
one obtains

(4.51a)

with

(4.51b) t ifL 0,

_a 28o
ifL> 0

and Lo specified by (2.20) and (2.22). Observe now that the right sides of the error
estimates (4.20), (4.30), (4.33), and (4.45) are decreasing functions of a; consequently
these inequalities remain valid if ao is replaced by _a. Furthermore, the new coarser
error bounds obtained in this way are optimized by taking3 1/2. Similar considerations
yield "optimized" error bounds at some 6s [, 1) for the Bertsekas-Armijo rule
(1.11). However, it is essential to understand that a conservative upper bound on the
convergence rate is being optimized in this scheme, and not the convergence rate itself.
One should also bear in mind that the computational costs entailed in implementing
(1.11) and (1.12) tend to increase without limit as a -c or/3, 1 in the first case, and
as a, o or 6 - 1/2 in the second case.

Note 4.5. Let F be quasiconvex on the convex set f, and let sc be a minimizer of F
in fl. Then the level sets of F in fl are convex, and the infimum on the right side of (1.20)
can therefore be restricted to the sphere S(sC, or) {x lq IIx 11- o’} in lq; i.e.,

(4.52) /(o-)= inf F(x)-F().
xS(, o-)

If l-I is compact, or if lq is closed and X is finite dimensional, the sphere S(, o-) is
compact and the infimum in (4.52) is actually attained in S(, r), provided F is
continuous; under these circumstances, the uniform growth condition (1.20) holds if sc is
a proper minimizer, i.e., if x lq and x :ffF(x)> F(:). Condition (1.20) also holds if
F is uniformly quasiconvex, i.e., if

(4 53) F(X + Y) <= max {F(x F(y)}- 8(llx yll)
2

for some nondecreasing function 3(. (0, ) - (0, ), and all x, y f. If sc is a mini-
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mizer of F in lq, (4.53) yields

(4.54) F()<F(x= +2 ) =<F(x)-8(IIx-I[),

and therefore

(4.55) >-_  (llx  ll) > 0

for all x I)-{}. It then follows that

3,(0") inf F(x)-F() >-_ 6(0") > 0

for 0" > 0. Evidently, (4.55) implies that is a proper minimizer of F; however, no
restrictions are imposed here on the compactness of I) or the dimensionality of X.

As an illustration, consider the quadratic convex functional F defined for x in 12 by

(4.56) F(x)= Y’. cix,
i=1

with uniformly bounded positive coefficients ci. F has a unique minimizer in 2 at : 0,
where F()= 0. Moreover,

inf ci). 0"2 <= 3’(0") inf F(x) <= inf c). 0"
1--<i<cx3

The left inequality in this expression is immediate from (4.56); the right inequality can
be established by observing that

F(0"e <i)) 0"2ci,
where

(i) [0,
ej 1, i=f

and [[e()ll 1. If infl__<g< cg c > 0, then (1.20) is satisfied with 3"(0") -> c0"
2 relative to the

/2-norm; in fact, one has

F(X+ y) 1 1
2

-< (F(x) + F(y)) c IIx y 2

for all x, y D. with x y. Hence F is uniformly convex (and a fortiori uniformly
quasiconvex) on lq. On the other hand, if lim/_ inf ci 0, then 3’(0") vanishes identically
relative to the 12-norm. However, notice that for arbitrary bounded positive ci’s, F is
itself the square of a weighted inner product-induced norm, and therefore 3,(0")= 0"2
with respect to that weighted norm. This underscores a fundamental point: in infinite
dimensional spaces, the growth condition (1.20) is norm dependent.

Note 4.6. Let F be convex on l) and let : be a minimizer of F in lq. Suppose that
is uniformly convex in the sense that for some increasing function 3(. (0, c) (0, ),

(4.57) x, y I) and [Izll <  (llx yll) 
x / y
2

+z

It then follows from [19, Theorem 3.4] that

F(x)-F(lj) >= (VF(’), x sc) => 211V’F(:)II 6 (0.),
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for x s fl and IIx-ll_->tr>0. Consequently, if VF() # 0 the growth condition (1.20)
holds with

v(r) >_- 211VF()II a(r) > 0.

In any Hilbert space, a ball with radius R > 0 satisfies the uniform convexity condition
(4.57) with

6(tr) (1/8R) tr2.
(See [19, Note 3.4].)

More generally, suppose that F is convex on the convex set l), that : is a minimizer
of F in f, and that s is strongly nonsingular in the sense of [19], i.e.,

(4.58) 0 < a (o-) inf (VF(:), x

for tr > 0. Then

F(x)-F() >- (VF(:), x so) _-> a(r)

for all x f with IIx- :11 >- cr > 0, in which case the uniform growth condition (1.20)
holds with

,(r)_-> a (r) > 0

for tr > 0. In [19], a strongly nonsingular extremal is said to be regular if a(cr) ->_ Atr2 for
some A > 0, and strongly regular if a (tr) => Atr for some A > 0. Roughly speaking, s will
be regular if VF(s) # 0, if s is on the boundary 0f of f, and if the boundary has
"positive curvature" at s; on the other hand, : will be strongly regular if s is a "vertex"
in 0f and -VF(s) lies in the interior of the cone of normals to f at s.

As a simple illustration, consider the following convex set in 2.- {(X 1, X2) 21X2 IX 111}
with fixed >-1. Suppose that a differentiable function F:21 has a minimizer at
: (0, 0). If l> 1, condition (1.18) requires that

OF
(o) o and

OF
(o) >_ O,

0X1 0X2

in which case

OF
(0) x2 _-> (0) [Xll(VF(), x )

Ox2

for all x 12. It then follows that, for o" > O,

inf (VF(sC), x ) inf (VF(s), x )
xelq xf

IIx-ll-->

(0)"
[1 + 0"2(1--1)]I/2"
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Therefore, is strongly nonsingular for l> 1 and 0__ff_F (0)>0. Moreover, if F is
Ox2

convex on fl then F(x)-F(,)>=(VF(), x-) for all x f, and consequently F must
satisfy the growth condition (1.20)-(4.27) with u and some Bo>-(OF/Ox2)(O)>O.
Notice that at : 0 the curvature of 0fl is zero for > 2, positive for 2, and infinite for
2 > > 1. When 1, the vector : 0 is a vertex of lq, and the cone of normals to lq at
is specified by

g(0) {(y, y2) 21y2 --< -lYI}.
If F has an extremal at : 0 and if -VF(:) falls in the interior of Ka(0), i.e., if

OF
(o) >-_

OF (o)I + e
OX2

for some e > 0, then

inf
x

for all tr > 0. Thus, 0 is strongly regular for 1 and -VF() int Ka().
Reference [19] contains a lengthy discussion of the foregoing extremal

classification scheme and its connections with established notions of singularity and
nonsingularity for nonlinear optimal control problems with bounded control vector
components entering linearly into the equations of state. For such problems, the growth
rate of the linear functional (VF(s), x s) near an extremal control so( is determined
by the structure of the zero-crossing set 0 for the switching function associated with
:(. ). In particular, if 0 has zero measure, then so( satisfics the strong nonsingularity
condition (4.58) in the Hilbert space X :. It is also shown in [19] that so( satisfies
analogues of the foregoing regularity or strong regularity conditions in the Banach
space , according to whether 0 consists of finitely many simple zeros (bang-bang
control) or is empty (constant control); while this L’-theory cannot be applied directly
in the Hilbert space setting of the present analysis, it does give some insight into why
projected gradient methods behave differently for optimal control problems which have
bang-bang solutions and those which do not.

Note 4.7. If F has a continuous Hessian VEF, then ’2F(x) is self-adjoint at each
x lq, with

(4.59)

where

IlV=F(x)ll sup IlV=F(x)h[I

max {I/zmin (x)l, I/zmax(X)l} <

(4.60)
/./,min(X) ilhill=f (h, V2F(’)h)

sup (h, V2F()h) i[,max(X).



396 J.c. DUNN

Moreover, according to the mean value theorem, VF is locally Lipschitz continuous on
the convex set . Therefore, the Lipschitz norms L(cr) in (2.20) are finite for sufficiently
small r > 0, with

(4.61) lim L(o-)<= IIV2F()[I.
o..,.0

Under these circumstances, it is possible to replace Lo by Ilvzv()]l in the a-threshold
formulas (4.51) and (4.52) for the Goldstein rule (1.12) and analogous formulas for the
Bertsekas-Armijo rule (1.11). In particular, if m.()>0, then {a} sequences
generated by (1.11) or (1.12) with a,, 3, 3, and 6, 6, satisfy the condition
(4.17), with

2(1-6)
(4.62) ag=

ma()

or

26
(4.63) c_->c

/-/, (:)’

respectively.
Let O(:," denote the local quadratic approximation to F(. at ; i.e.,

(4.64) O(:, x)= (VF(), x -:)+ 1/2(x -sx, V2F()(x :)).

The minimizer : is said to be regular to second order (cf. [22]) if and only if

(4.65) O(,f, x)>- CIIx 11=
for some C > 0 and all x f. If F is quasiconvex and : is regular to second order, then,
according to Note 4.5 and (4.65), one has

y(tr) inf F(x)-F()
IIx-ll=>

inf F(x)-F()(4.66)
IIx-ll=o-

_-> C+
o. o-.

The growth condition (1.20)-(4.27) now follows with u 2 and B C. For : to be
regular to second order it is sufficient (but not necessary) that/J,min() > 0, or that is
regular (Note 4.6) and /.min()0. In the former case, (4.65) is satisfied with C
1/2/Xmin() since the first term on the right in (4.64) is always nonnegative at the extremal :.
If {an} is generated by the Bertsekas-Armijo rule (1.11) or the Goldstein rule (1.12), it
then follows from (4.62), (4.63) and (4.66) that the corresponding asymptotic upper
bound on rn+l/rn derived from (4.33) is a decreasing function of the ratio, p(sc)
/-/,min()//-/,max(:). This suggests that larger values of p(:) favor more rapid convergence
of projected gradient sequences generated by the Bertsekas-Armijo or Goldstein rules
when/Xmin() > 0.

Convergence rate estimates derived from (4.33) for the Bertsekas-Armijo and
Goldstein rules are actually quite conservative when fl=X, F s C2(X, ) and
iL/,min() )0; sharper estimates are established for this special case in the next and final
theorem.



CONVERGENCE ESTIMATES, PROJECTED GRADIENT PROCESSES 397

THEOREM 4.5. LetX be a real Hilbert space and let F X R have a continuous
Hessian, V2F, with associated spectral limits

(4.67)

/.Lmin(X inf (h, V2F(x)h)

_-< sup (h, V2F(x)h)= /max(X).

Suppose that is an extremal ofF in X, with

(4.68) /Xmin(’) > 0.

Furthermore, let {x,}c X be a gradient sequence satisfying (1.2), (1.13), and (1.14) with
{6,} c (0, oo) and {a,} (0, oo); i.e.,

x,+ x, a,

F, -F,+x >-6,(VF,, x,

6 >= 6, ce >= a.

Finally, put r(x)= F(x)-F(), and suppose that

(4.69) lira x, sc.

Then either xn ]’or all sufficiently large n, or else rn > 0 for all n, with

(4.70a) 0 -< lim sup

where

rn +
rn

-< 1 2(& )0o/L/,min(),

(4.70b) 60o lim inf 6n

and

(4.70c) a0o lim inf an.

Proof. Suppose that {xn} and {cen} satisfy (1.2) and that XN . Since VF()= 0 at
the extremal , one then has XN+I XN--aNVF(XN)= :, and therefore xn for all
n -> N, by induction. On the other hand, suppose that Ilxn- 11 > 0 for all n. In view of
(4.68) the extremal : is a proper local minimizer of F, hence it follows from (4.69) that
rn > 0 for sufficiently large n. Moreover, (1.2) and (1.13) give

rn r. +1 >---- 6, (VFn, xn xn +1) ->-- 6ncen IIv =

for all n, and therefore

rn +(4.71) 0<<_-1
rn

for all sufficiently large n.
Since 72F is continuous, the quantity (VF(+t(x-)),u), is continuously

differentiable in t, with x and u fixed in X. Consequently,

(4.72a) (VF(x), u)= Io (VF(+ t(x-)), u)dt= Io (u,H(t)(x-)) dt,
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where

(4.72b) H(t) V2F( + t(x j))

for 0 -<_ -<_ 1. Put u VF(x) in (4.72) to obtain

IIVf(x)l[ Jo (Vf(x), H(t)(x j)) dt.

Put u H(t)(x- j) and apply (4.72) once again to get

(4.73) IIVF(x)II2 Jo Jo (H(t)(x 2j), H(r)(x tj)) dr dt.

Observe now that Taylor’s formula gives

(4.74) F(x) F(ij) (x ,H(t*)(x

for some t* el0, 1], with x* so+ t*(x-). For 0-<t -< 1, put

O(t)=H(t)-H(t*)(4.75)

in (4.73) to obtain

(4.76a)

where

(4.76b)

[IX7F(x)l[a ->_ IlH(t*)(x :)[[a O(x)[lx 11,
0(x)- 2[IS(t*)ll. om__<p__<x111(t)ll + (o=<t_<_lmax 114S(t)ll).

Since V2F is continuous, the spectral limit /Xmin(X) is also continuous and therefore
Xmin(Z) >0 for all z sufficiently near :. Consequently, (4.74), (4.76) and the Schwarz
inequality yield

iiVf(x)llu _>
(x :, H(t*)(x

IIx 11= 0 (x)llx ell=
(4.77)

--> 2 (/-min(X*) @(X)
tzii(*] r(x)

for x sufficiently near :. In view of (4.71) one therefore has

6(x.) )(4.78) 0 < r"+-----21 --< 1 26"c"
r.

/min(X
/[min(X
,---

for n sufficiently large. Finally, since V2F is continuous it follows that $(xn)-->0 and
/Xmin(X*)-->/Xmin(e) > 0 as n --> c. The estimate (4.70) is now immediate from (4.78). 71

Note 4.8. If the hypotheses of Theorem 4.5 hold, and if the gradient sequence
{xn}cX is generated by the Bertsekas-Armijo rule (1.11) with
lim._.o 3. 3o (0, 1], and lim._.o 6. 8o (0, 1), then it follows from (4.62) and
(4.70) that

fn+l(4.79a) 0 <_- lim sup =< 1
rn L (:)’

with

(4.79b) Co=[436(1-6)]o.
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Similarly, for the Goldstein rule (1.12), the inequalities (4.63) and (4.70) yield (4.79a)
once again, with

2(4.79c) C 4oo,

provided limn-oo an c and limn_o 6n 6 e (0, 1/2]. In both cases, the best bound is
obtained when 6o 1/2. For the Goldstein rule, one then has

(4.80) 0 <- lim sup rn+-----21 <= 1 -/-min()
noO Fn /-/, ()’

and this estimate also applies to the Bertsekas-Armijo rule if/3 1. Notice that rn
converges superlinearly to 0 according to (4.80), if/-/,rnax() /-/min() > 0.

The inequality

rn+-----2-1 --< 1 -/J,min()
rn ./,max()

is a classic result for quadratic F and gradient sequences generated by the line
minimization step length rule (cf. [28]); that the right side of this expression should also
appear in the asymptotic bound (4.80) is not surprising if one considers that (1.11) and
(1.12) approximate the line minimization rule more and more accurately as n o when
an O, 6n 1/2, fln l andxnsc.
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STOCHASTIC CONTROL ON HILBERT SPACE FOR LINEAR
EVOLUTION EQUATIONS WITH RANDOM OPERATOR-VALUED

COEFFICIENTS*

N. U. AHMEDt

Abstract. We consider a problem of optimal control of the stochastic evolution equation dc=
(A(t) + B(t)u) dt + tr(t) dw, on a separable Hilbert space, where {A(t), B(t), r(t), =>0} are progressively
measurable operator-valued random processes with A generally unbounded. We prove the existence and
uniqueness of (weak) solutions of the evolution equation. Then we present the existence of optimal controls
and necessary conditions of optimality for a quadratic (random) cost function. For optimal feedback controls
we solve a random operator Riccati equation and a backward stochastic evolution equation. The backward
equation is solved by transposing a random isomorphism generated from a forward evolution equation. The
optimal feedback control is given by a random affine transformation of the state. Some examples are
presented to indicate usefulness of the results. This work is a partial extension of the results of Bismut [SIAM
J. Control Optim., 14 (1976), pp. 419-444; 15 (1977), pp. 1-4] and Bensoussan and Voit [SIAM J. Control
Optim., 13 (1975), pp. 904-926].

1. Introduction. We consider the problem of optimal control for a class of
stochastic linear evolution equations on a Hilbert space with random operator-valued
coefficients. The cost function is assumed to be quadratic with random operator-valued
weighting functions. In 2 we prove the existence and uniqueness of solutions of the
system equations. In 3 existence of optimal controls and necessary conditions of
optimality are presented. In 4 we prove the existence and uniqueness of solutions of a
class of backward stochastic evolution equations and use this result to rewrite the
necessary (sufficient) conditions of 3 in terms of the familiar adjoint state. In 5 we
consider the question of existence and uniqueness of solutions of a stochastic operator-
Riccati integral (or differential) equation arising from the decoupled feedback control
system. The solution of the integral (or differential) equation defines the optimal control
as a random affine transformation of the state. In 6 we present a few interesting special
cases as examples.

Our results extend certain recent results of Bismut [2], [3] and Bensoussan and
Voit [1]. In the former the system is governed by a finite dimensional stochastic linear
differential equation with random matrix-valued coefficients, and in the latter the
system is a stochastic evolution equation with deterministic operator-valued
coefficients. Our system model covers that of Bensoussan and Voit but not that of
Bismut since we do not consider state dependent noise. However our results can be
readily extended to this case at the cost of cumbersome notation. Our Example (i)
includes the results of Sworder [7], [8], and Example (iii) covers Example 4 of Bismut as
a special case.

2. Notation, formulation of the problem and solutions of stochastic evolution
equations. Let H be a separable Hilbert space and V a linear subspace of H having the
structure of a reflexive Banach space and dense in H. Identify H with its adjoint H’;
then VcH c V’, where V’ is the dual of V. We use the notation (.,.) for V’-V
duality pairing and (., )F for scalar product in any Hilbert space F with the associated
norm [.IF. In general, for any Banach space K with the dual K’, we write the
corresponding duality pairing as (.,.),_: and the norm as l’ I:. Let (I),/3,/x) be a

* Received by the editors October 8, 1979, and in revised form July 31, 1980. A preliminary version of
this paper was presented at the Ninth Conference on Stochastic Processes and Their Applications, August
6-10, 1979, Northwestern University, Evanston, Illinois 60201.

t Department of Electrical Engineering, University of Ottawa, Ottawa, Ontario KIN 6N5, Canada.
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complete probability space, K a real Banach space, p e[1, oo] and Lp(,K) the
equivalence classes of strongly measurable functions on D. with values in K so that I’ [" is
/-integrable on 1). The norm in Lp(O, K) is denoted by

1/p

K!

where E(. denotes the mathematical expectation of its argument. When K is the real
line and p 2, L2(, R) is the space of square integrable real-valued random variables.
It is clear that the Banach spaces L2(, V), L2(, H) and L2(, V’) are well defined,
and they are Hilbert spaces whenever V is a Hilbert space. It is known that if K is a
separable Banach space then strong and weak measurability are equivalent; in that" case
we will omit the qualifying statement.

Let/3t, I be an increasing family of complete subsigma algebras of the sigma
algebra/3 satisfying the right continuity property (Meyer [9, D30, p. 65]). Let denote
the tr-field of the progressively measurable subsets (Meyer [9, D45, p. 68; 50, p. 71]) of
the set I I), and * its completion with respect to the measure dt dl. For K a
Banach space and p [1, c], we denote by L(L K) the space of equivalence classes of
strongly *-measurable random processes on I with values in K so that for any
f L"(I, K), E i, If(t)[ dt < oo. The space L’(I, K) equipped with the norm IIflIw(,,K)----
(E z ]f(t)lf dr)/ becomes a Banach space. For K Hilbert and p 2, this is a Hilbert
space. For example, if V is a Hilbert space, then L(L V), L(L H) and L(L V’) are all
Hilbert spaces of *-measurable abstract random processes. By Lp([3t, K) we mean the
equivalence classes of K-valued strongly B-measurable random variables with

’a If]: dlJ, < cx3, where/zt is the probability measure restricted to the r-algebra/3, It is
clear that for tx < t2, L,(t, K) L,(t, K) and that they are closed subspaces of the
space Lp(/3, K). In the sequel we will make extensive use of these spa.ces.

For any pair of normed linear spaces X and Y we use 5(X, Y) to denote the
normed linear space of bounded linear operators from X into Y. Note that if Y is a
Banach space then so also is (X, Y). Let L(*, (X, Y)) denote the class of strongly
*-measurable operator-valued functions on I fl with values in (X, Y) so that for
any T L(*, (X, Y)), liT(t, w)llze<x,-)is dt dtx essentially bounded on I D. and
(t, oo)--> T(t, w)x is -*-measurable for each x s X.

We consider the optimal control problem for the system governed by the following
stochastic evolution equation:

d: [A (t): +B (t)u] dt + or(t) dW(t),

(0) o Lz(flo, H),

t(O, T),

where A, B, tr are operator-valued stochastic processes on I and " and u are the states
and controls respectively. The problem is to find a control u from an admissible class (to
be defined shortly) that minimizes the cost function

T

(2.1) J(u) E f (Nu, u)} dt,
Jo

where C and N are also operator-valued stochastic processes on I and Z is a given
o%*-measurable stochastic process defined on I with values in a real separable Hilbert
space Y(.

It will be assumed throughout the paper that all the random processes A, B, o-, C,
N, W, Zd are *-measurable; that is, for each I, A(t), B(t), tr(t), C(t), N(t), W(t)
and Za(t) are all/3t-measurable (or equivalently adapted to/3t). The tr-algebras/3t are
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usually generated by the inverse images of topological Borel-fields of the topological
spaces in which the random variables take their values at time t.

For the solution of the control problem we will introduce the following basic
assumptions’

(Ai) A (t), [0, T] -= L 0 < T < o, is a family of random evolution operators from
V to V’ such that, for each x, y
and dt x dlz essentially bounded; i.e., A L(*, (V, V’)). In the rest of the paper we
will suppress the variable

(Aii) There exist A >_-0 and c > 0 such that, for each x Lz(flt, g),

-E(a(t)x,x)+AEIxl2u>-_cElxl2v uniformly in on I.

(Aiii) { W(t), I} is an H-valued Wiener process with the usual properties:
(a) W(0) 0 /z a.e.
(b) E{(W(t)- W(s), h)lfls} 0 for all h H and t_-> s.
(c) There exists a positive self-adjoint operator Q L(L (H, H)) such that for

all h, f e H

E{(W(t)- W(s), h) (W(t)- W(s), f)lfls} Is (Q(O)h, f) dO,

where E{. Ifls} denotes the conditional expectation with respect to the o--algebra Bs.
(Aiv) {o-(t), I} is a family of fit-measurable bounded linear operators from H to

V’, or equivalently o- is an -*-measurable 5(H, V’)-valued random variable so that, for
any arbitrary sequence of basis vectors {Vg} c V with Iv, IH 1, 1, 2,,..,

,’1= E(cr(O)Q(O)cr*(O)vi, vi) dO <

where tr* is the adjoint of the operator tr. Clearly by definition o’(t) is independent of
tr{W(0)- W(s), 0 >-s >-t} for all I.

(Av) F is a real separable Hilbert space and {B(t), tI} is a family of Bt-
measurable bounded linear operators with values in (F, V’), or equivalently B is a
5*-measurable (F, V’)-valued function on I x f with

ess sup {lie (t)ll(v,,:, (t, o) I x n} b < oo,

that is,

B Loo(*, (F, V’)).

(Avi) With F as in (Av) let L(I, F) denote the equivalence classes of (norm)-
square integrable *-measurable random variables with values in the Hilbert space F
and equipped with the norm

1/2

which, by Fubini’s theorem, is equal to (I, Elu(t)iZFdt) ’/2. For the class of admissible
controls we take any closed convex subset q/a of 07/_= L(L F).

It can be shown, as in the stochastic calculus for finite dimensional spaces, that for
the Wiener process W satisfying (Aiii) and the operator tr satisfying (Aiv), the
stochastic integral ttr(t) dW(t) is a well-defined random variable with values in V’ and
that v(t)--- 0 tr(0) dW(O) is a V’-valued fit martingale. Let M M(*, 5(H, V’))
denote the class of progressively measurable random processes on I x I) with values in
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(/-/, V’) and suppose M is given the topology ’M induced by the system of neighbor-
hoods

N(cro)={crMl f, ETr(r-ro)O(cr-cro)dt<e}, croM, e>0.

With this preparation we can now present a result on the existence of a solution of the
stochastic evolution equation S. Let X be a separable Banach space, and let CIT(/, X)
denote the class of once continuously differentiable progressively measurable random
processes on I x with values in X vanishing at T with probability one.

By a solution of the evolution equation S we mean any function
LT(I, V)L(I, H) such that

T T

-[ ((,), (t))dt= (0, &(0))+ f {(A*&, )+(Bu, &)}dt
(2.2) T+o {,dW) -a.e.

for every e Cr(I, V).
We shall refer to this solution as the weak solution.
THEOREM 2.1. Consider the system S and suppose the operatorA satises (Ai) and

(Aii), the injection map V H is compact, the operator B satises (Av), the operator
satisfies (Aiv) and belongs to M, and the Wiener process Wsatisfies (Aiii). Then or each
oeL(o,H) and ue c L(I,F) the system S has a unique (weak) solution
e L(I, V) L(L H), and that u is an ane continuous map rom L(I, F) into

L(L V). More generally, (o, u, ) is a continuous maprom L(Bo, H) x L(L F) x
M into L(L V).

Pro@ Defining (t)= (t) e- one can verify that the system equation S reduces
to

d(t) (A(t)-1I) dt + e-B(t)u(t) dt + e-’(t) dW(t).

Thus in (Aii) I can be assumed to be zero without loss of generality, and from now on we
will do so.

For existence, since the injection map of V into H is compact one can construct a
common basis for V, H and V’. Let A be the canonical isomorphism of V onto V’ so
that {Ax, y)v,_v (x, y)v for all x, y V. Then A- is linear continuous from V’ into V
and consequently from H into V, and therefore a linear self-adjoint compact operator
in H. As a consequence there exists a sequence of orthonormal vectors {v} in H forming
the eigenvectors of the operator A- such that

2

(.
2(v, v) &, O > 0, i, ] 1, 2,....

The sequence {v} also forms an orthogonal basis for V and V’ so that

(v, ), (-v, v)= (1/).
Since V is also dense in H and oL(o, H) we can choose a sequence of square
integrable real random variables {y} so that

y (o, v) b(o, H)
i=1
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and

so strongly in L2(o, H).

Clearly i=1E(Yi)2< oo. Define an approximate solution of the problem S by

"(t)--
i=1

in the sense that

(ds" (t), v.) {(A (t)tj" (t), vi) + (B(t)u(t), v.)} dt + (tr*(t)vj, dW(t)),

sen (0) Y. x (0)vi yivi, 1 <- j =< n.
i=1 i=1

Equivalently the system Sn can be written in the form of a system of linear stochastic
differential equations of the form

dx" (t) [sg (t)x (t) +f" (t)] dt + dm (t),

"(o)

where xn(t) (x(t), x(t),..., xT,(t))’, al is a (n n) matrix-valued function with
elements alii(t)=(A(t)vi, vi), 1<-i, j<-n, f(t)=(fl(t),...,f(t))’, with fi(t)=-
(B(t)u(t), vi), m(t)=(ml(t), m,(t))’ with mi(t)=-[ (er*(O)vi, dW(O))t4 and yn=
(yl, ’, y,)’. Here "’" denotes transposition. By a result due to Bismut we will be able
to justify the existence of a solution to the problem S. For this we note the properties of
the coefficients of the systems ,.

(i) Since A Loo(o%*, Go(V, V’)), the elements of the matrix-valued function a
are dt di essentially bounded.

(ii) Since B L(*, (F, V’)), u L2(I, F) there exists a constant k dependent
on the bound b of the norm of the operator B and the Lebesgue measure l(I) of the
interval I so that

(2.5)
2

(iii) By hypothesis, the operator tr L(*, (H, V’)), Q L(L (H, H)) and

Y"i=I 5,E(r(t)O(t)er*(t)vi, vi) dt < oo. Therefore

(2.6) EIm"(t)12--

Since W is a Wiener process and o-e L(*, (H, V’)), that is, for each /, cr(t) is
,-measurable with values in (H, V’), the process v(t) --- o o-(0) dW(O) is a V’-valued, martingale. Consequently mi(t)=-o (o’*(O)vi, dW(O)), i= 1,2,..., is a scalar-
valued , martingale for each vi e V. Therefore it follows from (2.6) that m (t) is an
R n-valued square integrable , martingale with

(2.7)

(iv) Clearly Elynl2--2i;1E(yi)2<oo. Let L2,1 denote the space of n-vector-
valued -*-measurable stochastic processes {f} defined on I so that
This is a Banach space and was introduced by Bismut [2, p. 421]. Under conditions
(i)-(iv), it follows from a result due to Bismut [2, Theorem A, p. 441 that the system
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has a unique solution x" which is continuous with probability one and has bounded
second moment (considering B 0, v 0 in Bismut [2, A1, p. 441]. The continuity of
the solution x" follows from the fact that the martingale m is itself continuous with
probability one. Thus ’" L(I, V) 0 C (I, H), where Co" (L H) is the Banach space of
continuous second order random processes defined on/, adapted to {/3, t->0} and
assuming values in H.

By application of Ito’s lemma to the function fl(x"(t)) =- ]xn(t)[2, where x" is the
solution of the finite dimensional system equation S,, it is easily verified that

(2.8)
d]x" (t)] z 2[ (ag" (t)x" (t), x" (t)) + (x" (t), f" (t))

+- (cr(t)Qtr*(t)vi, vi) at + 2(x"(t), dm"(t)).
i=1

Equation (2.8) is equivalent to

[ 1 (o-Oo-*vi, l)i)] dtdl:"(t)lt 2 (a", ")+(Bu, ")+ i=1(2.9)

+ 2(tr*", dW)H.

Since Q Loo(I, .g(H, H)) and er Loo(*, (H, V’)) with r* Loo(*, (V, H)), it is
clear that

ess sup {ll(t)Q(t)*(t)lle,v,, (t,

and therefore there exists a nonnegative finite number 6 so that

2

<= 6E ft I" (t)lav dt.

Thus, if we recall the martingale property of the Wiener process W it follows that
(o’*", dW) 0 and E Io (o’*, dW) 0 for every L Using this fact in (2.9), we

obtain

E[tj"(t)12n-2E Io (A(O)"(O), "(0)) dO

(2.10) ElCal,+2E Io (B(O)u(O), "(0)) dO +
,=1
E {rOr*v,, v,) dO.

Utilizing (Aii), Fubini’s theorem, and the Schwarz inequality we can reduce (2.10) to

(2.11)
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Further, using the elementary inequality

1 2 eb2ab <=-ffea + a, b R,

which is valid for every e > O, we obtain from (2.11)

(2.12) <--EII+- EI(Bu)(O)I dO +
8 i=1

since e is an arbitrary positive number, for e a we have

(2.13)

Since B e L(*, (F, V’)), u L(L F) and by assumption

E Tr (trQtr*) dO E (trOtr*vi, vi) dO <

by Bessel’s inequality

it follows from (2.13) that {"} is contained in a bounded subset of L(L V)CIL(L H).
V being a Hilbert space and (f,/3,/x) a complete probability space, L(L V) is a
reflexive Banach space, in fact a Hilbert space. Therefore there exists a subsequence of
the sequence {"} again denoted by {’"} (for convenience of notation) and an element r/
so that " r/weakly in L(L V). A reflexive Banach space being weakly complete, the
weak limit r/ belongs to L(L V). It is also clear that "r/ in L(LH) in its
to *-topology. We show that r/ solves the problem S. Let & CI,T(L R); multiply on
both sides of the first equation of S, by &(t) and integrate by parts to obtain

T

-Io (s (t), ci(t)) dt

T T

(2.14) (n(0), J(0))+ Io {(A*]’ n}+(Bu’ bj)} dt+ fo (&J, trdW} /,-a.e.,

where i(t)=((d/dt)(t))vj. Since & CI’,T(I,R) qb i, i L(I, V)cL(I,H). Let G
denote the completion of the g-algebra generated by the class of sets {J D" J e B,, D e
/3} where B, is the g-algebra of Lebesgue measurable subsets of the interval/, and/ is
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the or-algebra associated with the probability space (12,/3, ). Note that the r-algebra
(of progressively measurable subsets of the set I12) *cG, and L(L V)
(=L2(.*, V)) is a closed subspace of the space Lz(G, V). Thus any sequence {f,}c
L(L V) that converges weakly in L(L V) also converges weakly in the larger space
Lz(G, V), and the two limits are one and the same element. Since 5" 7 weakly in
L(L V) it is clear that :" --> rt weakly also in Lz(G, V). If we recall that +A*
L(L V’), it follows from the above facts that, for any bounded random variable
z(z e L(fl, R), fl =fiT),

(2.15)

z (:", 4; +A*i) dtdp

- Ita z (7, i +A.’) dtdi.

Similarly, by virtue of the facts that "(0)eL2(flo, H)cLz(fl, H) and sn(0)+0
strongly in Lz(/J0, H), it follows that for any z L(fl, R),

(2.16) z. (:" (0), i(0)) dx -+ In z (:o, i(0)) d.

Since the integrals I[(&i, Bu)dt and I[(i,rdW) belong to LI(,R), multiplying
(2.14) by z e L(, R) and letting n oe gives from (2.15) and (2.16) that

-E{Z IoT(n, i) dt}
T

T T

For any D eft let us define ED{’}=D{’} d>. Since (2.17) is valid for arbitrary
z Lo(, R), we can choose for z the indicator function XD of an arbitrary set D
This reduces (2.17) to the equivalent form

T

(r, ci) dt ED(:o, i(O))+ED Io {(A*&i’ r)+(Bu, &i)} dt

T

(2.18) +E Io (’ r dW).

Since (2.18) is valid for arbitrary D fl fiT, we have
T T

--f.. {r/, 4’)dt (:o, i(0))+ f.. {{A*&’, r/)+{Bu, bi)} dt

(2.19) r

+ fo (cbi’ ’dW) /z-a.e.

for all & CI’,T(I, R). Let Cg(I, R) denote the class of *-measurable real-valued
C-functions with compact support in L For & Cg (/, R), the equation (2.19) reduces
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to
T T T

(2.19)’ z-a.e.

This is true for all {vi} and all & e C (L R). Hence rt has the Ito differential given by
drl (Art + Bu) dt + cr dw. This statement will be made more precise in Theorem 4.1
while we solve a backward stochastic evolution equation. Evaluating the Ito-ditterential
of the scalar (rt, Oi) for O’= &vi with arbitrary & CI’,T(I, R), we obtain

T T

(2.20)
+ Io J, cr dW /z-a.e.

Since v. can be chosen from any dense subset of V and V is assumed to be dense in H,
we conclude upon comparing (2.19) with (2.20) that r/(0)=:o /z-a.e. and rt(0)e
L2(/o, H). Therefore, for all 4 C I’.T(/, V),

T T- (1, (O) dt= (r/(0), (0))+ [ {(A*0, l)+(Bu, 0)} dt

(2.21)
T

+ Io (O, dW) z-a.e.

Hence rt is a weak solution of the evolution equation S in the sense of definition (2.2).
For uniqueness we note that the difference of any two solutions, r r/1- r/z, satisfies
the equality

T

(2.22) Io (,O+A4,)dt=O forall OCI’,T(I, V).

Thus rj must necessarily be zero, proving uniqueness. We may then replace the
statement " rt weakly by sc- : weakly in L(I, V). This completes the proof of
existence and uniqueness. That the mapping u : from L(L F) into L(L V) is affine
is obvious. For continuity we note that the weak limit of any sequence in a normed space
is bounded in norm by the same bound as the sequence itself. Therefore it follows from
(2.13) and the inequalities following this expression that

(2.23)

E](t)l+ Io E](o)ldO
dO+ E Tr (o-0o-*) dO

for L From this inequality we can prove the continuity of the map (o, u, cr) .
Indeed, it is clear from the inequality (2.23) that if (s strongly)

:o.n 0 in L2(/o, H),

u. 0 in L’(/, F),

"-Mr, 0 in M(*, (H, V’)),
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then

so(sOon, un, o’)--s" ; 0 in L’(/, V)f3 L,(/, H).

This completes the proof of the theorem.
For stochastic control problems, in which controls are 0sually exercised on the

basis of past information, it is natural to consider, instead of S, the family of Cauchy
problems

d (A+Bu) dt + tr dW, (s, T),
(2.24)

’(s) h,

for s (0, T). As an immediate consequence of Theorem 2.1 we have the following
result.

COROLLARY 2.1. Suppose the hypotheses of Theorem 2.1 are satisfied. Then ]:or
each h Lz([3s, H), s (0, T), and u og Lz(s, T; F) the problem (2.24) has a unique
(weak) solution ,h L(s, T; V) f3 Lo(s, T; H) such thatu .h is an affine continuous
map from L(s, T; F) into L(s, T; V) and h - .h is a continuous map from Lz([3s, H)
into L(s, T; V).

3. Existence of optimal controls and necessary conditions of optimality. For
convenience of notation we use (u) to denote the response of the system S to the
control action u c Lt(I f), Suppose is another separable Hilbert space, and
define the Hilbert space L’(I, ) as before, with the scalar product

T

(3.1) (f, g)LT<,.e)= E Jo (f(t), g(t)) e dt.

Let C 6SE(L(I, V), L(L )) denote the output or observation operator, and let
Z =- Cs be the output. Let N (L(L F), L(L F)) and Zd L(L Yg) be given. The
problem of optimal control is to find a control u from the class a so that the cost
function J(u), given by

2(3.2) J(u)=-I]C(u)-Za]]L7t.x)+(Nu, U)7,,F),
is minimum. The solution of this problem is given by the following theorem.

TI-IEOREM 3.1. Suppose the hypotheses of Theorem 2.1 hold. Let alia be a closed
convex subset of all =- L(L F) containing the zero element, C (L(I, V), L(L
Zd L(L ) and N(L(L F), L(L F)) a self-adjoint positive operator with the
property (Nu, u) L’(I,F) > /[[U []2/_,’(I,F), / > 0. Then the optimal control problem (3.2) subject
to the dynamic constraint S has a unique solution.

Proof. The proof is classical.
For the necessary conditions of optimality it is convenient to rewrite the cost

function J in the form

while considering CL(*,(V, )) and NLoo(*,(F,F)). The following
lemmas are classical.

LEMMA 3.1. The functional J has a Gateaux differential at each point u
given by

J(v u)= 2E J) (C(t)(u)--Zd, C(t)[(v)-(u)])xdt + 2E j, (Nu, v u)Fdt

in the direction (v u) for each v L(L F).
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LEMMA 3.2. LetY be a Gateaux differentiable functional on a Hilbert space , and
a a closed convex subset of . Then in order that u a be a minimizing element it is
necessary that

(3.4) J’(v-u)>=O for all v ?la.
Further, if v J(v) is strictly convex, then (3.4) is also the sufficient condition.

4. Backward stochastic evolution equation and the necessary conditions of opti-
mality. For the solution of the control problem in terms of the adjoint state or in the
form of the state feedback, it is required to solve certain stochastic evolution equations
backward in time. Using semimartingale theory with Meyer’s formula for change of
variables, Bismut [2] has given a meaning to the solution of the backward equation in
the finite dimensional case. Since this formula is not applicable to the infinite dimen-
sional case we use a different technique known as the "principle of transposition".
Essentially, in this approach one constructs a suitable isomorphism which is then
transposed to solve the original problem. We introduce here an isomorphism suitable
for the purpose.

Consider the evolution equation

(4.1)
db (A F)b dt + g dt,

6(0) 0,

tI= (0, T),

(4.3) Xo={b: b 6L’(I, V), b(0) 0/x-a.e., zb L(I, V’)}.

The set Xo provided with the norm

+ I1’.#. /2[1 IIXo (ll) 2 2

is a Hilbert space, and r is an isomorphism of Xo onto L(L V’). By transposition of this
isomorphism we can solve the backward evolution equation

dy + {(A* F)y + f} dt + dW O, (0, T),
(4.4)

y(T)= n
in the weak sense. More precisely, (4.4) is said to have a weak solution if there exists a

and the set

d
(4.2) z----(A-F)

y L2 (/, V) so that
T

(4.5) fo (y’ ’rb dO l(r) /z-a.e.

for all & Xo, where

(4.6)
T T

and suppose A satisfies (Ai), (Aii); F Lo(-*, (H, H)) with F => 0 dt x dlz a.e. and
g L(I, V’). Then it follows from Theorem 2.1 (o-= 0) that for every g L(I, V’),
(4.1) has a unique solution b qb(g)6L(I, V), and that in this particular case dc/dt
exists in the sense of generalized random processes or equivalently in the sense of
distribution and belongs to L(I, V’). Define
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THEOREM 4.1. Consider the system (4.4). Suppose the operator A satisfies (Ai),
(Aii); the operator F Lo(*, (H, H)) is self-adfoint and positive; f L’(L V’); 6
satisfies (Aiv); Wis the Wienerprocess satisfying (Aiii) and rl L2(, H). Then (4.4) has
a unique weak solution y L(L V) and, ]’or each L the solution y satisfies the equality

(4.7)
T T

(y(t), ((t))+E’ ft (y, Tb)dO Et3t(’O, (T))+E’ It (f, )dO

(fit, tx)-a.e, for all Xo. Further, y C (I, V’).
Proof. First we show that there exists a unique y e L(L V) so that

T

fo (y, ’r6) dO l(6) /.,-a.e.

for all Xo, and then we prove that this y solves (4.4) in the sense of distribution.
Finally we prove (4.7) using these results.

Let C’(/, H) denote the vector space of H-valued progressively measurable
continuous random processes on I with the topology given by the norm

1/2

Equipped with this topology C’ (/, H) is a Banach space. For each & Xo, (A F)&
L(L V’) and consequently 6 L(L V’). Further, V cH c V’ both algebraically and
topologically and V is dense in H. Therefore with a modification over a set of dt-
measure zero, C’ (L H) whenever Xo. Loosely speaking, Xo c C’ (L H). The
proof of this is similar to that of Carroll [11, Lemma 3.7, p. 176]. Therefore, whenever
& Xo, &(T) is a well-defined/37--measurable H-valued random variable and $ (T)
L2(BT, H). Consequently, for a given r/ L2(B, H), B BT, (rl, ck(T)) LI(B, R). Since,
by hypothesis, f L(L V’), Loo(o*, (H, V’)) and Q Loo(L (H, H)), it is easily
verified that

(f,

(-*&,dW)eL(,R).

Thus, for each qb eXo, l(&)Ll(fl, R) and consequently, for any z Loo(B,R),

(4.9) Fz(t())=- E{z

defines a bounded linear functional on X0. In fact (z, ck)-->Fz(l()) is a bilinear
functional on Lo(/3, R) Xo. Thus for a fixed but arbitrary z Loo(B, R), ck Fz(l(ck)) is
a continuous linear functional on Xo.

-1Further, since r is an isomorphism of Xo onto L2 (L V’), r s a continuous linear
operator from L(I, V’) into Xo. Thus, for each z eLoo(fl, R), -->Fz(lr-l(ck)) is a
continuous linear functional on L(L V’). In other words (It-) is a continuous linear
operator from L(L V’) into L(B, R). Thus there exists a unique y e (L(L V’))’ such
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that

(4.10) Vz l’r Vz (fo
T T

for all 4’ L(L V’) and all z L(fl, R). 7. being an isomorphism of X0 onto L(L V’),
this is equivalent to

(4.11)
T

for all b Xo and z Loo(fl, R). Since V is reflexive, y L’(L V). Since z is any
arbitrary element of Loo(fl, R), taking z XD for arbitrary D fl we get from (4.9) and
(4.11) that

(4.12) EDI0
r

(y, 7.Ok) dt= ED(l(ck)) =- lo(ck)

for arbitrary D /3 (= fiT) and all b Xo. Since D fl is arbitrary, it follows from (4.12)
that there exists a unique y L(I, V) such that

T

fo (Y, rd) dt= l(ck) /x-a.e.,

for all b e Xo.
For convenience of notation we write E’{x} for E{x[[3t}, where E{x]flt} denotes

the conditional expectation of the random variable x given the r-algebra fit. Returning
to the proof we note that the equality (4.12) remains valid for arbitrary D fit c fiT for
each e (0, T). Thus, for arbitrary e (0, T) and arbitrary D Bt, we have

(4.13)

ED(foT(y, 7.Ok)dt)=ED(Et’{IoT(y, rob)dt})
=ED(Et’{Iot(y, rck) dt}+E’{ftT(y, rob)dt})
E(Iot(y, 7"6)dt+E"{f,7"(y, 7"6)dt}).

The last equality follows from the fact that y and 7"b are progressively measurable and
consequently the integral (y, 7"&) dt is fit-measurable. Similarly, for D fit,

/ (b) ED[/(b)]
ED[Et,{I(ck )}]

T T

+ fo (f’ ) dt + (*ck, dW)

Since for each 0 6 (0, T) (*b)(0) is rio-measurable, E’{Ir (8*b, dW)= 0. Thus for
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T

(4.15)

f+
Jo

(f’ ) dt + (*&, dW)

Therefore, for each e (0, T) and arbitrary D e/3t, it follows from (4.12), (4.13) and
(4.15) that

ED[fot(y, rqb) dt- fot(f, ) dt-lot(’*qb, dW)]
(4.16) r r

for all e Xo.
Since D is an arbitrary element of/t, (4.16) implies that for each e (0, T)

(4.17)

(t,/.t)-a.e. for all e X0. Thus for arbitrary
(C’ (0, t; V))c (0, T; V)c X0 we have, due to (4.17),

(4.17’) r) dO (f, 6) dO + (’6, dW)

e @(0, t; V)

(tt, )-a.e. for all e (0, t; V). This equality implies that the stochastic differential of
y exists in the sense of generalized random process or stochastic vector valued measures
on Borel subsets of (0, t). We write this symbolically as

(4.18) dy + ((A* r)y +f) dt + dW O.

For the proof of this we introduce the linear form

f ft fOt+ +

and taking 0 v with v an arbitrary element of V and ff e @(0, t) we define

(4.19)

L,()=L(.v)

=-Io (o)(y(O), vS dO + /(O)([(A* r)y +f] dO + S dW, v5

=_ O(O){dy+[(A*-F)y+f]dO+SdW, v)=- O,(dO).
o

It is clear that 4’ Lv(6) is a well-defined fit-measurable continuous linear form on
(0, t), since this is so for the map L() on 9(0, t; V). Even more is true; 0 --> Lv($)
is a/t-measurable continuous linear form onB (0, t) whereB (0, t) denotes the vector
space of once continuously differentiable functions on the open interval (0, t) whose
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members along with the first derivatives vanish on the boundary {0, t}. B (0, t) is given
the locally convex topology generated by the family of seminorms qs(b)=
max0(o.t) 10sb (0)1, s 0, 1;b B (0, t). Every continuous linear form r/onB (0, t) has
the representation (Horvath [10, Prop. 3, p. 346])

,,. dO((4.19)’ r/(4,) v O)- v (4)), O Bo(0, t),
dt’

where , (:)= (0)u (dO), a 0, 1, are integrable measures. We note that (4.19) has
precisely the same form as given by (4.19)’, where we can identify the measures uo and
u as, respectively,

and

u(dO) ((A*- F)y + f, v) dO +( dW(O), v),

pl(d0) (y(0),/.)) dO.

Since the injection @(0, t)B(0, t) is continuous and @ is dense in B, the dual ofB
is a subspace of the space of distributions @’ and consequently the measures v is

odifferentiable in the sense of distribution and we can write v v + Ov or equivalently
vo(dO)=(((A*-F)y+f)(O),v)dO+((O)dW(O),v)+(dy, v). Due to (4.17)’ and the
definition of L we have L() v(dO) 0 for all @(0, t). Therefore v(dO) 0
in the distribution sense and consequently (dy(O),v)+(((A*-F)y+f)(O),v)dO+
((0) dW(O), v)= 0. Since the measure v(dO) is integrable and (dy(0), v)=-v(dO),
we conclude that the measure Ou’(dO)=(dy(O), v) is also integrable. Thus, for s, s + h
(0, t) and v V,

s+h s+h

(y(s+h)-y(s), v)+Js ((A*-F)y+f, v)dO+Js (*(O)v, dW(O))=O.

Since (0, T) is arbitrary and ,l(t)=-odW, tI, is a V’-valued fit martingale this
shows that y C’ (0, T; V’) and therefore y (t) is defined for each (0, T). Further,
since v V is arbitrary we have dy + ((A*-F)y +f)dO+dW(O)=O. For b X0 we
have L’(0, T; V’) and consequently for each (0, T)

(4.20) f (<h, dy)= (b(t>, y(t)>- f y> dO.
.o .o

Due to (4.18) we have

(4.21) fOt fOt IO IO(b, dy)= (b, (A*-F)y) dO- (ok, f) dO- (d-*ck, dW),

which is well defined for all b Xo. Thus for arbitrary b Xo it follows from (4.20) and
(4.21) that for each (0, T)

(4.22) (6(t), y(t))= (y, r6) dO- (f, 6) dO- (’6, dW) /z-a.e.

Combining (4.17) and (4.22) we obtain (4.7).
Remark 4.1. Given 0, any function y L(L V) that satisfies (4.7) is a solution

of the problem (4.4) in the weak sense. In this case y C’ (/, H) also.
Remark 4.2. For 6 0 we observe from the proof of the previous theorem that

y C’ (L V’). We are, however, unable to prove whether or not y belongs to C’ (/, H).
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With the help of the above results we can solve the control problem. Let Ae (AF)
denote the canonical isomorphisms of Y( onto ’ (F onto F’).

THEOREM 4.2. Consider the system S and the cost functional J(u) of (2.1), and
suppose the hypotheses of Theorem 2.1 and Theorem 3.1 hold. Then in order that u lla
be an optimal control it is necessary and sufficient that there exist a p u L (L V) so that:

T

(i) Ef (AlB*p(u)+Nu, v-U)Fdt>-O forall
Jo

(ii) (AS)
-dp(u) {A*p(u)+ C*Ae(C(u)-Zd)} dt,

p(u)(T) 0 /z-a.e.,

(iii) (S)
ds(u) (As(u)+Bu) dt +r dW,

,(u)(O) ’o.
Proof. Since L(L F) is a Hilbert space, a// is a closed convex subset of L(L F)

and J is Gateaux ditterentiable (Lemma 3.1) and strictly convex, being quadratic,
Lemma 3.2 applies. Therefore it follows from this lemma that a necessary and sufficient
condition for u e a// to be optimal is that

T T

(4.23) E fo (C(u)-Zd, C((v)-(u)))edt+EIo (Nu, v-U)Fdt>-O

for all v ’ Using the canonical map Ae in (4.23) and noting the fact that C*
(L(I, Y(’), L(L V’)) we have

T T

(4.24) EIo (C*Ae(C(u)-Zd),(v)-(u)) dt+E fo (Nu, v-U)Fdt>-O

for all u . In (4.24)(. ,. )denotes V’- V duality pairing. Since C*Ae(C(u)-Zd)
L(L V") and p(u)(T) 0 L2(fl, H), it follows from Theorem 4.1 with F--- 0, 0 and
f= C*Ae(C(u)-Zd)that the system (AS) has a unique weak solution p(u) L(L V)
corresponding to the control u 0//. Therefore, according to (4.5) of Theorem 4.1,

T T T

(4.25) Io (P(u),d)-Io (C*A,(c(,)-z),,>dt

/x-a.e. for all & s Xo. Let :(v) denote the solution of the problem S corresponding to the
control V eOlla. Since ((v)-:(u))(0)=0 and (v)-(u) solves the problem dr/=
(Ar/+B(v-u))dt, r/(0) =0 and Bv-BuL(I, V’), it is clear that (v)-(u)Xo.

Thus, taking (v)-(u) for b in (4.25), we have
T T

fo (P(u),B(v-u))dt=Io (C*Ae(C(u)-Zd),,(v)-,(u))dt

/x-a.e., and consequently
T T

(4.26) EIo (p(u),B(v-u))dt=E fo (C*Ae(C(u)-Zd),(v)-(u))dt.

Therefore it follows from (4.24) and (4.26) that
T T

(4.27) E Io (p(u), B(v u)) dt+ E I (Nu, v u)Fdt >-- 0

for all v e Since B (L(I,’F), L(I, V’)) we have B* e (L(L V), L(L F’));
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therefore, using the canonical map Av in (4.27), we obtain
T

(4.28) EIo (ATeB*p(u)+Nu, v-U)Fdt>-_O forall v Oa

This completes the proof of the theorem.
Remark. Note that the inequality (4.28) characterizing the optimal control does

not change if we add in the adjoint equation (AS) an additional noise term dW, with
d Loo(*, A(H, V’)).

5. Feedback control and operator Riccati equation. By removing constraints on
the control, that is, taking 07/ L(I, F), we get from (4.28) that the optimal control is
of the form

(5.1) u -N-IAIB*p.
Substituting the expression for u from (5.1) into the equations (S) and (AS) we obtain a
coupled system of random evolution equations:

dlj Aj Kp d + r dW, se O seo
(CS) I (0, T),

-dp (A*p + L) dt + g dt, p(T) O,

where K--BN-1AIB*, L=C*AgC and g=--C*AgZd. The optimal control is
obtained from the solution of (CS) and the expression (5.1). Clearly, due to our
hypotheses on B, N, C and Zd, K, L e(L(L V), L(L V’)) or more precisely
L(*, (V, V’)), and g L(L V’). Since we are interested in the feedback control
and u is given in terms of the adjoint state p, our aim is to find an expression for p in
terms of the state :. Loosely speaking, we wish to show that there exists a P
L(*, (H, H)) and a y L(L V) fq L(L H) so that

(5.2) p(t) P(t)j(t) + y(t) for 6 1 (0, T).

We take an approach similar to that of Lions [5, Chapter 3, 4, p. 132].
LEMMA 5.1. For each h L2(s, H) the system

dc=(Ac-K)dt+rdW, ,(s) h,
(OS) (s, T)

-d (a* + Lc) dt + g dt, /(T) O,

has a unique solution c, L(s, T; V)f-)Lo(s, T; H). Furthermore, C (s, T; H)
also.

Proof. The optimality system (OS) arises from the following control problem:

dc(v)=(Ac(v)+Bv)dt+trdW, t(s, T),
c(v)(s)= h,

(5.3) 7" 7"

J(s,h,v)=Es.h{I ]C(v)--Zdtdt+Is (Nv, v)Fdt}=min,
where Es.h{" } denotes the conditional expectation given that 4(v)(s) h and the min is
taken over 0?/ L(s, T; F). It follows from Corollary 2.1 and Theorem 3.1 that this
problem has a unique solution u //s with c(u)L(s, T; V). By Theorem 4.2 the
control is given by u =-N-1AIB*/, where satisfies the equation

(5.4)
-d (A*b + Lc(u)) dt + g dt, (s, T),

(T) 0,
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in the sense of Theorem 4.1. Since L(u)+gLT(s, T; V’) (5.4) has a unique
solution LT(s, T; V) in the sense of Theorem 4.1. Further, from (5.4) it follows that
dq,/dt exists in the distribution sense and belongs to L(s, T; V’) and consequently
O C’ (s, T; H). This completes the proof of the lemma.

LEMMA 5.2. Consider the optimality system (OS) for s (0, T) arbitrary. Then
h {&, 9} is a continuous mapping from the strong topology of Lz(, H) into the weak
topology of L(s, T; V).

Proof. Let {h,} Lz([3s, H), and suppose h, h strongly in Lz(/3, H). Let v be an
arbitrary element of 0// and ,(v) the solution of the problem

d,(v)=(a&,(v)+Bv) dt+trdW,
(.)

Since {h,} is bounded in LZ(s,H), it follows that {,(v)} is contained in a bounded
subset of L(s, T; V)fqL(s, T;H). L(s, T; V) being reflexive, there exists a
subsequence again denoted by {,} and an element L(s, T; V) so that &,(v)
weakly. Following the same procedure as in the proof of Theorem 2.1, we conclude
that =(v) is the solution of the problem (5.5) with h, replaced by h and that
&(v)L(s, T; H) also. In fact for a fixed v q/s as h, h strongly in Lz([3s, H) it
follows from the inequality

El"(v)(t)-&(v)(t)12+2aE fs I.(v)(o)-(v)(o)ldo <-Elhn --hl2H
that ,(v)-(v) stronglyin L(s, T; V)f-)L(s, T;H). Thus, C being a bounded
linear operator from L’(L V) to L(L ), for a fixed v

(5.6) lim J(s, h,, v)= J(s, h, v)

whenever h, h strongly in L2(/3s, H). Let {u,} q/s be the sequence of controls (see
Theorem 3.1) so that

(5.7) J(s, h,, un) inf {J(s, hn, v), v Rs}.

Let u be the optimal control corresponding to problem (5.3). Then clearly

(5.8) J(s, h, un) inf {J(s, hn, v), v fill s} <-J(s, hn, u).

Since the sequence {,(u)} (the solutions of (5.5) with v =u) is bounded in
L(s, T; V)TIL(s, T; H), {J(s, h,, u)} is a bounded sequence of numbers. Thus by
(5.8) J(s, h,, u,)< az independently of n; and due to the fact that

T T

we have a sequence of controls {u,} contained in a bounded subset of s. Since L(L F)
is a Hilbert space, there exists a subsequence of the sequence {u,} again denoted by
and an element a Rs so that u, t weakly. Consequently the sequence of solutions
{,(u,)} of the problem (5.5) with v=un is contained in a bounded subset of
L(s, T; V)f-)L(s, T; H). Therefore there exists a subsequence of the sequence
{,(u,)} again denoted by {&,} and an element L(s, T; V)fqL(s, T; H) so that
Cn weakly in L(s, T; V). In fact, , b in the weak star topology of L(s, T; H)
also. Again by the same technique as in the proof of Theorem 2.1 (see (2.14)-(2.19)’,
with "(s) h,, u u,, and ’n ,), we obtain & (t) where (a) is the solution of
the problem (5.5) with v replaced by t and h, by h. Since J is quadratic in and u it is
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weakly lower semicontinuous on L(L V) L2(L F), and consequently as un t weakly
in L(s, T; F) and &n &(t) weakly in L(s, T; V) we have

(5.10) J(s, h, t)<_-li___m J(s, hn, u).

Therefore it follows from (5.6), (5.8) and (5.10) that

(5.11) J(s, h, a) <- lirn J(s, h,,, u) <- lim J(s, h, u)
<= lim J(s, hn, u)=J(s, h, u).

Since u is the optimal control, t u and consequently the original sequence u, itself
converges weakly to u. As a consequence, O(u) is the weak limit of O(u,). Using this
fact for the problem (5.4) it is easy to verify that 6,(u) 6(u) weakly in L(s, T; V).
This completes the proof of the lemma.

LEMMA 5.3. Let {&, O} be the solution of the optimality problem (OS) corresponding
to h L2(/Js, H) with s (0, T) arbitrary. Then h (s) is a continuous affine mapping of
L2(s, H) into L2(/3s, H), and there exists P(s) (L2(/3s, H), L2(s, H)) and y(s)
L2(s, H) so that 6(s) e(s)h + y(s).

Proof. By Lemma 5.2, the mapping h {0, 4’} is continuous from L2(/3s, H) into
L(s, T; V) L(s, T; V). Obviously the mapping {&, 6} 6 is continuous linear from
L(s, T; V) L(s, T; V) into L(s, T; V). By Lemma 5.1 the adjoint problem

-dO (A* + L&(u)+ g) dt,

O(T) =0

has a unique solution in the class C’ (s, T; H). More specifically, 4’ belongs to the class
X={rlrL(I, U),dr/dtL’(I, U’)}, which endowed with the norm IIrllx

v) +lldn/dtllc(,v’)) becomes a Hilbert space, and c Co(I, H). Therefore
0 --) 0(s) is a continuous linear mapping from into L2(/3s, H). As a consequence of the
above facts, h--) O(s) is a continuous affine mapping from L(s, H) into itself. This
implies that there exists an operator P(s)e2f(L:(s,H), L2(s,H)) and a vector
y(s) e L2(/3s, H) so that 0(s) P(s)h + 3,(s).

Remarks. Since s (0, T) is arbitrary it follows from the above result and the
existence of unique solution {; p} of the problem (CS) (a consequence of Lemma 5.1)
that

(5.12) p(t) P(t)j(t) + y(t)

for each (0, T) with P and y defined by P(t)c(t) fi(t) and 3,(t) =/(t) where ,6 and/
are the solutions of the problems

d(O) (A-Kfi) dO, g(t) $(t),
(5.13) for 0 e (t, T)

-dfi(O)=(A*fi+L) dO, f(r) O,

and

d(O)=(A-K) dO+trdW(O), (t) 0,
(5.14) for 0 (t, T)

-d (A*+L) dO + g dO, (T) O,

respectively.
With slight modification of the procedures of Lions [5, Lemmas 4.4, 4.5, 4.6, p.

136] we can verify that for each (0, T), P(t) is a positive, self-adjoint, bounded linear
operator in L2(t,H). Indeed, the optimality system (5.13) arises from the optimal
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control problem

d(O) (a+ Bu) dO, 0 (t, T),

(t)=heL2(t,H),
(5.15) r

J(t,h,v)=-E{f [(L,)+(Nv, v)v]dO]St}=min,
where the min is taken over the class L(t, T; F). We verify that for u -N-1AaB*/,
J(t, h, u)=(P(t)h, h). By Theorem 4.1 the solution of the adjoint system of (5.13)
(F- 0, z (d/dt- A), f L, ff 0, rt 0) satisfies the equality

T T

for (0, T) and for all b e X0. Since/ L(L V),K L(L V’), and consequently by
Corollary 2.1 the problem

d(O) (A-K) dO, (t) (t), 0 >

has a unique solution, where :(0), 0 e (0, T), is any solution of the problem

Define

d(O) (Alj + Bv) dO, j(O) O, v L(L F).

O<O<-t,
6(0) g(0), 0_-> t.

Clearly & e Xo, and for this choice of b we have
T T

(t)) -E/3’ It ((0), (’/’)(0)) dO +N’t (t, )dO((t),

Substituting u -N-aA)aB*fi for v in the integrand of (5.15) one can easily verify that
the expression in the right-hand side of the above equality equals J(q (t), u). There-
fore for (t) h we have J(t, h, u) (fi(t), h) (P(t)h, h) (P(t)h, h).

Since the random evolution equation dy Ay dO with initial condition y(t)= yo,
0 e (t, T), has a unique solution y e L(t, T; V) for every yoe Lz(t, H) (see Corollary
2.1) it is clear that A admits an essentially (norm)-bounded random evolution (or
transition) operator in H. Further, since C*AxC L L(*, (V, V’)), there exists a
constant k >0 so that J(q h, 0)N k[h[ -a.e. for each h e Lz(t, H). Thus (P(t)h, h)=
J(t,h, u)NJ(t, h, 0)Nklhl -a.e. for each h 6Lz(Ot, H). That P(t) is positive is
obvious, and that it is self-adjoint follows from the fact that the functional

T

pt(hl, h2){I [(t, 2)+(NUl, u2)]d0lt}
is symmetric in h and h2 on L2(t, H)x L2(t, H), where u and b/2 are the optimal
controls corresponding to the initial states hi, hE of the problem (5.15); 1, 72 are the
corresponding trajectories.

The above results only indicate that for each [0, T] there exists a positive
self-adjoint operator P(t) (LE(/3t, H), L2(t, H)) and a vector y(t) LE(t, H) so that
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p(t) P(t)(t) + y(t). This, however, does not tell us anything about the regularity of the
maps P(t), y(t). Below we give a formal derivation of differential and integral
equations that govern the evolution of P and y as abstract random processes on [0, T].
We also give existence theorems for solutions of these equations.

PROPOSITION 5.1. Suppose the operators A, B, C, N are all independent of the
Wienerprocess Win addition to satisfying the previous assumptions. Then the evolution of
the operator-valued process P and the vector-valued process y is formally governed by the
stochastic differential equations

(5.16)

and

(5.17)

(dP h, r/)+{(Ah, P)+(Ph, ArI)+((L-PKP)h, r/)} dt= O,

P(T) O, h, r/ V

dy + [(A*-PK)T + g] dt + Po- dW 0,

y(T) 0.

Proof. The proof is formally obtained by direct substitution of the expression for P
given by (5.12) into the system of equations (CS). In that the second equation is used in
the sense of Theorem 4.1, specifically the equality (4.11).

The question of existence of solutions of the operator Riccati equation in infinite
dimensional spaces has received considerable attention in recent years (Lions [5],
Temam [9], Curtain and Pritchard [41]). Recently Bismut [2], [3] has considered the
same question for a class of general linear quadratic stochastic control problems in finite
dimension. Infinite dimensional problem with random operator-valued coefficients
does not appear to have been considered in the literature. The operator Riccati
equation in the differential form (5.16) is difficult to solve. We give a formal derivation
of an integral equation or better a functional equation satisfied by the operator P which
is later justified by an existence theorem following a procedure very similar to that used
by Curtain and Pritchard [4]. With this end in view let us consider the Cauchy problem

rO g, (0, T)= I,
(5.8)

O(0) =0

with z=(d/dt-A), geL(L V’), and redefine X0={0: OL’(L V), 0(0) =0, roe
L(I, V’)}. Let, for each (0, T), I)(t)-={r/: r/= 0(t) for some 0 X0} denote the
attainable set of the system (5.18). As usual we call the system (5.18) controllable if for
each e (0, T) the set f(t) is dense in L2(/L, H).

PROPOSITION 5.2. Suppose the operators A, B, C, N satisfy the basic assumptions,
are independent ofthe Wienerprocess W, and the system (5.18) is controllable. Further let
B e Lo(*, (F, H)) and C Loo(*, (H, Y)). Then the operator-valued process P
satisfies the equality

T

(5.19) (P(t)h, ,="’l dO(dp*(O,t)[L(O)+(PgP)(O)](O,t)h, *1) (t, lx)-a.e.

for every h, rl L2([3t, H) and (0, T), where is the evolution operator corresponding
to the generator (A- KP).

Proof. Under the present.assumptions both K (=- BN-1A;IB *) and L ( C*AgC)
belong to L(-*, (H, H)) and K, L >-0 (dt x d/x)-a.e. Further, from the remarks
following Lemma 5.3, for each (0, T), P(t) is a/x-a.e, positive, self-adjoint bounded
linear operator in the Hilbert space Lz([3t, H).
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In fact, we shall see later that PL(*,(H,H)), and hence KP
L(*, (H, H)) also. Therefore the operator (A-KP) satisfies the property (Aii),
with possibly a different h. Consequently, by the existence and uniqueness of the
solution of the random evolution equation d:= (A-KP)dt and its continuous
dependence with respect to Cauchy data (Corollary 2.1), we conclude that there exists a
random transition or evolution operator with generator A-KP so that for each
h L2(t,H), (0, T), the equation has a unique (mild) solution given by :(0)

(0, t)h, 0 >= t. This fact can also be proved by converting the evolution equation into an
integral equation with the (Volterra) kernel given by the transition operator cor-
responding to the generator A. The properties (Ai) and (AiD ensure the existence of
such a transition operator. Since the operator P is determined by the system (5.13) and
the operators A, B, C, N are all independent of the Wiener process W, we can write

(5.20) (0) (0, t)h, 0 >- t, with (t) (t) h, h L2(t, H).

The solution of the adjoint system in (5.13) is defined in the sense of (4.7) of Theorem
4.1 (see Remark 4.1). In this case - (d/dt A), F O, f Land 0. Therefore the
solution of (5.13) is given by the solution of the functional equation

T T

(5.21) t’It (,rqb)dO+(ff(t),c(t))=JUt’It (L,c)dO (/3t,/x)=a.e.

for all e (0, T) and b e X0.
From the representation ,6 P and the first equation of (5.13) we have (0, h)

(0, t)h, O>=t>O, h L2(t,H). Similarly, let (0, rt)= (0, t)rl, O>=t>O denote the
solution of the same problem with r/e f(t) c L2(t, n). Let u be any arbitrary element
of X0 with u(t)= r/and define

,(0), O<-O<-_t,
(5.22) 4(0) 4(0, r/), _-< 0 =< T.

Since -KPcbeL(LH)cL(L V’) and the Cauchy problem (5.18) has a unique
solution for each g e L’(L V’), it is clear that b X0 and ’b -KPc for 0 _-> t. Substi-
tuting these in (5.21) we obtain

(5.23)

(P(O)(O, t)h, K(O)P(O)(O, t)rl) dO + (P(t)h,

TE’It (L(O)(O, t)h, (0, t)rl) dO (/?, z)-a.e.

for each e (0, T).
Since both K and L Loo(-*, (H, H)) and ’b -KPc L(t, T; H), the V’- V

pairing in (5.23) reduces to a scalar product in H. Thus (5.23) is equivalent to
T

(5.24) (P(t)h, n)=EO’| (*(O, t)[L(O)+(PKP)(O)](O, t)h, l) dO (/3t,/x)-a.e.

which holds for each (0, T) and for all h L2(,, H) and rt f(t) L2(t, H). Since
the system (5.18) is controllable, or equivalently I)(t) is dense in Lz(t, H), (5.24) holds
for all h, rl Lz(t, H). This completes the proof of the proposition.

Remarks. Since L, P, K are all positive and belong to L(*, (H, H)), it follows
from (5.19) that the process (ut, t, Ix) is a supermartingale where

T

-= E’ | (*[L + PKP]h, h) dO.1
Jt
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Since r/ L2(flt, H) is arbitrary, as an immediate consequence of the above proposition
we have

COROLLARY 5.1. Suppose the assumptions ofProposition 5.2 are satisfied. Then the
operator-valued process Pformally satisfies the random functional equation

T

(5.25) P(t)h E’ | *(0, t)[L(O) + (PKP)(O)](O, t)h dO (t, Ix)-a.e.
.It

for (0, T) and for each h Lz(/t, H).
Curtain and Pritchard [4] have developed a general perturbation technique for

solving the operator Riccati equation as an integral equation on Hilbert space. In their
approach a sequence of admissible controls is generated in the feedback form, thereby
generating a sequence of operators {Pn} which is then shown to converge in the strong
operator topology to an operator P that satisfies the integral equation. This is a
constructive approach, and in principle can be used to generate suboptimal controls for
practical application. Even though the technique due to Curtain and Pritchard was
developed for the deterministic operator Riccati equation, it can be suitably modified to
handle stochastic problems. Following their procedure we can prove the existence of
solution of the random functional equation (5.25). With this end in view let us call an
operator an almost sure mild evolution operator in H if

(i) (3,, s)(s, t) dO(y, t) Ix-a.e. for 0 =< <= s =< 3, --< T,
(ii) for each h L2(B,, H), (3,, t)h L2(Bv, H) for 0 <= <- 3’ -< T, and
(iii) (3,, t) is almost surely weakly continuous in in [0, 3’] and in 3" on It, T].
THEOREM 5.1. Suppose the hypotheses of Proposition 5.2 hold; further, that

A admits an almost sure mild evolution operator dPa in H satisfying
ess sup0_0__ I1(,. 0)[le(...) <- c < Ix-almost surely and that there exists a v>0 so
that (N(t)u, U)F >- ix-almost surely for all I [0, T]. Then there exists a unique
P L(r*, (H, H)) that satisfies the integral equation (5.25).

Proof. For each /, the operator P(t) is entirely determined by the optimality
system (5.13) which is equivalent to the optimization problem (5.15). Therefore it
suffices to construct a sequence of feedback controls {un}, for the problem 5.15, in terms
of certain positive self-adjoint operators {Pn}Loo(*, (H, H)), so that while u,
converges to the optimal control for the problem (5.15) P, converges to a self-adjoint
positive operator P L(*, ’(H, H)) that satisfies the functional equation (5.25).
Define, for positive integers n,

Vn - -N-1AIB*Pn-1, Po 0,

u, F,s, (s state corresponding to control un, (5.15)),

(5.26) K,, =- BF,, -KP,-I,

M,, =- L + Vn-xKPn-x,
T

Pn(t)h=-E’It *(O,t)Mn(O)dp(O,t)hdO, hL2(t,H),

where , is the evolution operator corresponding to the perturbed generator (A +
BF,) (A-KP,_I) of the problem (5.13). By the result of Curtain and Pritchard [4,
Theorem 1.1, p. 953] the generators of mild evolution operators are closed under
perturbation by operators from the class Boo(*, (H, H)) denoted in this paper by
L(*, ?(H, H)). Thus for each n, n is an almost sure mild evolution operator in H
since BF, L(*, (H, H)).
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From (5.26) and (5.15) it is easily verified that
T

(P,(tlh, hl=E’ f, {(Ljn, jn)+(Nu,, u,)} dO=Y(t, h, u,),

which is the cost of control u, for the problem (5.15). Following closely the same
technique as given by Curtain and Pritchard [4, Lemma 2.1, 2.2, p. 963], we obtain

(5.27) (P+l(t)h, h)<=(P,(t)h, h)

/x-almost surely for all tel and n_-> 1. Since MI=LL(*,(H, H)) and by
assumption ess sup0_<_/_<_v__<Tlll(y, t)IIH.H)<=C. /x-almost surely, it follows from the
defining equation for P, in (5.26) that there exists a c2>0 so that
ess SUpo<=t<=rlIPa(t)II.,H<=C2/x-almost surely. Therefore due to (5.27) we have

(5.28) ess sup I[P,(t)IIH.H)<= c2 /x-a.s. for all n -> 1.
O<_t<=T

Since L is positive, the sequence {Pn} is positive. Therefore it follows from (5.27) and
(5.28) that for each 6 L P (t) converges strongly (strong operator topology) (/3t,/x)-
almost surely to a positive self-adjoint operator P(t), and ess sup0=</<__T IIP(t)[IH,H)<---- C2
/x-almost surely. Being the almost sure strong limit uniformly in tel, P
L(*, (H, H)). Therefore, for each t, F, (t) converges strongly/x-almost surely to an
operator F(t)S(H, F) and M,(t) converges weakly (weak operator topology)
almost surely to an operator M(t)(H,H), and both F and M are /x-almost
surely uniformly bounded in norm on I =[0, T]; that is, FL(*, (H, F)) and
M L(@*, (H,/4)) and M L + PKP. By definition, the evolution operator cor-
responding to the perturbed generator (A + BF,)= (A- KPn-1) is n and is given by
the solution of the random integral equation

(5.29) ,(y,t)h=(y,t)h+ [(y,O)B(O)F,(O)],(O,t)hdO

for h e L2(flt, H), n ->_ 1. From (5.29) and the estimates given above we have

(5.30) ess sup

where c3 [[AII[ and b liB*l[.
Let be the solution of the integral equation

(y, t)h l(y, t)h + [l(y, O)B(O)F(O)](O, t)h dO

corresponding to the generator (A + BF) (A KP). Then also satisfies the estimate
(5.30). Since F, converges strongly/x-almost surely uniformly on/, there exists a d > 0
so that IlFll..)_-< d. /x-almost surely uniformly on L Therefore by the Lebesgue
dominated convergence theorem it follows from the equality

(cb.h -cbh)= dPlB(Fn -F)h dO + dPlBfn(nh -cbh) dO

that , converges to strongly (strong operator topology)/x-almost surely uniformly
on 0 -< -< y -< T. Since P, P strongly/x-almost surely uniformly on/, , strongly
/x-almost surely uniformly on 0 <= <= 3’ <= T,M M L +PKP weakly/x-almost surely
uniformly on/, and the operator Eo’( is a positive idempotent linear contraction on
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L (f,/3, Ix), again by the Lebesgue dominated convergence theorem we have

E (M(O)(O, t)h, (0, t)r) dO E (M(O)(O, t)h, (0, t)r) dO

for arbitrary r e L(, H). Therefore taking limits in (5.26) we obtain
T

(P(t)h, r)= Eo’J (M(O)(O, t)h, (0, t)r) dO

for every r e Zz(t, H). Thus P satisfies the integral equation
T

P(t)h E *(0, t)[L(O) + (PKP)(O)](O, t)h dO

for each e I [0, T], and P e L(*, (H, H)).

Remarks. That the feedback control

Uo -N-AIB*P
is optimal for the problem (5.15) follows from precisely the same arguments as in
Curtain and Pritchard, [4, Theorem 2.2, p. 965]. Similarly the uniqueness of the
solution P follows from identical arguments as in Curtain and Pritchard [4, Theorem
2.3, p. 966].

To obtain a differential version of the operator Riccati equation, recently Curtain
and Pritchard introduced the concept of a quasi-evolution operator [4, p. 957]. This
concept can be obviously generalized to cover random evolution operators. Following
them we call an evolution operator (,, s) {0 _-< s -< y _-< T} (H, H) an almost sure
quasi-evolution operator if (i) it is an almost sure mild evolution operator, and (ii) there
exists a nonzero h E Lz(s,H) and an operator A E L(;*,L’(H, H)) with closed
values A (t, o) so that

(5.32) (f, dp(y, s)h -h)= (f, (y, O)A(O)h) dO

Ix-almost surely for every ]" L2(/3v, H). Here ’(H, H) denotes the class of linear not
necessarily bounded operators in H.

As an immediate consequence of the definition (5.32) we have

0
(5.33) 0-(]’, (,,s)h)=-(), (r,s)A(s)h) (dtdix)-a.e.

for h D(A(s)) c Lz(fls, H) and for all ]’6 L2(flv, H).
THZOREM 5.2. Suppose the assumptions oj Theorem 5.1 hold, and let A be the

generator oj an almost sure quasi-evolution operator in H with DA L(L V) so that
for each x DA, Ax L(L H) where ! (0, T). Then P satisfies the operator Riccati
equation in the differential form given by

E’(dPh, rl) + (Ah, PI + (Ph, AI (PKPh, rl + (Lh, r/) 0,
\dt

(5.34) (fit, tx )-a.s. for almost all I,

P(T) 0,

for all h, q Da(t). Further, P(t) is right continuous in the weak operator topology
Ix-a.s.
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Proof. By Theorem 5.1 there exists a P L(-*, (H, H)) such that
T

(5.35) (P(t)h, rt) E’ It (It(0) + (PKP)(OI]cb(O, tlh, (0, t)rl) dO

for all h, r/ L2(t, H), where is the almost sure mild evolution operator correspond-
ing to the generator (A- KP). Since, by assumption, A is the generator of an almost
sure quasi-evolution operator and further KPL(;*,(H, H)), it can be easily
verified that is an almost sure quasi-evolution operator with (A-KP) as its
generator. Define

(5.36)
A(O,t)=-([L(O)+(PKP)(O)](O,t)h,(O,t)rt), O<-t<-O<=T,

vt-- (P(t)h, rl), (0, T) for h, rl DA(t).

For At > 0 we can write
T

12t+At--" EBt+atft+At [A(0, + At)-A(0, t)] dO

T t+At

and since t t+A, and ut is f/t-measurable we have

(5.37)

T T

Et3’Pt+zxt=EOtft+At [A(0, t+ Xt)-A(0, t)] dO +Et3’ft A(0, t)dO

t+At

-E’ f A(O, t) dO.
"t

Consequently, for At > 0 we have

( t.) ft
T

{A(O,t+At)-A(O,t)} dOEl3t lt+A 1

At +At At
(5.38) t+At

-Et’ A(0, t)dO.

Since cI) is an almost sure quasi-evolution operator and Ax L’(I, H) for any x DA,
the expressions in the right-hand side of (5;.38) are well defined for all At > 0. On letting
At, 0, recalling the definition of ut and noting that A(t, t) is fit-measurable, we have

(5 39) Eo’(dPh, rl) E’ It T OA\dt -d- (O’t) dO-A(t’t)"

Using (5.33) and recalling that (A- KP) is the generator of we have

0A
--(0, t)=-{([L(0) + (PKP)(O)](O, t)(a(t)-(KP)(t))h, (0, t)rl)
Ot

+ ([L(0)+ (PKP)(O)](O, t)h, (0, t)(A(t)- (KP)(t))rl)},

and since (L + PKP) is self-adjoint we can write the above expression as

OA-- (0, t) -{(*(L +PKP)n, (A KP)h + (*(L +PKP)h, (A KP)n)}.
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Therefore we have, due to (5.19),
T

Eta’ I a(o, t) dO -(a(t)h, P(t)l)-(a(t)l, P(t)h)
at

+ 2(K(t)P(t)h, P(t)n),

A(t, t)= ([L(t)+ (PKP)(t)]h, q).

Substituting (5.40) into (5.39) we obtain (5.34). The continuity assertion follows from
(5.37). This completes the proof of the theorem.

For the backward stochastic evolution equation (5.17) we have the following
result.

THEOREM 5.3. Suppose the assumptions of Theorem 5.1 hold and the operator cr
belongs to Lo(*, )(H, H)) in addition to satisfying the basic assumption (Aiv). Then
the system (5.17) has a unique weak solution y L(L V) in the sense that

where

and

T

fo (% tO) dO l() tx-a.s, for all Xo

d
r =-- -7- (A KP)

T T

1(41)=-

Further, t--) y(t) is weakly right continuous tx-a.s.
Proof. The proof follows from Theorem 4.1 with F KP, which is self-adjoint and,

due to Theorem 5.1, belongs to L(*, 5(H, H)) as required, and r/= 0.
THEOREM 5.4. Under the assumptions of Theorem 5.3 the feedback control u

-N-1AXB*(P+ 3’) obtained from (5.1) and (5.12) is optimal.
Proof. Let P and y denote the solutions of (5.16) and (5.17). Substitute the

expression for u into the equation d (A+Bu) dt + r dW. Let s (0, T) and
consider the problem

d’ (A KP)’ dt KT dt + r dW, (s, T),
S’

’(s) h La(s, H).

Since K L(-*, 5g(H, H)) and y L(L V) we have Ky L(L H); similarly since
P e Loo(*, (H, H)) (Theorem 5.1) we have KP L(*, )(H, H)). Thus by
Theorem 2.1 the problem S’ has a unique solution ’L(s, T; V)f-)L(s, T;H).
Define p’=(P:’+y). Then using (5.16) and (5.17) in the equality (dp’,
(de. ’, rl)+(P d’, rl)+(dy, rl) one obtains

-dp’ (A*p’ / L’) dt / g dt, (s, T),
S"

p’(T) =0.

The two systems in S’ and S" are identical to those in the optimality system (OS) of
Lemma 5.1. Since these problems have unique solutions (Lemma 5.1) we have
{:’, p’} {&, 6}. Therefore by Theorem 4.2 and Lemma 5.1 the control

u -N-1ATIB*d/= -N-1ATIB*p’= -N-XAaB*(P’+ y)
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is optimal (see the proof of Lemma 5.1). Since s 6 (0, T) and h L2(/s, H) are arbitrary,
this proves the theorem.

6. Examples. In this section we present a few special but interesting examples.
Example i. Let {(Ai, Bi), 1, 2,. , N} be a set of fixed elements of (V, V’)

(F, H) with the property that for all x, y V there exist finite positive numbers 6,
such that

(Aix, y) _<-  lxlvlyl ,

(Aix, x) >= celXl2v,

for all 1, 2, , N. Let us denote this set by E c (V, V’) L(F, H), and suppose
the process {(A(t), B(t)), I} is a separable homogeneous Markov chain with state
space E and parameters ai, i, 1, 2, , N so that a0 => 0 for /" and agi -i,g aii.

Let N, C be deterministic observable processes and belong to L(I, (F, F)) and
Lo(I, (V, )) respectively; and suppose Za---0, or=0. In this case the optimal
feedback control at time t, given that A(t) Ai, B(t) Bg and (t) x, is

(6.1) u(t, x, i)= -N-I(t)A-IBi (Pi(t)x),

where {Pi, 1, 2, , N} satisfy the system of deterministic (operator) Riccati equa-
tions

(6.2)
d N

-(Pih, rl) + (Aih, Pirt) + (Pih, Airl) + E aij(Pih, rl)-(PiKiPih, rl) + (Lh, r/) 0,

P(T) O, K(t)-- B,N-I(t)A-IB*i, 1, 2,..., N, (0, T), h, rl V.

This equation follows from (5.34) of Theorem 5.2. Further, since Zd 0 and tr 0, we
have 3’ 0. For practical realization of the control given by (6.1) it is required to follow
the Markov chain {A(t), B(t)), I} to determine its switching time and the state in
addition to observing the state :(t). This example extends the result of Sworder [6] from
finite to infinite dimensional space.

Example ii. Suppose that all the assumptions of Example hold except that Zd 0.
In this case the optimal feedback control is given by

(6.3) u(t, x, i) -N-I(t)AIB*i (P(t)x + yi(t)),

where {Pg, 1, 2,..., n} satisfy the system (6.2) and {yg, 1, 2,. ., n} satisfy the
system of equations

dTi N

+(A-PiKi)yi+ Y’. aiiy+g=O, t(O, T),
dt

(6.4)
yi(T) O, g -C*AeZ, =1, 2, N

in the weak sense; that is, for all v V
N--t i,

(6.4’)
y(T)=0, t(0, T), i=l,2,’",N.
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Example iii. Let (A 1, B1, C1, N1) and (Aa, B2, Ca, Na) be two families of constant
operators, with Ai (V, V’), Bi (F, H), Ci (V, ) and Ni ?(F, F) having the
properties given in 2. Let - be a positive random variable with density/x(- dt)=
h e -At dt, h >0, and {r/t, t_->0} the increasing family of tr-algebras generated by the
indicator function of the set {t < r}. Clearly r/t o(lt^) and it is a right continuous
family of tr-algebras with no time of discontinuity, and r is a totally inaccessible stopping
time (Meyer [9, VII, 54b]). Define ’0 T ^ r and consider the system

(6.5)
d lt<o(Alj+Blu) dt+ lt>__o(A2+B2u) dt,

(o) o.
It is desired to minimize the cost function

(6.6)
T

J(u)=E Io {lt<"(lCll+(Nlu’ U)F)+ lt>__.,.o([C212+(N2u, U)F)} dt.

From the results of the previous section it follows that the optimal feedback control,
given the present state (t) x, and the structural state =- (A, Bg, Cg, Ni), is

(6.7) u(t, x, i)=-NT,1AlBPi(t)x,

where P; (i 1, 2) are the solutions of the operator Riccati equations

d
d--(Plh, rl)+(Alh, Plrl)+(Plh, Alrl)+A((P2-P1)h, rl)+(P1glPlh, rl)+(Llh, r/) 0,

(6.8)
d
-(P2h, rt)+(A2h, P2rt)+(Pah, A2rl)-(P2K2P2h, r/)+ (L2h, rt) 0,

PI(T) P2(T) 0, (0, T) for all h, r/e V.

where Ki BN[1AIB/* and Li -= C AeCi, 1, 2.
The equations (6.8) follow from (6.2) with the parameters aj, i,/" 1, 2, having

values all =-A, a12=A; a21 a22 0. Since Zd and hence g=0 it follows that 3/-=0.
The operator P is given by

(6.9) P(t) lt<,oPl(t)+ lt>=,oPa(t).
This example is similar to the finite dimensional example given by Bismut [2, ex. 4, p.
439]. It is clear that many other variants of this example are possible and covered by our
Example i" for instance, one in which there are three structural states i, 1, 2, 3 and
transitions are possible only from 1 to 2, 2 to 3 and from 2 to 1, with 3 being the
absorbing state. In this case

all -A1, a12 hi, a13 0,

a21 ,3, a22 -(A2 -- ,3), a23 --/2,

a31 a32 a33 0.

Using (6.2) one can immediately write the three operator equations for P1, P2 and P3.
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this paper.
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ERRATUM: SUFFICIENT CONDITIONS FOR KUHN-TUCKER VECTORS
IN CONVEX PROGRAMMING*

P. LEVINE" AND J. CH. POMEROL+

The proof of Theorem 5.1 (p. 694) is not correct because the set V depends on u. This
theorem should read as follows.

THEOREM 5.1. The following assertions are equivalent:
(i) q(0) is finite, and there exist Uo and Vo, two O-neighborhoods in U and V

respectively, such that

V(u, v) UoX Vo, qo(u)<=a <

(ii) (C3) is satisfied.
The inequality (1) in the proof results from y,(v) lsc q(u) which entails -g*vo (u) =< a
whenever u int (Uo). The remainder of the proof is unchanged.

As a consequence Theorem 5.1’ must be changed. For any 0-neighborhood W in V
we introduce the functional i3w(U)=supvwv(u)=supw infxx (F(x, u)-(x, v)).
Then Theorem 5.1’ becomes

THEOREM 5.1’. The following assertions are equivalent:
(i) One has -< lsc q(0) and there exists a O-neighborhood W in V such that

0 core dom gw.
(ii) There exist a O-neighborhood W in Vand a real 13 satisfying < y(O) such that

{y lv Wsatisfying G(y, v) _->/3} is bounded.

Also, we have wrongly asserted in the proofs of Theorems 4.1 and 4.2 (p. 692) that
a weak*-convergent generalized sequence in the dual of a Banach space is strongly
bounded. It follows that the condition (C4) is not sufficient when X is a Banach space,
whereas Theorem 4.2 remains true from the Krein-Smulian theorem or C-closed
mappings (see [11]). The same erroneous property was used in Theorem 5.2; hence,
when X is a Banach space, we only have (i):ff (ii) in Theorem 5.2 and Corollaries 5.t
and 5.1’.

Finally, when these two errors are accounted for, Theorem 5.2 should read:
THEOREM 5.2. If V is normed in a topology compatible with the pairing, then the

following assertions are equivalent"
(i) q (0) is finite and there exist a O-neighborhood Uo in U and a ball Vk of radius

k > 0 centered at the origin in V such that

V(u, v)e U0x V, qv(u)<__a <

(ii) There exist k > 0 and fl < 3,(0) such that the set {y [tv satislying Ilvl[ <- k and
G(y, v) >_-/3 } is equicontinuous.

Moreover (i) implies (ii) when X is a Banach space.
An analogous modification has to be made with Corollaries 5.1 and 5.1’.
In conclusion, when V is normed in’a compatible topology, the tables (p. 698)

remain unchanged due to the following proposition.

*This Journal, 17 (1979), pp. 689-699. Received by the editors November 19, 1979.
t Laboratoire d’Econom6trie, Universit6 P. et M. Curie, 75230 Paris CEDEX 5, France.
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PROPOSITION. Assume that eitherX is a Banach space or Vis normed in a topology
compatible with the pairing. Then the following assertions are equivalent:

(i) 0 core dom Oo.
(ii) There exists a ball W centered at the origin in V such that

0 core dom 8w.

Furthermore, when X is a Banach space (C4) and (C54) must be suppressed in the
tables, and we have (C2):=), (C8) instead of the equivalence.
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LOWER SEMICONTINUITY, OPTIMIZATION
AND REGULARIZING EXTENSIONS OF INTEGRAL FUNCTIONALS*

FRANCESCO FERROt

Abstract. We prove the lower semicontinuity, relative to the local convergence topology induced in
wa’l(fl) by Loc(fl), of a large class of integral functionals, under two different sets of hypotheses. We obtain
also an optimization theorem and apply these results to the study of some extensions of integral functionals.

1. Introduction. In this work we study the lower semicontinuity of integral
functionals of the following type"

I(u) In L(x, u(x), Vu(x)) dx, u W’
where L satisfies very mild regularity conditions (see 2). In 2 we prove two theorems
which assure the lower semicontinuity of I relative to the strong convergence topology
induced in Wa’l (fl) by L (fl). The first theorem is proved under a mild growth condition
about L and a supplementary condition about the subdifferential of L (we remark that
these conditions are satisfied, for example, by the well-known integrand (1 +
which does not allow for L the value + oo. On the contrary in the second theorem the
value + is allowed for L, but we require a stronger growth condition on L. For
integrands which are greater than a summable function (e.g., nonnegative integrands)
we obtain also lower semicontinuity results relative to the local convergence topology
induced in Wa’a(fl) by Loc(l) (Corollaries 2.1 and 2.2). In 3 we consider some
extensions of I to a larger class of functions and, by the lower semicontinuity theorems,
we obtain new results about the behavior of these extensions on "regular" functions
(i.e., on the elements of wl’a(fl)).

We prove also a result about the existence of a minimum (Theorem 3.3) which
improves results of [3] and extends to the n-dimensional case the arguments in [12].
Our results differ from the classical ones in [9], 14] since, among other things, we do not
assume any continuity hypothesis on L.

2. Lower semicontinuity. Throughout this paper 1" will be an open and bounded
set in R whose boundary Ol satisfies the local Lipschitz condition. Wl’m(fl) is the
space of all functions in L I(D,) whose first partial derivatives (in the distribution sense)
are summable in ft.

Let L:l)x[xn-U{+oo} be a proper normal integrand (see [13]); that is
L(x, .,.) is lower semicontinuous and not identically +oo for every x El and L is
x -measurable (we mean that L is measurable relative to the o--algebra generated

by all products of Lebesgue-measurable sets in fl, and Borel sets in x n). We define

(2.1) I(u) In L(x, u(x), Vu(x)) dx, u WI’I(").

We remark that our assumptions on L assure that L(x, u(x), v(x)) is measurable (i.e.,
Lebesgue-measurable) if u and v are; then I(u) is well defined by (2.1) if
L(x, u(x), Vu(x)) is summable; otherwise we put I(u)=-c if L(x, u(x), Vu(x)) is

* Received by the editors June 11, 1979.
t Istituto di Matematica, via L. B. Alberti 4, 16100 Genoa, Italy. This work was partially supported by

Laboratorio per la Matematica Applicata del C.N.R., Genoa.
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majorized by a summable function and I(u) +oo in every other case. Throughout this
paper we suppose that there exists u e WI’a(D.) such that I(u) R.

If L(x, u,. is convex we denote by OL(x, u, Vo) the subdifferential of L(x, u,. at
the point Vo; i.e.,

O,J.,(x, u, v.)={p R": L(x, u, w)>-L(x, u, Vo)+p(w-vo), for every w "}.

We define

H(x, u, p) sup {pv -L(x, u, v):

H(x, u, is convex, and we denote by 0ff-/(x, u, po) the subdifferential of H(x, u,. at
the point po.

If L(x, u, is convex, by standard results about convex analysis (see [10]), we have

L(x, u, v)=sup {pv-H(x, u, p): p 6 Nn}.

An easy calculation proves the following.
LZMMA 2.1. Let L(x, u, be convex for every (x, u) f x ; let ho L (,), Mo > O,

Ko>0.
Then we have

(2.2) t(x, u, v)>--golv[-Molu[-ho(x) forevery (x, u, v)6IIxRxN",

if and only if,

(2.3) n(x, u, p) <- ho(x)+ Molu[ ]:or every (x, u) f x and Ip] <-- go.
The following result is proved by a proper use of the techniques given in [12].
LFMMA 2.2. LetL(x, u, .) be convex for every (x, u) f x N and let (2.2) hold. Then

H(x, p) is upper semicontinuous for every x 1) and Ip[< go.
Proof. Let p N such that IPl < go. We set

We have

HI(x, u, p, v)= L(x, u, v)-pv.

-H(x, u, p) inf {H(x, u, p, v)" v "}.

By [12, equivalence theorem] H(x,.,/) is upper semicontinuous if the set M(x, r, a)
{v" there exists u e I such that lu[ <= r, Ha(x, u, p, v) <= a} is bounded. This is true since

a >- Ha(x, u,

(go-I 1)1 I- Mor ho(x).

Now we may prove our first lower semicontinuity result.
THEOREM 2.1. Let L(x, u, be convex for every (x, u) II x and let (2.2) hold;

moreover, suppose that for every u Wa’a(fl) there exists p(L(fl)) such that
<- Ko and

(2.4) u(x)OpH(x, u(x),p,(x)) a.e. inII.

Then I is lower semicontinuous in Wa’a(II) relative to strong convergence in LI().
Proof. Let u e wa’l(l)); by (2.4) and [10, Thm. 23.5] we have

pu(x)7u(x)-H(x, u(x), pu(x)) L(x, u(x), 7u(x)).

(We remark that H(x, u(x), p) is a normal integrand on f x N" by [13, Prop. 2S].)
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By (2.3) and [13, Thm. 3C] we have

fnL(x, u(x), Vu(x)) dx =sup {Iap(x)Vu(x) dx

InH(x, u(x), p(x)) dx" p (L(f))"},

Iap,(x)Vu(x) dx-In H(x, u(x), p,(x)) dx

In L(x, u(x), Vu(x)) dx

=sup { Inp(x)Vu(x) dx-InH(x, u(x), p(x)) dx" p 6 (L(Iq))"}

and so

>= Ic P, x Vu x dx ln
Hence we may write

L (x, u(x), Vu(x)) dx

H(x, u(x), p,(x)) dx.

InP,(x)Vu(x) dx-IaH(x, u(x), p,(x)) dx

=sup {Iap(x)Vu(x) dx

Now let p(L(lq)) and ph(x)=(1--h)p(x), h >0; then

IIp.ll<<)).<llp[l<<)). and lim ph(X)=p(x) a.e. in fl.
hO

Therefore if go we have

H(x, u(x), ph(X))ho(X)+Mo.lU(X)l

and, by Fatou’s lemma,

i inf (aph(X)VU(X) dx- fn H(x, u(x), ph(X)) dx)

Nn p(x)Vu(x) dx-alimH(X’hO U(X),ph(X)) dx

where the last equality holds since H(x, u(x),. ), which is convex and lower semicon-
tinuous by definition, is finite (by (2.3)), and so continuous, in the interior of the ball of
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radius Ko. If Ip(x)l-Ko, we have limh_oH(x, u(x),ph(x))--H(x, u(x), p(x)), since

Ph (X) approaches p(x) along a line segment from the interior of the ball of radius Ko (see
[10, Corollary 7.5.1]). Then we have

/(x,
u(x), Vu(x)) dx

-sup { Ic p(x)Vu (x dx lc H(x, u (x ), p(x )) dx ",’p"(t_.(n)),, < KoI.
Finally if p (L()) and IIpllo, there exists Ph (C (fl)) such that
Ip.lIIplo and limho ph(X) p(x) a.e. in .

As before, by the continuity of H(x, u (x), in the interior of the ball of radius Ko,
we obtain

so we have

L(x, u(x), u(x)) dx

Now let (u, c WI’I(fl) and Uo Wl’X(fl) be such that u, Uo in LI(I’I); it follows that
Vu, Vuo in the distribution sense. Moreover if p (C ())" and Ilplla)- < go, we
have by (2.3) that H(x, u(x), p(x))-Molu(x)] ho(x), so we may use Fatou’s lemma,
and for a suitable subsequence {u} of {urn} such that uuo a.e. in and
lim sup+ Ia H(x, um(x), p(x)) dx lim+ Ia H(x, u(x), p(x)) dx, we have

lim inf(ap(x)Vu(x)dx-aH(x, um(x),p(x)) dx)

fn p(x)Vuo(x) dx-+lim sup InH(x, u(x), p(x)) dx

-1Mo f lu(x)l dx

-Mo luo(x)l dx

>-Inp(x)Vuo(x) dx-IH(x, Uo(x), p(x)) dx by Lemma 2.2.
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Therefore the functional

u-> fap(x)Vu(x) dx- fnH(x, u(x), p(x)) dx

is lower semicontinuous in W’(fl) relative to strong convergence in LI(I)) for every
p e (C (fl)) such that Ilpll(,.(a < g0. By (2.5) the same is true for the functional L 71

In what follows we use the following condition’

(2.6) H(x,u,p)<-h(x,p)+M(p)lul, forevery(x,u,p)eIIxNxN,
where h is a real-valued positive function such that h(., p) e L(II) for every p e N and
h (x,.) is convex (and so continuous) for every x e l’l, and M is a real-valued positive
continuous function.

LEMMA 2.3. Let (2.6)hold. Then -H is a normal integrand.
Proof. The result may be proved as in [12, Prop. 4]. 71
LEMMA 2.4. Let (2.6) hold. Then for every s >-0 and p e (L(D.)) such that

Ilpll(o(a)). <- s there exist h e L (fl), h, > O, andM > O, with M continuous relative to s,
such that

(2,7) H(x, u, p(x)) <-_ h,(x) + M lul, ]:or every (x, u) e 12 x N.

Proof. We argue as in [3, Prop. 2.2]. Let h(x)=max{h(x,p)’lpl<-s}. By the
continuity of h(x,.) there exists ps such that Ip, l<-_s and h(x)= h(x, p). Then there
exist p(l’, p such that

p e {p’ [pl-< s} co {p’, p};

() () < 1 and i A (’) 1,so we obtain, for suitable A e , where 0 =< A
i=l

h(x)=h x, AlS)p < Ai ..(x, pi ),
i=1 i=1

and h, is summable by (2.6). Finally we define Ms max {M(p)" Ipl -< s}.
We state our second semicontinuity result, which improves [3, Thm. 3.1]"
THEOREM 2.2. Let L(x, u, be convex for every (x, u) e 1 x N and let (2.6) hold.

Then I is lower semicontinuous in W’(fl) relative to strong convergence in

Proof. As in the proof of Theorem 2.1 we have by (2.6) and [13, Thm. 3C]

/(u) sup IIap(x)Vu(x)dx-laH(x, u(x),p(x))dx" p (L(D,))}.
Now let p e(L(l))" and Ph G(C([’)) be such that Ilphll(oo()).<_-llpll(,oo(n)) and

lhimo Ph X p x

a.e. in II. We have, by Lemma 2.4,

H(x, u(x), ph(x))<hs(x)+Mslu(x)[,

where s
Hence by Fatou’s lemma and the continuity of H(x, u(x),. (see Lemma 2.3) we

have

f H(X, U(X), ph(X))dXf n(x, u(x), p(x))dx,lim sup
h0
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and so

(2.8) I(u) sup {Ia p(x)Vu(x)dx-Ia H(x, u(x), p(x));p (C (lq))}.
Now, as in the proof of Theorem 2.1, it may be proved that the functional

u-> Inp(x)Vu(x) dx-lnH(x, u(x), p(x)) dx,

is lower semicontinuous in W’x (fl) relative to strong convergence in L(D.) for every
p e (C’ (D.)), (in this case there is no restriction on p); the proof is complete by
(2.8).

Finally we obtain the following statements.
COROLLARY 2. i. Let the hypotheses of Theorem 2.1 hold and suppose there exists

geL*(fl) such that L(x,u,v)>--g(x) for every (x,u,v)eOxNxN"; then I is lower
semicontinuous in W’I(D,) relative to local convergence in

Proof. We have L + g _-> 0; then

faL(x, u(x), Vu(x))dx+ Iag(x)dx =sup {Ia (L(x, u(x), Vu(x))+g(x)) dx" h >01,
h

where D.h {x efl: d(x, 0fl)> h}. For every h the functional

+ f L(x, u(x), Vu(x)) dx
h

is lower semicontinuous relative to local convergence in LI() (since by Theorem 2.1 it
is lower semicontinuous relative to strong convergence in L(h)) and so I is lower
semicontinuous relative to local convergence in L(D,). 13

COROLLARY 2.2. Let the hypotheses of Theorem 2.2 hold and suppose there exists
gL(fl) such that L(x, u, v)>--g(x) for every (x, u, v)flxx"; then I is lower
semicontinuous in W*’(fl) relative to local convergence in L(fl).

Proof. We obtain the result as in the proof of Corollary 2.1 (obviously, we use
Theorem 2.2 instead of Theorem 2.1).

3. Optimization and regularizing extensions of integral functionals. In this section
we use the results of {} 2 to derive some properties of the regularizing extensions (in the
sense of [5]) of I, defined in [1].

We recall some definitions. Let Co(12) be the space of all continuous functions
whose support is compact in II, endowed with the uniform convergence topology, and
let Co(F/) be its closure; then Mn(II)= ((Co(fl))*)" is the Banach space of all Radon
n-dimensional measures in f whose total variation is finite in D.. We consider the space

v(a) {u t(n); Vu M(n)},

which is a Banach space if we put

We recall some results given in [6], [7], [8]. Let v be the unit outer normal to
and H,-1 be the (n- 1)-dimensional Hausdortt measure in "; if u e B V(Iq’), where
ricO’, there exist T-(u) and y+(u)eL(OIl) such that

Ia GVu+Iau div G=Ioa "y+(u)GvdH,_ for every G e (C0 (fl’)) ",
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and

Ia GVu + Ia u div G=Ia y-(u)Gu dH,,_ for every G e (C (13,’))".

/(y u) and y-(u) are called, respectively, the outer trace and the inner trace of u on 0f.
If given merely u BV(I) we may deal on 0f only with y-(u); if u WI’I(D,) we have
y-(u) y(u), where y(u) is the trace of u on 0D, in the sense of Sobolev spaces. We
remark that

Ia u]
and

are norms in BV(II) equivalent to (3.1) (e.g., see [4]). We defined in [1] a topology on
* topology We proved the following statements about theB V(fl) which we called the w q

* topology"Wq
* topology is metrizable on the balls of BV(fl) (see [1]).(A) The wq

*-compact (see [1 ]).(B) The balls of BV(fl) are wq
(C) A sequence {u,,}, wq*-converges to u if and only if Ja u, "->Ja u and

Ia G Vu., -* Ia G Vu for every G s (to(fl))" (see [2, Thm. 1.3]).
*-converges to u, then lim u., u in L(D) If a sequence {u,.} w q ,,,_.+ (II) (see [2,

Thm. 1.2]).
* dense in BV(II) (see [1 Prop. 1.2].)(E) W1’1 (") is w q

* topology may be found in [1] and [2]. By (E) weA more detailed approach to the w q

may define (see [1, (3.3)])
W*

(3.2) J,(u) min {lim inf/(us): {u,,} is a net, u, u}, u BV(II).

Now we consider LI(0II) as a space of n-valued measures on 013, in the following way"

(f, G) f fGv dH,,_l for every f LI(0II) and G (C(OII))".

So, L1(013,) may be endowed with the induced weak topology of dual space which we
shall call w* topology (see [1, Appendix]). We remark that a net {fo,}cLl(oII)
w*-converges to f if and only if

f f,Gv dH,-i f fGv dH,-i for every G e (C(Ofl))".
Jo

The balls of ((C(1))*)" are w-compact and their induced w topology is metrizable.
We consider on V()(R)L(a) the w* w topology. W1’1(,) we have

(u, y(u))eBV(I))LI(OI)); in this sense we have W’()cBV()LI(o). We
proved"

(F) Wl’l(f)is wq* x w-dense in BV(Iq) L (01q) (see 1, Lemma 1.3 ]).

By (F), we may define (see [1, Appendix])

(3.3)

J2(u, f) min {lim inf I(u,)" {us} is a net,

(u,,, ,(u,)) (u, (u, f) BV(fl)L (Olq).
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The following inequalities follow from (3.2), (3.3)"

(3.4) JL(U)<--J2(u, y-(u))<--_I(u) for every u WI’I(D,),

(3.5) JL(U)<-_JE(U, f) for every (u, f)BV(f)L(Of).

Remark 3.1. By general topological arguments we have

*- lower semicontinuous"(i) JL(u) I(u) for every u WI’x(D.) if and only if I is Wq
* w 2*- lower(ii) J2(u, y(u))=I(u) for every u Wa’(l)) if and only if I is wq

semicontinuous.
LEMMA 3.1. Let {u}c BV(f) be a net and u BV(fZ) such that u, u; if there

exists c >0 such that IlVu llmo .)-<c, then there exists a subnet {uv} of {u} such that
limv u u in L1

Proof. By [1, Remark 1.1] there exists a subnet {ur} of {u} such that n u --, n u
and n GVuv n GVu for every G (0(II))".

Let u uv- (mes 1))-1 n uv and u’= u -(mes f)-x n u. We have n u n u’=
0 and so, by previous remarks on equivalent norms in BV(f) and the hypothesis, we
have IIu;IIBv.<--C for a suitable constant c’>0. Then {u} is relatively compact in

} andLX(fl) therefore if {u’ } is a subnet of {uv} there exist a subnet {uw} of {u w
u La() such that limv uv u in L (O,). We have also

In GVu’v2 (G, Vu) for G (C (f))",every

where (.,.) denotes the duality between (C (lq)) and the space of n-valued dis-
tributions. Since n GVu’v2 n GVuvn GVu n GVu’, we obtain u u’ and the
whole net {uv} converges to u’ in Ll(lq). Now we may write

Ilu, Ullg. - Ilu, U’IIL. + (mes a)- u, u,

and this completes the proof.
The following is easily proved.
LEMMA 3.2. Let L(x, u, be convex for every (x, u)

L(f).
Then we have,

(3.6) L(x, u, v)>-Klvl-O(x) for every (x, u, v)efxRxR",

if and only if

(3.7) H(x, u,p)<-_O(x), [orevery (x, u)efxR and

THEOREM 3.1. Let (3.6) hold. Then

(3.8)
w*

JL(U) min { lim inf I (u.,)" {u.,} is a sequence, u., " u}, u 6 BV(f),

(3.9)

(3.10)

Jz(u, f) min { lim inf I(u,)" {u,} is a sequence,

(um, e(Um)) (U,

(u, f)

Jz(U, f)>=JL(U)> -oo, forevery (u, f)BV()LI(o).
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Proof. If JL(u) +oo, then (3.8) holds; otherwise let {us} be such that u,, u
and JL(u) lim,, I(u). Then there exists z [ such that IL(u) <= z, for a > az, where az
is a suitable index. By (3.6) we have IIull<-_Cz for a suitable constant c. Then by
Lemma 3.1 there exists a subnet {u} of {us} such that lim u u in Ll(f) and

for/3 > flo,

where Bo is a suitable index. Therefore, for/ > az and B >/o we have

So, the value JL(u) may be calculated by considering only the elements of a ball in
* topology is metrizable on the balls.WI’I(F); we have (3.8), since the Wq

We may prove (3.9) in an analogous way (it suffices to remember that
cllullw,(. eor a suitable constant c independent of u). Now we prove (3.10): we have

(3.11) -oo <K In lVul In o l(u), for every u e Wl’a(fl),

and (3.10) follows by (3.8), (3.9), (3.11) since the functional

is w q*-lower semicontinuous in BV(II).
THEOREM 3.2. Let the hypotheses of Theorem 2.1 hold; then I is sequentially

* x w’-lower semicontinuous). If,w’q-lower semicontinuous (and also sequentially Wq
* x w’-lower semicon-* lower semicontinuous (and also wqalso, (3.6) holds, then ! is Wq-

tinuous and

(3.12) Jz.(u) J2(u, T-(u)) I(u), u Wa’a(f).

Proof. The first part of the theorem follows by Theorem 2.1 and the property (D)
* topology is sequentially stronger than the normof the W*q topology (i.e., that the W q

topology in La(II) and the W q x w topology is obviously stronger than the w q

* -lowertopology). Afterwards, if (3.6) holds, by Theorem 3.1 and the sequential W q

semicontinuity of L we obtain I(u)<=J(u) for every u W1’1(12) and we obtain (3.12)
by (3.4). The lower semicontinuity result about I follows by Remark 3.1. I-1

The following theorem improves [3, Thms. 3.2, 3.4].
THEOREM 3.3. Let the hypotheses of Theorem 2.2 hold. Then I is sequentially

* x w’-lower semicontinuous)"W q*-lower semicontinuous (and also sequentially W q

moreover, ifM M(p) is a positive constant, the sets

A,s(I)={u: I(u)<-_zIf’l{u: Ilullt.,(a)<- s}

are compact relative to the weak topology of Wx’l(f) and I has an absolute minimum on
every weakly closed subset of W’I(II) which is bounded relative to the norm of LI(II).

Proof. The semicontinuity result follows by Theorem 2.2 and the property (D) of
the w q* topology. Now, we prove the compactness of Az.s(I). If u Az.s(I) we have, by
[13, Thm. 3C] applied to the normal integrands h(x,p)+M[u(x)l and h(x,p)+
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M (mes

>= I(u)>-_ I, sup {pVu (x)-h(x, p)-M[u(x)]" p } dxZ

-sup

->sup

Ia sup {pVu(x)- h(x, p)-M(mes fl)-s p e Rn} dx

In b(x, Vu(x)) dx,

where (x, v)=sup{pv-h(x, p)-M(mes D.)-Xs: p R"}. Hence, the set

Bz’s(4))= {u

which is weakly compact in WI’I(I)) by [11, Corollary 2B], contains Az.s(I), which is
weakly sequentially closed by the first part of the theorem (and also closed since the
weak topology is metrizable on compact sets). So Az.s(I) is weakly compact.

The last part of the theorem follows easily by the lower semicontinuity of I and the
compactness of A,s(I).

The following theorem gives new information about the extended functionals JL
and J2.

THEOREM 3.4. Let the hypotheses o]: Theorem 2.2 and (3.6) hold. Then I is
w-lower semicontinuous) andW’q-lower semicontinuous (and also Wq

!t(u) if u e w"(n),(3.13) J(u)
+ oo otherwise,

I I(u) if u 6 Wa’x(Iq) andf= y-(u),(3.14) J(u, ! +co otherwise.

*-lower semicontinuityPro@ By Theorem 3.3 and Theorem 3.1 we obtain the W q

of I as in the proof of Theorem 3.2. Now we must prove (3.13); let

/I(u) if/,/ wl’l("),
/ + oe otherwise.

wJL is Wq..7* lower semicontinuous if and only if (3.13) holds. Then let us ,u’, if
limo, infJL(Uo,)=+m we have, obviously, .l.(U)<--limo, inf.]L(Uo,); otherwise, if
liminf]L(U)<+oo, let {uv}c{u} be a subnet such that liminfaL(U)=
limv]L(Uv)< +Oe. Then there exist suitable z e N and y(z) such that .L(U,/)<Z if
y>y(z); by the definition of .]L, we have .L(u,)=I(u.,,)<z and ue W’a(f), if
y > y(z). By (3.6), we have IlVu, llu.(a)-< constant and, as in the proof of Theorem 3.1,
Ilullc.a)-< constant. Hence by Theorem 3.3 {uv} is contained in a weakly compact
subset of WI’a(f) and so there exists a subnet {u}c {uv}, and Uoe Wa’a(fl) such that
lima us uo, relative to the weak topology of WLI(D,); we have also u Uo. Finally we
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have

]L(u) I(u)-< lim inf I(us) lim ]L(us) lim inf 3(u),

* topology on the balls issince we proved that I is Wq-* lower semicontinuous and the Wq

weaker then the weak topology of W1’1 (I)); so we obtain (3.13). By (3.4) we have also
J2(u, y(u)) I(u) if u e Wl’a(lq) (and so we have a part of (3.14)). We obtain completely
(3.14) if we prove that the functional

.2(u,f)=lI(u) ifu WI’I() and f=y(u),
+ otherwise,

* x w 2*- lower semicontinuous.is Wq
*XW*

Let (u,f) W" (u,f), as in the proof of (3.13), if lim inf ]z(u, f) < +oo there
exists a subnet {(us, Is)} c {(us, L)} such that

lim .(us, [s)= lim inf .(u,, f), us e W’(D,), fs y(us)

and lims us u relative to the weak topology of W1’1 (’) and (by Lemma 3.1) relative to
the norm topology of LI(D,). Moreover we have for every G (C(Nn))",

fsGv dH.-1 fo fGv dH,,-1,

and

Io fsGv dH’-l
a
7(us)Gv dH’-l I Gus + I us div G’) I Gu +I u div G

foa "y(u)Gv dH,-1;

hence, we have f= y(u) and

.:(u,f)=.2(u, y(u))=I(u)<=limI(us)=lim.2(us, y(us)) lim inf z(u, L). [3

We observe by an example the difference between Theorem 3.2 and Theorem 3.4
(i.e., between (3.12) and, (3.13), (3.14))" the integrand L(x, u, v)= (1 + IvlZ) x/2 satisfies
the hypotheses of Theorem 3.2, then (3.12) holds; moreover we proved in 1 that in this
case Jz(u,f)=Ia (1 +[TU[2)I/2+oa[f--’y-(U)l dH,-i and so (3.13) and (3.14) do not
hold.
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK*

JACOB HAMMER" AND MICHAEL HEYMANNt

Abstract. An algebraic framework for the investigation of linear dynamic output feedback is
introduced. Pivotal in the present theory is the problem of causal factorization, i.e. the problem of
factoring two systems over each other through a causal factor. The basic issues are resolved with
the aid of the new concept of latency kernels.

1. Introduction. In recent years the system theory literature has seen a rapidly
growing interest in questions associated with linear feedback. In the early 1960’s, linear
control theory centered chiefly around quadratic (Gaussian) optimal problems and the
resulting feedback designs. Later, interest in feedback shifted to a variety of so-called
"synthesis" problems. These included the well-known problem of observer design (see
Luenberger [1966]), the pole shifting theorem and related issues (Wonham [1967],
Simon and Mitter [1968], Brash and Pearson [1970], Heymann [1968]) as well as the
decoupling problem (Falb and Wolovich [1967], Gilbert [1969], Wonham and Morse
[1970], Morse and Wonham [1970]). All of these feedback synthesis problems, as well
as many others, were formulated and resolved within the framework of state space
representations. While most of the work was done with the use of conventional state
equations, the work of Wonham and Morse was distinguished by its "coordinate free"
setting and initiated what later developed into the celebrated "geometric theory" of
linear control (see, e.g., Wonham [1979]).

The current growing interest in linear feedback differs significantly from that of the
past both in character and in its source of motivation. While previously the study of
feedback was largely oriented at problem solving, the current interest is motivated by a
desire of gaining insight into the general nature of linear feedback--chiefly from an
algebraic point of view. Much of the motivation for the present trend can be traced back
to the work of Rosenbrock 1970], in which polynomial matrix techniques were used for
the study of a variety of (linear) control theoretic questions. Particularly useful turned
out to be techniques based on polynomial fraction representations of transfer functions
(see, e.g., Heymann 1972], Wolovich 1974], Forney [1975], Fuhrmann [1976]). In this
setting of fraction representations, feedback was first studied in Heymann [1972] (see
especially Chapter 6 therein), and in a polynomial module framework the study of
feedback was initiated by Eckberg [1974]. State feedback also received attention in an
algebraic framework by Morse [1975]. A different approach to the study of linear
feedback was taker in Hautus and Heymann [1978], where the fundamental underlying
object was taken to be the input-output map of the system. There, static linear state
feedback was investigated in an algebraic framework consistent with the setting of the
(classical) module theory of linear realization as introduced by Kalman (see, e.g.,
Kalman et al. [1969, Chapter 10]). More recently, state feedback was also examined
in Fuhrmann [1979] using what he termed "polynomial models", and in Miinzner
and Pr/itzel-Wolters (1979a], [1979b], [1979c] in a module and category theoretic
framework.

While these various approaches to the study of feedback differ from each other
substantially both in the underlying concept and in philosophy, they commonly
converge on essentially the same (standard) issues that characterize state feedback. It is

* Received by the editors January 2, 1980.
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significant, however, that no success (and, in fact, very little effort, if any) has been
reported in respect to output, as opposed to state feedback. When various fundamental
questions in regard to output feedback are examined, it becomes immediately clear that
difficulties arise that are completely absent in the state-feedback setting. In fact, one
discovers immediately that crucial insight is missing. It turns out that the chief reason for
this state of affairs is the fact that all of the presently existing algebraic theory of linear
systems, and especially that of feedback, rests in one way or another on the theory of
modules over the ring K[z of polynomials and on polynomial matrices. This algebraic
machinery is completely satisfactory to develop a fairly comprehensive framework for
state feedback. It is not adequate, though, to deal with output-feedback where issues
associated with causality become significantly more intricate.

The present paper deals in a comprehensive way with the problem of causal output
feedback. A related question which receives a great deal of attention in the paper and
on which much of the theory hinges is the so-called causal factorization problem. This
is the problem of when a given linear input-output map can be factored over another
one by a causal linear map. Through the resolution of this issue, questions associated
with dynamic causal output feedback are then also resolved. Attention is also given to
the static factorization problem as well as the problem of static feedback where special
emphasis is placed on the state-feedback case.

A crucial role in the present theory is played by the newly introduced concept of
latency. In the discrete time setting, latency expresses "degree of causality" and
(intuitively) refers to the intrinsic delay which inputs encounter before output responses
are produced. Latency is algebraically expressed by modules over the ring K[[z-1]] of
power series (in z -1 over a field K). These modules arise in a natural way when the
concept of causality is studied algebraically and in fact are readily seen to be the natural
algebraic device for the study of feedback.

The paper is organized as follows. In 2 the basic concepts of AK-linear maps,
causality, linear i/o maps as well as linear i/s maps, which have been investigated in
detail in Hautus and Heymann [1978], are reviewed. The conceptual viewpoint, on
which the present investigation of feedback rests, is discussed in 3. An important
technical concept that arises in the algebraic study of linear systems both in connection
with the K[z]-module theory and the K[[z-a]]-module theory is that of "proper
bases" and "proper independence". This is the topic of 4. Section 5 is devoted to the
investigation of causal factorization, the main result being Theorem 5.2 and its
corollaries. Results are also obtained on static feedback (Theorems 5.10 and 5.14). In
6 the problem of invariants is investigated in detail and explicit characterizations are

derived and exhibited. The role of the latency kernels and latency indices is also
discussed. The paper is concluded in 7 with an investigation of the interesting question
of feedback (design) limitations. It is shown that the essential limitation to the
possibility of causal feedback implementation of precompensators is the system’s
latency. In particular, precompensators can be implemented as causal feedback devices
modulo a "precompensator remainder" whose dynamic order need not exceed the sum
of the system’s latency indices.

2. AK-linear maps, causality and input-output behavior. We shall adopt a
terminology and setup consistent with that of Hautus and Heymann [1978].

Let K be a field and let S be a K-linear space. The class of all truncated S-valued
Laurent series of the form

(2.1) s stz-t
t to
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is denoted by S((z-1)) or alternatively by AS. The polynomial subset of S, i.e., the set of
all elements of AS of the form Y.t<_oStZ -’, is denoted I+S. The power series subset of AS,
i.e., the set of all elements of the form Yt>__oStZ -t, is denoted fl-S. The set AK K((z-I))
of K-valued Laurent series is endowed with a field structure under the operation of
convolution as multiplication and coefficientwise addition. In particular, for a

toPaZ and a =t=6az in AK, the product a is given by

-t

t=to+t6 i=to

and the sum a + a’ is given by

)Z -t

=min (to, t6)

With AK as the underlying field it then follows that, with convolution as the scalar
multiplication and with the usual coecientwise addition, the set AS becomes a
AK-linear space. When S is a finite dimensional K-linear space, say of dimension n,
then so is AS as a AK-linear space. It is readily observed that; under the same opera-
tions of convolution as multiplication and coecientwise addition, the field AK contains
(as subobjects) also (i) the ring K[z ], or in our notation +K, of polynomials in z (ii) the
ring K[[z-X]], or in our notation O-K, of formal power series in z -’, and finally, (iii) the
field K itself. It, thus, follows immediately that the set AS is not only a AK-linear space,
but is simultaneously also an O+K-module, an -K-module and a K-linear space.
As we shall see, these facts turn out to be of central importance in the theory.

Now, we let denote the integers and for an element s AS, given by (2.1), we
define the order of s by

ifs0,
(2.2) ord s :=

if s=0.

If s 0 and to ord s, we call the coecient Sto the leading coecient of s.
Let U and Y be K-linear spaces. We shall call U the input value space and Y the

output value space of an underlying linear system . The AK-linear spaces AU and AY
are then called the extended input space and extended output space, respectively.
Elements u utz-’ AU and y y,z -t A Y, called, respectively, (extended) inputs
and (extended) outputs, are identified with time sequences {ut} and {Yt} (with being
identified as time marker).

Let f: AU AY be a K-linear map. We say that f is time invariant if

/(z. u)= z./(u)

for all u AU, so that f is time invariant whenever it is a AK-linear map (Wyman
1972]). Next, for a AK-linear map f" AU AY we define the order of f by

(2.3) ord := inf {ord fu) ord u 10 u A U}.

If the map f is the zero map then ord f := ; otherwise ord f<. While it is possible
that ord f=- we shall not concern ourselves here with this case and confine our
attention to maps of finite order. This is clearly always the case when U(and hence also
A U) is finite dimensional.

A AK-linear map f" AU AY is called causal if ord f 0 and strictly causal if
ord f > 0. The map f is called order consistent if for each 0 u AU

ord f(u) ord u ord f.
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Clearly, an invertible AK-linear map l’ AS AS’ is order consistent if and only if
ord ’- -ord l- A AK-linear map j is said to be order preserving (or instantaneous) if
it is order consistent and ord f 0. An invertible order preserving (and hence causal)
AK-linear map AS - AS is called a bicausal isomorphism (or simply bicausal) since
its inverse is then also causal. Finally, we call f nonlatent if it is order consistent and
ord f 1.

We now introduce the following (see also Hautus and Heymann [1978]).
DEFINITION 2.4. A map f" AU - AY is called an extended linear input-output map

(or extended linear i/o map) if it is strictly causal (i.e., ord f > 0) and AK-linear.
Let L denote the K-linear space of K-linear maps U- Y and let AL denote the

AK-linear space of all L-Laurent series. We identify this space with the space of
AK-linear maps AU - AY of finite order as follows. We define the K-linear maps

t" U AU" u u (canonical injection),
(.5)

p AY Y" Zy,z- y.

and with every AK-linear map f" AU AY we associate the Laurent series

(2.6) Zr(z -) := ZAtz-’,
where, for each k e ,
(2.7) A:=Ak(f):= f" ru.
The Laurent series (2.6) is called the impulse response or the transfer function of f. If
u Zutz -t AU is any element, then the action of on u is given by

(2.8) ’ U (At(f3z-t) (Utz-t) 2 2 (Ak(f3ut-)z-t"
k

It is thus immediately seen that

(2.9) ord f= min {klA() 0},

whence we have the following characterization of causality in terms of the transfer
function" The map f is causal gand only gAk(f) 0 for k < 0 and strictly causal gand
only gAk (f)= 0 for k O. We also have the following easily verified proposition.

PROPOSITION 2.10. Let f’AUAY be a AK-linear map of order ko (<m) and
transfer function Zf(z -) =koAkZ -k Then f is order consistent g and only g Ako is
infective (i.e., ker Ako 0).

The following is an immediate corollary to Proposition 2.10.
COROLLARY 2.11. Let I’ASAS be a causal AK-linear map with transfer

function ZoA(f)z-. Then is a bicausal isomorphism g and only g Ao(f) is
invertible, in which case Ao( f-) (Ao( ))-a.

We associate with an extended linear i/o map f a restricted linear i/o map f which is
obtained as follows (see also Hautus and Heymann [1978]). Inputs are restricted to the
subset +Uc AU, called the restricted input space, and consist of all inputs that
terminate at 0, i.e., elements of the form tNOUtZ-t. Outputs are observed only for

1, that is, in the subset z--Y which is, of course, in bijective correspondence with
the O+K-quotient module F+Y := A Y/O+Y which we call the restricted output space.
The restricted linear i/o map ’ O+U F+Y associated with is then defined by

f= "I

where j+" fl+U AU is the canonical injection and +" AY F+Y is the canonical
projection. Clearly, since + and j+ are fl+K-module homomorphisms, so is also and
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we have the following:
DEFINITION 2.12. A map [" f/+U --, F+Y is called a restricted linear i/o map if it is

an l+K-module homomorphism.
Next, we define the linear output response (or output value) map f" fl+U Y

associated with a given linear i/o map/r (or D as follows"

(2.13) f fl+U- Y" u -f(u) p, (u) p, [(u),
where (identifying F+Y with z-lf-Y)

(2.14) PI" F+Y Y" y,z-’--, y,.
t=l

A linear i/o map/r (or/r) is called reachable if the associated output value map f is
surjective.

If f" l+U Y is any K- linear map, it can be regarded as an output value map of a
linear system. In particular, the restricted and extended linear i/o maps associated with

f are then given by

(2.15) )(,u) X f(ztu)z -t-l, U I"+U,
t=>o

and
(2.16) (u) Y f(Sl’+(ztu))z -t-l, u AU,

where 1’+" AU -+ f+ U" utz-’-> Y-_o_UtZ.-t is the truncation operator.
The relation between the maps f, f and f is summarized by the commutative

diagram, Fig. 2.1, in which denotes the identity map.

AU -- A
ft+U F+y

I+U ,
FIG. 2.1

The output value map f, which gives for each (restricted) input the value of the
output at time 1, is clearly a K-linear map. In some special cases, there exists an
D,/K-module structure on Y, compatible with its K-vector space structure, such that
the output value map f is not just K-linear but is also an I)+K- module homomorphism.
When this is the case, then for each u I)+U and for each positive integer k, f(zku)
z kf(u), whence, by (2.15), knowledge of the output value at time t= 1 implies
knowledge of the whole ensuing output sequence. This is therefore precisely the case
when the system’s output "qualifies" as state, a fact which motivates the following
definition (for greater detail the reader is referred to Hautus and Heymann [1978])’

DEFINITION 2.17. An extended linear i/o map f: AU--> AY is called an extended
linear input-state (or i/s) map if there exists an l)/K-module structure on Y, compatible
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.+with its K-linear structure, such that the output value map f =/51’ f’! is an D.+K
homomorphism. The associated restricted map iv is called a restricted linear i/s map.

If Y and W are K-linear spaces and H" Y W is a K-linear map, then it induces in
a natural way a AK-linear map which we call static as follows:

(2.18) H AY ---) m W" ytz-t---)(Hyt)z -t.
In a similar way H induces also static f/K and f-K-homomorphisms.

We shall need the following characterizations of linear i/s maps, from Hautus and
Heymann [1978].

THEOREM 2.19. If f" AU - AY is an extended linear i/s map then

(2.20) ker/= ker ).
THEOREM 2.21. Let" AU AYbe a reachable extended linear i/o map. Then the

following are equivalent"
(i) f is an extended reachable linear i/s map.
(ii) Condition (2.20) holds.

(iii) For every extended linear i/o map g" AU AWsatisfying kerf c ker g (where
and , are the corresponding restricted i/o maps and where W is a K-linear space) there
exists a unique static map H" AY AWsuch that , H f.

3. Feedback and causal factorizationmgeneral considerations. We shall be
concerned with the setup described by the block diagram in Fig. 3.1.

FIG. 3.1

Here f’ AU AY is an extended linear i/o map, called the open loop system, g" A Y
AU is a causal AK-linear map called the (output) feedback compensator, /pr" AU - AUis a AK-linear bicausal isomorphism called (bicausal) precompensator and /po" A Y
AY is a AK-linear bicausal isomorphism called (bicausal) postcompensator. In case any
of the maps g, Ipr or /po is static we shall call it, respectively a static feedback, pre or post
compensator.

Now, since the map g is causal and f is strictly causal, it readily follows that the
composite maps f g’ A Y AY and g f’ AU AU are both strictly causal. Letting I
denote both of the corresponding identity maps, we see that both of the maps
(I + gf) AU AU and (I + fg) AY AY are bicausal isomorphisms. It follows that
the setup of Fig. 3.1 is "well-posed" in the sense that there is a strictly causal AK-linear
map AU A Y’ v w given by either of the following composite maps:

(3.1) v w 1-oo f" (I + gf---)-I l-or](V),
(3.2) /) W [/-po" (I -[- Tg)-1" f’ l-pr](U).
Using again block diagrams, (3.1) and (3.2) can be described, respectively, as in Fig.
3.2a and 3.2b.

In both descriptions, the dashed blocks represent bicausal mappings, so that
the compensator configuration of Fig. 3.1 can always be represented equivalently
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(I + gf)-i
u w

(a)

or I, (l / f)

FIG. 3.2

(6)

by the original system preceded and followed by bicausal compensators, with the
feedback compensator represented, as one chooses, either as a precompensator or a
postcompensator.

Because of the obvious duality between the precompensator situation and the
postcompensator situation, there is no need to discuss both of them in detail. Since
practical interest in postcompensators is at best limited, we shall henceforth confine our
attention to precompensation, and discuss postcompensators only in connection with
certain mathematical questions.

For various reasons, not to be elaborated on here, feedback compensation is
preferred over external compensation whenever possible. Thus, one is interested in the
following problem.

Causal feedback problem 3.3. Let f" AU AY be an extended linear i/o map.
(a) Under what conditions can a given bicausal AK-linear isomorphism l" AU -AU be represented as feedback, i.e. under what conditions do there exist a static map

L" AU AU and a causal AK-linear map " AY A Y, such that --1 L + f?
(b) Under what conditions (on f) can every bicausal be represented as feedback?
Let AU AU be a bicausal AK-linear map, and let

Z r-l(Z-1) Ltz -t

t=0

denote the transfer function of --1. We can then write

Z r-l(z -1) Lo + Y Ltz -t Lo + Z/(z-1),
t=l

where Lo is a static AK-linear map and Z(z -1) is the transfer function of a strictly
causal map /" AU-AU representing the strictly causal part of --1. Hence we can
always decompose the map --1 as

-l=L+h-
with L static and h strictly causal. The causal feedback problem 3.3 is therefore
essentially equivalent to the following.

Causal factorization problem 3.4. Let f’ AUAY be a given strictly causal
AK- linear map.

(a) Under what conditions can a strictly causal AK-linear map h" AU AU be
factored causally over f, i.e., when does there exist a causal map g’ AY AU such that
h=.f?

(b) Under what conditions can every strictly causal AK-linear map h AU- AU
be factored causally over f?
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It is readily noted that the strict causality of the maps f and h is inessential to the
causal factorization problem, and arises in problem 3.4 only because of the specific
requirements of the feedback problem. Indeed, if h factors causally over f, i.e., if there
exists a causal g such that/= f- then for each integer k we also have zk/ zkgl=
g (zff) so that zhfactors causally over z) and for sufficiently large positive k (unless
/ or/v are zero) the maps zk/ and zk/r are not causal. Thus, the causal factorization
problem can be stated in the following less restrictive way"

Given two AK-linear maps f’ AS AY and h" AS AW (where S, Y and W are
K-linear spaces), when does there exist a causal AK-linear map g" A Y - AW such that
the following diagram in Fig. 3.3 commutes

AS AW

AY

FIG. 3.3

If the causality requirement of is dropped, the factorization problem is standard
(see, e.g., Greub [1.967]) and h factors over f if and only if ker f ker h. Yet this
condition does not say anything about the causality of g. To deal efficiently with the
causality issue, we reintroduce the concept of causality using an approach which is
algebraically more tractable.

Let f" AU AY be a AK-linear map. We can characterize causality of f as follows
(compare with our definitions of causality in 2)"

(3.5) The map f is causal if and only if u f-U implies f(u) f-Y.

Similarly, we have"

(3.6) The map f is strictly causal if and only if u zII-U implies f(u) e D,-Y.

Let us denote the 12-K-quotient module A Y/12-Y by F-Y, and let 7r-" A Y F-Y
denote the canonical projection. The following can then be easily verified by the reader.

PROPOSITIOrq 3.7. Let f" AU- AY be a AK-linear map.
(a) The map f is causal if and only if I)-U ker 7r-f.
(b) The map f is strictly causal if and only if z I)-U ker zr-f.
(c) The mapis order consistent ifand only if, ]:or some integer k, z
(d) The map f is instantaneous if and only if I)-U ker zr-f.
(e) The map ]’ is nonlatent if and only if z fI-U ker zr-f.
We shall use the characterizations of the above proposition extensively in the

following sections.

4. Proper independence and proper bases. LetK be a field and let S := K’. For an
element 0 s AS, denote by g the leading coefficient of s. If s 0 we shall say that

DEFINITION 4.1. A set of vectors sl, , s AS is called properly independent if
their leading coefficients gl, , s S are K-linearly independent.

Below we derive a variety of properties of properly independent sets, of proper
bases and of proper direct sum decompositions. Our objective is to develop this theory
here only to the extent required in the sequel. Many further results have been omitted,
and the reader can, for example, easily verify that the converses of a number of our
results are also valid. A more extensive exposition of this.and related topics will be
published elsewhere.
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LEMMA 4.2. If Sl, Sk E AS is a properly independent set of vectors, then (i) it is

AK-linearly independent, and (ii) for every set of scalars a 1," , ak AK the following
holds"

k

ord Y aisi =min {ord aisili 1,..., k}.
i=1

Proof. We shall prove the lemma by showing that if either (i) or (ii) fails to hold
then the set sl, , sk is not properly independent. If al, , ag AK is any set of

k
scalars then, by definition, ord "i=10giSi r:=min {ord agsgli 1, , k}. If either (i) or
(ii) fails to hold, there exist a 1, , ak AK, not all zero, such that either=10giSi 0

k
or ord "i=10l’iSi > r. For each i= 1,..,, k define

1 if ord Ol.iS r,
Ei :--

0 if ord Ol.iS > r,

k
and consider the terms of order r in ,Ol.iSi. This yields "i=1 EiOgiSi "--O, implying that
gl, ’, Sk are K-linearly dependent since not all the Eiti are zero. Hence S , sg are
not properly independent, completing the proof.

The condition of Lemma 4.2(ii) has been called the "predictable degree property"
ih Forney 1975], in the (analogous) setting of "minimal polynomial bases" for rational
vector spaces. We shall adopt this terminology and call the property of Lemma 4.2(ii)
the predictable order property.

DEFINITION 4.3. Let c AS be a AK- linear subspace. A basis {Sl, , Sk } of is
called proper if the vectors s1,’", Sk are properly independent. The basis is called
normalized if for each 1,. ., k, ord sg 0.

To avoid possible confusion in the ensuing discussion where we shall deal with both
K-linear and AK-linear spaces, we shall use subscripts to emphasize the field. Thus, for
example, spanAK {Sl," ", Sk} denotes the AK-linear subspace spanned by Sl, , Sk
AS, whereas spanK {fiX, ffk} denotes the K-linear subspace spanned by
S. Similarly, dimAK denotes the dimension of a subspace c AS as a AK-linear space
(to distinguish from K-linear). We next have the following theorem.

THEOREM 4.4. Every nonzero AK-linear subspace AS has a proper basis.
Moreover, every properly independent subset of can be extended to a proper basis.

Proof. Let 0 s E be any vector. Then S is properly independent. We shall
complete the proof by showing that if sl, , s are a properly independent set and
ifk := spanAK {S 1, ", Sk } is a proper subspace of , we can find a vector Sk/ such
that the set {sl,’’’, Sk, Sk/l} is also properly independent. The proof is by contradic-
tion. Assume that k c is a proper subspace, let s/l be such that the set
{sl,’’’, Sk, S/I } is AK-linearly independent and, without loss of generality, assume
that this set is also normalized. Let k/l := spanAK {Sl, ", Sk, S/I} and suppose that
there is no vector s k/l such that the set {sl, , Sk, S} is properly independent. This
means that for each s E k+l, . k :-" spank {gl,""", gk}, contradicting, as we shall
see, the AoK-linear independence of Sl," ,kSk, Sk+I. Indeed, we observe that there are
scalars a 1," , a k K such that +1 Yi=l tĝsg. Let n0:=O and set Sk+I :--Sk+l-

k
g= a z sg, so that ord s ,+1 > ord s k +1. We now form a sequence of vectors {s , +1 },
0, 1, 2, , with s ,/1 Yk/1, such that ord s k/ > ord s ,

/1 for all 0, 1, 2, as
t+l k

follows" For each t, set nt ord s,/l and let s k/l :-- S/I g= a gZ Si, where the
scalars a , a , K satisfy the condition that s+1 i= a isi. Upon defining

k
ai := ,to a iz AK, 1, ., k, it is readily verified that s k+l Yi= aisi O,
whence s/l k, a contradiction.
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COROLLARY 4.5. Let c AS be a AK-linear subspace. Then dimA dim:,
where := spank {g]s Y }.

Let Y c AS be a AK-linear subspace. If Y =Yl(R)Y2 is a direct sum decom-
position of Y into AK-linear subspaces Y and Y2, then, in general, f3 2 7(: 0 SO that
-1+2. This leads us to the following
DEFINITION 4.6. A direct sum decomposition Y=YlY2 of a AK-linear

subspace c AS into AK-linear subspaces Yl and 2 is called proper if 1 (’1 2 =0.
The subspace 2 is then called a proper direct summand of 1.

With the aid of Corollary 4.5 it is readily seen that a direct sum decomposition is
proper if and only if 1 + 2. Thus, 1(2 is a proper decomposition if and
only if there are proper bases Sal, ’, Skl of Yl and s21, Szk2 of2 such that the set
six," ’, sl, szl,. , sz2 is a proper basis of . We then have the following further
corollary to Theorem 4.4.

COROtLAR 4.7. Let AS be a AK-linear subspace. Then every AK-linear
subspace YtI has a proper direct summand in .

Finally, we also have the following variant of the predictable order property.
COROLLARY 4.8. Let 2 be a proper direct sum decomposition of a

AK-linear subspace AS. Let s S + s2 be the representation ofany vector s , with
si i, 1, 2. Then ord s min {ord Sl, ord s2}.

Proof. By definition, ord s -> min {ord s l, ord s2}. If the above inequality is strict,
there exist scalars al, 2 K, not both zero, such that aga + 22 --0 contradicting the
fact that 1 52 0. [3

5. Causal factorization. We turn now to the causal factorization problem (3.4). As
we mentioned earlier, there is no essential need, in characterizing causal factorizability,
to assume strict causality, or even causality, of the maps under consideration. We shall
therefore begin with the general case and turn to specific consideration of i/o maps later
on. We shall assume that the spaces U and Y are finite dimensional, in particular that
U K and Y Kp. For convenience of notation, we shall temporarily use the
notation AU and A Y also in connection with AK-linear maps f" AU --> A Y that are not
necessarily i/o maps (i.e., are not necessarily strictly causal).

Let f’AU-AY be a AK-linear map and let zr-’AY-F-Y:=AY/I-Y be the
canonical projection. Since -Y is an fl-K-module, so is the quotient A Y/-Y. Thus
the map zr- is an l-K-homomorphism and so is also the composite r-f. We have

LEMMA 5.1. Let f" AU - AY be a AK-linear map and let zr- A Y - F- Y be the
canonical projection. If Y ker zr-f is a AK-linear subspace, then Y ker f.

Proof. Assume u
ker zr-f for all a AK. Thus f(au)=af(u)l-Y for all a AK, whence f(u) 0 and
u ker f as claimed.

Next we have the following central theorem.
THEOREM 5.2. Let f: AU - AY and h" AU AW be AK-linear maps, where U,

Y and W are finite dimensional K-linear spaces. There exists a causal AK-linear map, A Y AWsuch that h g f if and only if ker rr-f c ker rr- h.
Proof. Suppose h g f with causal. Let u ker rr-f. Then f(u) YUY, and by

causality of g (see Proposition 3.7(a))
whence u ker rr-g f ker rr-h. Conversely, assume that ker rr-f c ker rr-h. By
Lemma 5.1 this implies that kerf ker h whence by a standard theorem of linear
algebra (see, e.g., Greub [1967]) a AK-linear map g’ AY AW such that h g. f
exists. It remains to be shown that the map g can be selected to be causal. To this end
write AY Im f Y, where Im f is the image of f and 5 is any proper direct summand
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(see Corollary 4.7). Let go" A Y AW be any AK- linear map that satisfies the condition
that h o" f and let gl" Im f- AW be the restriction of o to the image of f. Let
p" A Y - Im f denote the projection onto Im f along Yt; that is, if y y "+- Y2 t A Y is the
decomposition of y into its components Y e Im f and y2 e Yt, then py yR. Clearly, p is
AK-linear, and we shall see that the map g ga’p satisfies the conditions of the
theorem. First observe that for u e A U,

f(u)= 1" pf(u)= of(u)= h(u),

so that g. f h. To see that g is causal, let y ya + y2G -Y, where ya e lm ]" and
y2 G . By Proposition 3.7(a), the proof will be complete if we show that y 6 ker rr-.
Indeed, Corollary 4.8 implies that both ya and y2 are in D.-Y so that . y a" py
1 ya o" f(u) for some u ker rr-fi But by hypothesis ker 7r-f c ker rr-h, whence, y ,o f(u) h(u) I)-W so that y e ker 7r as claimed.

Theorem 5.2 clarifies the significance of the f-K-module ker 7r-f in connection
with the causal factorization problem (and consequently also with feedback). We call
this module the latency module or latency kernel of f.

COROLLARY 5.3. Let f" AU- AY be a AK-linear map of finite order. Then f is
order consistent if and only if for every AK-linear map h" AU AW which satisfies
ord h _-> ord f there exists a causal AK-linear map , A Y AWsuch that h

Proof. Recall that a map f is order consistent if ord f(u)-ord u ord f for each
0 u A U. Suppose f is order consistent and ord h _-> ord fi Let 0 u e ker 7r-f. Then
f(u)fl-Y and ord f(u)>--O. Now ord h(u)-ord u _->ord h _->ord f=ord f(u)-ord u,
whence ord/(u) _-> ord/(u) _-> 0, so that u e ker zr-h-, implying that ker 7r-fc ker zr-h-.
By Theorem 5.2 the existence of a causal such that h =. f is thus assured.
Conversely, suppose f is not order consistent and that h is an order consistent map
satisfying ord h =ord fi Then there exists 0# u eAU such that ord f(u)>ord
ord u =ord/+ord u =ord/(u). If k :=ord )(u), then 0=ord (zku)>ord (zku) SO

that zku ker 7r-/r but zku
_
ker zr-/. Hence ker r-)r ker r-/ and by Theorem 5.2

there does not exist a causal such that h f, completing the proof.
Thefollowing corollary which is an immediate consequence of Corollary 5.3 is of

central interest in our study of causal factorization since it deals with linear i/o maps
and gives us an important characterization of nonlatency.

COROLLARY 5.4. Let f’AUAY be an extended linear i/o map. Then f is
nonlatent ifand only iffor every strictly causal AK-linear map h" AU -, AWthere exists a
causal AK-linear map g" A Y AWsuch that h g. f

Let ]’" AU - AY be an extended linear i/o map and let AU - AU be a bicausal
isomorphism, i.e., a bicausal precompensator for f. Let h be the strictly causal part of
--a i.e --a= L +/ where L is static. As we have seen in 3 - can be realized as
feedback around f if h factors causally over f. Theorem 5.2 tells us essentially that the
only barrier to realizing a bicausal precompensator as feedback is the relative latency of
f and h. Corollary 5.4 characterizes the class of i/o maps over which every bicausal
precompensator can be realized as feedback. These i/o maps are, as we have seen, the
nonlatent maps (a fact which motivated our choice of terminology). Now, a very special
and important class of nonlatent maps is that of injective i/s maps. This fact is proved in
the following theorem.

THEOREM 5.5. Let f" AU AYbe an infective linear i/s map. Then f is nonlatent.
Proof. By strict causality of f we have that z tI-U ker zr-f, so that to prove

nonlatency we need only to show that ker 7r-f z II-U. Let u e ker zr-f so that
7(u) e II-Y. Write u u++ u-, where u/ezII+U and u-eztI-U. The proof will be
completed by showing that u

/ 0 so that u ztI-U as claimed. Note that f(u-) e II-Y
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4)by the strict causality of f so that, in view of the fact that f(u) f(u + f(u-), it follows
that/r(u+) D,-Y. By (2.16) we have

(u /) E f(se+(z’u+))z -’-1 f-r,
t’

so that, in particular, f(St’/(z--u+))=O. But z-2u+f/U, whence/(6e+(z-2u+))
f(z-2u +) 0 implying that z-2u + ker f ker )r (the equality being a consequence of
the i/s property (2.20)). It follows that (z-2u +) f+Y, or alternatively, that )V(u +)
z2O/Y. Since z2f+Y fq f-Y 0, we conclude that/r(u/) 0 or that u /= 0 by the
injectivity of f. l-I

While Theorem 5.5 deals only with infective i/s maps, it is important to observe
that this is not a serious restriction. Indeed, it is shown in Proposition 5.6 below that in
the special case of i/s maps (in contrast to i/o maps in general), the kernel is "static";
i.e., if/r is a noninjective i/s map, then ker/r AU where U c U is a subspace. This
means that the whole degeneracy lies in the input value space U which has been chosen
too large, and by restricting the input value space to a proper summand of U in U, the
injectivity is restored.

PROPOSITION 5.6. Let f" AU A Ybe an extended linear i/s map. Then there exists
a subspace U U such that ker )r AU.

Proof. Let i," U D./ U" u u be the canonical injection and define the subspace
U c U as U := kerf. i,, where f is the output value map associated with ] Since f is
an i/s map we have kerf. i, ker )r. i, ker/r. u with the last equality holding by the
strict causality of [- Thus ,(U) ker/ and since ker f is a AK-linear space we
conclude that AU ker ] To prove that ker/re AUo, it suffices to prove that if
0 u =Yt=to utz-t kerf then Uto U. By recursive application of the same
argument this will then imply that ut U for all >- to. Now by formula (2.16) we have
f(Sl’+(zku))=O for all k 7/, and since Y+(ztu) Uto the results follow. I-1

The importance of Theorem 5.5 lies in the fact that it tells us that bicausal
precompensation is equivalent, in the sense of solvability, to dynamic state feedback.
Let f" AU AY be an extended linear i/o map. We write (see Hautus and Heymann
[1978]) f H. f, where H is a static output map and f is a reachable i/s map. If f is
injective (which is always the case when kerf does not contain a subspace of the form
AS, 0 S c U), then every bicausal precompensator can be realized as feedback around
]v. That is, we can write every bicausal " AU AU as -a L + ]v, where " AY- AUis a causal AK-linear map and L is static.

Before we proceed with our general investigation, it is worthwhile to record one
more consequence of Theorem 5.2.

COROLLARY 5.7. Let fl, f2 AU AYbe two extended linear i/o maps with Uand
Yfinite dimensional K-linear spaces. There exists a bicausal AK-linear map AY A Y
such that f2 fl if and only if ker r-fl ker 7r-f2.

Proof. First, observe that if a bicausal exists then, by Theorem 5.2, it follows
immediately that ker zr-fl ker zr-f2. Conversely, assume that ker r-fl -ker zr-f2
and write A Y Im f1031 Im f2()2 where1 and2 are proper direct summands.
By Theorem 5..2 there exist causal maps ix, [2. A Y--, A Y such that [lfl f2 and
[2/2 fl. Hence [2. iv ]rl, and letting [1" Im f-1--* A Y denote the restriction of [1
to the image of f-l, it is readily verified that F1 is order preserving. Now, ker 7r-f-1
ker zr-f2 implies that ker fl ker rE, whence dim Im fl dim Im f2 and dim 1
dim 2. Let l"2"1--* A Y be an order preserving map satisfying Im [2 2 and let
p’ A Y--, Im f denote the projection along 1. We claim that the map A Y- A Y:
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y- llpy + 12(I-p)y is a bicausal isomorphism and that fl f2. Indeed, to see the
latter property, note that for any u 6 AU we have

Ifx(U) l-lPfx(U)+ l-2(I-p)fl(u) "[’1" fl(tt) -1-fx(b/)- f2(b/).

To see the bicausality of it suffices to show that it is order preserving. Indeed, let
y yl + y2 e AY be any element with yl 6 Im fl and y2 1. Then ly llyl + 12y and,
using Corollary 4.8 together with the fact that Im 1 and Im ’2 form a proper direct sum,
we have that ord 1-y =min {ord ’lYl, ord /-2y2}-min {ord YI, ord y2}, where the last
equality follows from the order preserving property of 1 and 1"2. Using Corollary 4.8
again, together with the fact that Im fl and 1 form a proper direct sum, gives that
min{ordyl, ordy2}=ordy whence ord/y=ordy as claimed and the proof is
complete.

Clearly, the bicausal AK-linear map of Corollary 5.7 can be regarded as a
bicausal postcompensator for fl, and there is a kind of duality between feedback and
compensation which deserves some further comments.

Let f" AU A Y be an extended linear i/o map and let/pr" AU AU be a bicausal
precompensator for f. If " AU AU is the strictly causal part of /pr, then the causal
feedback problem is that of existence of a causal AK-linear map g" A Y AU such that. f. The map g can be regarded essentially as a causal (but not necessarily
bicausal) postcompensator for f. Conversely, if Ipo" AY- AY is a bicausal post-
compensator and if " AY- AY the strictly causal part of /po, the dual of the above
causal factorization problem is that of the existence of a causal AK-linear map
g" AYAU such that f.g. Here g can be viewed as a causal, but again not
necessarily bicausal, precompensator for f. Thus the pre- and postcompensator prob-
lems become interrelated through feedback. We can also write down the dual of
Corollary 5.7 regarding the problem of bicausal precompensation.

COROLLARY 5.8. Let fl, f2" AU A Ybe two extended linear i/o maps with Uand
Yfinite dimensional K-linear spaces. There exists a bicausal AK-linear map AU AU, -, -, -,such that f2 f if and only if ker zr [1 ker zr [2, where f and f2 denote the dual
maps of fl and f2 respectively.

In Corollary 5.8 the dual maps ivy, and f-z* can of course be identified with the
transposes of the corresponding maps (or transfer functions) in view of the finite
dimensionality of the underlying spaces.

In Hautus and Heymann [1978], the static state feedback problem was investi-
gated. This is the following problem" Given an extended linear i/s map f" AU- A Y,
under what conditions can a bicausal precompensator l" AUAU be written as
--1 L + Gf-, where L and G are static maps. It was shown there that a necessary and
sufficient condition for the static state feedback problem to have a solution is that

(5.9) ’-l(ker ) c D,+ U,

where/z, f+U F+Y is the restricted i/s map associated with f[ We now turn to the
more general question of static output (rather than state) feedback. As we have been
doing throughout this paper, we focus our attention on the static factorization problem
which is characterized in the following

THEOREM 5.10. Let f" AU AY and h AU AW be AK-linear maps. There
exists a static AK-linear map G" AY
ker Pl h.

Proof. Assume first that G exists so that h G f. Then u ker Pl f implies that
1 f(u) 0, whence/01 h(u) 1 G f(u)= G 1 f(u) 0, so that u ker ,61 h.
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Conversely, assume that ker ffl fC ker ffl /. This implies the existence of a K-linear
map G" Y- W such that/51 h G./51 f. By definition of static maps (see (2.18)), we
have that G /71 =/51 G so that pl(h G f) 0. That this implies h Gf 0 is seen as
follows. Suppose to the contrary that (-G. f-)(U)--tzzytz -t :0 for some u AU.
Then there exists k Z such that y 0. Let z-lu and note that p(-Gf()=
Pl tez Ytz-t+k-1 Yk # 0, a contradiction.

We shall conclude the present discussion by specializing our static factorization
results to the case of linear i/s maps. We need the following lemma.

LEMMA 5.11. Let f’AUAY be an injective extended linear i/s map. Then
ker +f +U.

Proof. Let ueker*[ be any element. Then (u)e+Y so that fla. f(u)=0.
+ + + -l-Write u u + u where u e U and u z U. Then by the strict causality of

it follows that f(u-)e- z-2-Y and ffl" f(u-)- 0. Hence ffl" f(u-- +)
Pl" (u)- Pl" f(u-) 0 and u + e ker Pl" f" j+ kerf ker the last equality follow-

+) +ing from the i/s property of f. We conclude that f(u Y so that also (u-)
f(u) f(u +) e fi+ Y. Hence f(u-) e +Y z-2 Y 0 and, by the injectivity of f, u-
0 concluding the proof.

COROLLARY 5.12. Let f" AU + AYbe an injective extended linear i/s map and let
h" AU + AW be a strictly causal AK-linear map. Then there exists a static map G"
A Y + AW such that G fg and only g ker+c ker +.

Proof. If G exists such that G f then u e ker+implies that f(u) e + Y, so
that h(u) G f(u)e O+W and u e ker Conversely, suppose ker +fc ker +.
We will show that this implies that ker ffl f c ker ffa h, from which the existence of G
is insured by Theorem 5.10. Let u e ker ffl f be any element and write u u + + u-,
where u+e O+U and u- z-l-u. Then, by strict causality of both and it follows
that f(u-)Gz-2-Y and (g-)z-2-W yieldin ffl(R-)=0 and plff(R-)=0.
Hence, u u u ker fill SO that u kerf ker f, the last equality following from
the i/s property of f Consequently u+e kerc ker r+fc ker +ff c ker ffl the last
inclusion holding by definition. Thus u=u +u e kerffah, and the proof is
complete.

Let f" AU + A Y be a reachable linear i/s map. Let 1" AU + AU be a bicausal
isomorphism and write f-a L + h where L is static and is strictly causal. Corollary
5.12 can then be interpreted as a solvability condition of the static state feedback
problem. Clearly, the condition of the corollary must be equivalent with condition (5.9)
which was obtained in Hautus and Heymann [1978]. We shall see next (Theorem 5.14
below) that this is indeed the case. We require the following lemma.

LEMMA 5.13. Letf’AU+AYbeanextendedlineari/smapandleth’AU+AW
be a strictly causal AK-linear map. Then ker c ker only if kerfc ker h

Proof. Assume that kerf ker h and let u kerf satisfy h(u) 0. Then there
exists k Z such that +(zku)# 0 SO that by the strict causality of we have that
O#+(zku)e+U and +(+(zku))=(+(zku))O. However, f(zu)=0 and
upon application of Proposition 5.6 we also have that (+(zu))=0, whence
+(zku) ker Thus ker ker and the proof is complete.

THEOREM 5.14. Let f" AU+ AY be a reachable extended linear i/s map. Let

" AU + AUbe a bicausal AK-linear map and write - L + where L is static and is
strictly causal. Then ker +fc ker +ff g and only g -l(ker )c +U.

+.Proof. Suppose ker +fcker Let u ker be any element Then u
L. Hence ueker h, and since ue U we also have that ueker +

+L r+ r+f-1 f- +(ker r+)(ker )c (+L) ker so that (u)e U. Conversely,
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assume that -l(ker ]) c f+U. This immediately implies that ker ire ker/ whence, by
/ / / /Lemma5.13, kerf=kerh. Nowletukerr and writeu=u +u withu U

and u-6z-XO-U. Then (u-)z-ZO-Y, and since (u)+Y we conclude that
OR. (u +) 0. This implies that u + ker f ker (with the equality holding since is an

+ +. + Ui/s map) so that u e ker ker u Finally, u ker implies that (u +) +
whence [2u-) [(u)- (u +) fl+ Y. But then [(u-) fl+ Y z-fl Y 0, so that

h. This implies that u=u +u ker h,u-kerfkerh, and hence u ker +- + +-

concluding the proof.

6. Faetodzation invariantsexplidt calculation. Throughout this section we
shall assume that U K and Y Kv, and we shall study properties of AU as an
-K-module as well as properties of submodules thereof.

The ring -K is o course a principal ideal domain, and dearly also a Euclidean
domain. The units of fl-K are precisely those elements whose order is zero and each
element 0 a fl-K can be expressed as

-ord
Z 0

where Co f-K is a unit. It is clear, therefore, that all the ideals of I)-K are of the form
(z-k), forming a chain with (z -1) being the unique maximal ideal and the only prime.
Thus, the ring f-K is also a local ring and f-K/(z -1) is a field, isomorphic to the field
Yfo which consists of the units of f-K augmented by zero. We shall make use of the
special properties of the ring I)-K in the ensuing discussion.

For a fixed integer k, consider the subset z -kf-U c A U. Clearly, this subset is an
I]-K submodule of A U. Moreover, while AU itself is not a finitely generated f-K-
module, the submodule z-kl]-U is (and hence is a free module). In fact, it is readily
noted that rankn-r z-k[’-U dimAr AU =dimr U. Indeed, if {el, e,,} is a basis
for U (as well as for AU), then {z-el, ", z-kern} is a basis (i.e., a free generator) for
-kz f-U.

Let 0 # A c AU be an fl-K-submodule. We say that A is of finite order if there
exists a finite integer k such that A z -kfI-U. The maximal integer k for which the
above holds, and which is the least order of elements in A, is denoted ka and is called the
order of A. We define the order of the zero module as infinity. We have the following:

PROPOSITION 6.1. Let O#A AU be an fl-K-submodule. Then A is finitely
generated if and only if it has finite order.

Proof. If A has finite order there exists a finite integer k such that A is a submodule
of z-kfl-U which is, of course, finitely generated. Since I]-K is a principal ideal
domain, A is then also finitely generated. Conversely, if A is finitely generated, say by
elements dl, ,dm A, then clearly A z--kA’]--U, where ka := min {ord d,
1,...,m}.

Let h AU be a finitely generated D.-K-submodule. Then, by Proposition 6.1, it is
of finite order and hence rank A-< dim U (= rn). Let A be of rank n and let d,. ., d,
be a basis for A. Define the iYK-homomorphism D" 12-K" h by De d,
1,.. , n, where e,.. , e, denotes the natural basis for K" (as well as for 12-K). We
can view D also as a matrix with entries in AK by regarding d AKIn(= AU) as the ith
column of D. Conversely, if D is an tn n matrix with entries in AK, we can regard D as
an -K-homomorphism -K AU" e->d, i= 1,..., n, where deAU is the ith
column of D. The image A DI2-K":={Dwlw 12-K’} is an -K-submodule of AU.
Clearly, rank A rank D, where rank D is the matrix rank of D over the ring -K (or
over AK).
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Consider now the special case when n m (that is, K"= U) and let D be a
nonsingular rn rn matrix with entries in AK. Then D defines, as above, an lq-K-

homomorphism D,-U AU and also (when simply regarded as a transfer function) a
AK-linear map AU A U. Denoting both maps by the same symbol D, it is readily
verified that the diagram in Fig. 6.1 is commutative,

AU

f-U -AU
D

FIG. 6.1.

where /’- denotes the canonical injection. Since the matrix D is nonsingular, the
AK-linear map D is invertible. We shall say that the matrix D is bicausal if the
associated AK-linear map is bicausal, i.e., if the entries of D are in Iq-K and its
determinant is a unit in this ring (that is, has order zero). In analogy we shall say that a
matrix D is strictly causal or causal if so is the associated AK-linear map. Finally, an
fYK-submodule A DI)-U AU is called a full submodule if rank A m, i.e., if the
matrix D is nonsingular.

THEOREM 6.2. Let A1, A2 AU be finitely generated l)-K-submodules given by
A DxI)-Uand A2 D2fY U. Then A2 A1 ifand only if there exists a causal matrix R
(i.e., with entries in I)-K) such that D2 DR.

The proof of Theorem 6.2 is elementary and will be omitted. The following
corollary will be useful in the sequel.

COROLLARY 6.3. Let A1, A2 AUbe finitely generated fYK-submodules given by
A =DfYU and A2 =D2fYU. Assume that A is full and define R:=D-(D2. Then
A2 A1 if and only ifR is causal with equality if and only if R is bicausal.

Let A AU be a finitely generated D,-K-submodule of rank n and order ka. Then
for all integers/" <= ka, A z -iI)-U and for each integer >= ka we define the submodule
A A by

(6.4) Ai := A fq z-ifY U.

Clearly z-it)-U c z-k,)-U for all j -> k, and it follows that

(6.5) A Alca Ak,x+ . Ai A/ ..
-1As an immediate consequence of the fact that if u At then z

rank A rank A. for all / and the quotient modules
u At+l, it is clear that

(6.6) i :--" At/At+l
are all torsion modules with z -1 as annihilators, that is, for each/" and for each [u
-1z [u 0. Next we shall show that the sequence of quotient modules {@t} is isomorphic

to a chain {St} of (finite dimensional) K-linear subspaces of U, that is, each @t is
isomorphic to a subspace St C U and

(6.7) 0 Skzx-1 Sk,x Skzx+l " St " U.

Indeed, each element in t is an equivalence class [u] of elements in At. A represen-
-k Z -ktative u [u] can be expressed as u .,,=tu,z If u ,k=tuz -k and u"=

are any two elements in the same equivalence class [u] then, since u’-u" At+l, it
follows that u u’. Thus, with each equivalence class [u] is associated a unique leading
coefficient u (of z-t). We can now define the map "yt’@t-- U’[u]-- ut. Naturally the
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map Yi is K-linear since yi([u]+ [u’]) yi([u + u’]) u. + u and yi(aEu]) yi(Eau])
au.. It is also clear that %. is injective, since ker Yi Ai+l [0]. Now, for each integer
we define Si := Im (y.). Clearly S. is then K-linearly isomorphic to @. and $. S.+1 with

Sk--I 0 for all/" _-> 0. Also, by the finite dimensionality of U, there exists an integer
ka (->ka) such that Ska-1 7 Sk and Ska+j---Sk for all j->0. We call the chain {S.} the
order chain of A, and the sequence of integers {ix.}, Ix. := dim Si, we call the order list of A.
In the special case when A ker rr-f where f is a linear i/o map, we refer to the order
chain and the order list of A, respectively, also as the latency chain and latency list of f.

It is interesting to observe that the integer k a is also the least integer satisfying the
condition that z-1Aj Aj+ for all j >_- k a. Indeed, we have seen that z-lA A.+ for all
/’. To see that z-aAiA.+ if and only if f->_k a, let u= -k2k]+1UkZ. A+ be any

-Ielement. Then we can write u- z u where u -k.Uk+,Z z-’i)-U, and clearly
u -IA. if and only if u’ A. This can hold for every u A+I only if Si+, S., whence
the necessity that/" -> ka. The sufficiency of the condition is an immediate consequence
of Theorem 6.11 below.

Next we have the following useful result.
LEMMA 6.8. Let A AU be a finitely generated fFK-submodule with order chain

{Si} and order list {ixi}. Then dim Sk rank A.
Proof. Let rankA=ix, let da,...,d, be a basis of A and define

Y :=spanA: {d,..., d,}. It is easily seen that Y is the smallest AK-linear space
containing A and dimArY rank A. The AK-linear space Y has a proper basis and (by
Corollary 4.5) dimAzY/= dim 9. But clearly Sk and the proof is complete.

Let {S.} and {S} be the order chains and {ix.} and {ix} the order lists, respectively,
of submodules A and A’ of AU. We shall say that {S} is a subchain of {S.}, denoted
{S}c {Si} if, for all j, S c S.. Similarly we say that the list {ix} is smaller than the list
(ix.}, denoted {ix } < {ix.} if Ix Ix. for all integers . As an immediate consequence of the
definition we have the following,

PROPOSITION 6.9. Let A,A’ c AU be f-K-submodules with order chains {Si} and
{S} and order lists {ix} and {/x}, respectively. If A’ A then {S} {S} and {ix}-< {ixi}.

Let A=AU be a finitely generated fFK-submodule. A set of elements
da,..., dk A is called properly free if the elements are properly independent as
elements of AU (regarded as a AK-linear space), that is, if the leading coefficients
all," , d are K-linearly independent. It is then clear that if dl,. ., d are properly
free they are also free (i.e. independent over the ring I)-K).

DEFINITION 6.10. Let A c AU be a finitely generated FUK-submodule. A basis
dl, , d, of A is called proper if dl, , d, are properly free. The basis will be called
ordered if ord di+x -> ord di for all 1,.. , Ix 1.

THEOREM 6.11. Let A AUbe an l-K-submodule or rank Ix and oforder ka, with
order chain {S.} and order list {ix/}. Then (i) there exists an ordered proper basis ]:or A. (ii)
Ifda,. ., d, is any ordered proper basis ]:or A, then the following conditions are satisfied"

(6.12) ord di for Ixi-1 < j Ixi and ka, ka+x,

For each j 1,..., Ix, the set d, d Si, where is the least
(6.13)

integer such that f <-_

Proof. (i) We shall construct an ordered proper basis for A which, in particular,
satisfies (6.12) and (6.13). Consider the sequence {@i} of quotient modules i defined
by (6.6), of which @k is the first nonzero one. Choose any equivalence class 0 # [d]
lka and let dl e A be any representative of [dl]. Then ord dl kA and dl is clearly
properly free. We proceed stepwise and assume that for ] > 0, da,. ’, di are properly
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free elements of A satisfying (6.12)A and (6.13). If/’ < , let k denote the least integer
such that/" < tZk. Then dl, ", dj Sk are K-linearly independent, but they do not span
Sk, since dim Sk k. Thus, there exists an element [dj+l] @k such that for any
representative dj+l Ida.+1], the set all," ", di, d+l Sk are K-linearly independent and
hence the set dl,"’, d.+l is properly free. Clearly (6.13) is satisfied, and since
ord d./l k so is also (6.12). By Lemma 6.8, dim Sk" rank A =/z, so that we finally
obtain an ordered, properly free set of elements dl, , dr A satisfying (6.12) and
(6.13). Let A’ denote the lq-K-submodule of AU generated by dl, , dr. It remains to
be shown that A’= A. Obviously A’ c A and since ord d; -< k

a
for all 1, , tz and

since spanc{,. , ,} Sk, it follows also that Ak c A’. Let u A be any element
and let ord u ]. Then t Si whence there are elements c 1, , c, Iq-K such that
Y’." dkdk= and ord(u-ladg)>f. Proceeding stepwise the same way, wek=l

conclude that there are elements eel,’"", a G -K such that u i=lOgidi d-hi’, with
ord u’ > ka Clearly, Y’i=1 ceidi A’, and since u’ Aka = A’, it follows also that u A’ and
the proof of (i) is complete. To see that (ii) holds, it suffices to observe that for each
integer f, every ordered proper basis dl," ", d, of A has precisely i elements whose
order is less than or equal to j and spanc {all,""’, din} S.. l-]

The following immediate corollary to Theorem 6.11 gives a sharp insight to the
relation between ordered proper bases of l-l-K-modules and their order chain.

COROLLARY 6.14. Let A AU be an lq-K-submodule of rank lz with order chain
{Si} and order list {/.}. Then dl,’’’, dr is an ordered proper basis of A if and only if]or
each f, , ,, is a basis for Si.

We now return to questions connected with our primary objective of studying
causal factorization and feedback. First we have some preliminary facts.

LEMMA 6.15. Let U be an m-dimensional K-linear space and let f" AU - AYbe a
AK-linear map. For each integer f let Ai(/) be the l)-K-subodule of AU defined by
A.(/-) := ker rr-ff-) z-if-U. Then rank Ai(/-) m.

Proof. First note that since &(f-)cz-fl-U, rank A.(])-<m, with equality
obviously holding when f 0, since then ker 7r-f A U. Assume now that f # 0, define
t:=max{j-ordf-, -ordf-} and let uz-tfl-U be any element. Then ordf-u_->
ord f +ord u _->ord f + t_->max {j, 0} and u +/-;(f). Hence z-tfl-U c a;(f) so that
rank Aj(f)_-> m and the proof is complete.

PROPOSITION 6.16. Let Ube an m-dimensional K-linear space and let f" AU --> A Y
be a AK-linear map. Then the following are equivalent

(i) f is injective.
(ii) ker 7r-f is finitely generated.
(iii) rank ker 7r-f m.

Proof. That (ii) and (iii) are equivalent follows immediately from Lemma 6.15 and
the fact that if ker 7r-f is finitely generated it is of finite order, say t, so that
ker r-f At(f). To see that (ii) implies (i), recall that kerf c ker 7r-f so that if
ker f : 0 then ker r-f is not of finite order and hence is not finitely generated. It
remains to be shown that (i) implies (ii). Assume that (i) holds, let y 1,’" ", y,, be a
normalized proper basis for Im f c A Y and let u 1, , u, be the (unique) elements of
AU satisfying f(ui)= yi, 1,. ., m. The proof will be complete upon showing that
ker 7r-f is of finite order and, in fact, we claim that ker 7r-fc z-tfl-U where
t:=min{orduili--1,... ,m}. Indeed, if u sker 7r-f then f(u)sl)-Y and there are
elements O 1, a,, e Iq-K such that f(u) E mi=l aiYi -’.i=1 oif(Lli) f(i=l Ogibli)’
whence u Y." aui so that ord u > t. gl

i-=1

In view of Proposition 6.16, it follows that the latency kernel of a given linear i/o
map f is finitely generated if and only if f is injective, the case which receives, of course,
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most of our attention. Before proceeding further, a remark on the noninjective case is in
order.

Remark 6.17. It is readily noted that if f’AU-->AY is a AK-linear map, then
ker 7r-f can (always) be written as

ker 7r-f ker f +,
where is a finitely generated full lq-K-submodule of A U. However, in the above
representation, is nonunique except in the special case when f is injective and
ker f 0. If f and f are two AK-linear maps then ker 7r-f1 c ker 7r-f if and only if
ker f + c ker f + 2. While this condition necessarily implies ker f c ker fa, it
cannot be claimed, except in the injective case, that c :. Hence, for computational
purposes it is convenient in the noninjective case to resort to the fact that ker 7r-f
ker 7r-f if and only if Ai(fl) c A.(fa) for all j, where Ai(fi) is as defined in Lemma 6.15.
However, A(fl)A(f2) for all j if and only if A(f)A(f2) for any
min {ord, ord} where g, 1, 2, are any submodules in the corresponding
representations of ker 7r-f. By Lemma 6.15 both Ai(f:) and A.(f2) are full finitely
generated fl-K-submodules of AU so that the situation is thus similar to that in the
injective case.

Let f’ AU - AY be an injective extended linear i/o map and let A ker 7r-f. Then
A=DfI-U is a full, finitely generated lq-K-submodule of AU and the columns
dl, , d of the generating matrix D form a basis of A. We shall next establish certain
properties of possible selections of the matrix D.

PROPOSITION 6.18. Let f" AU - AYbe an infective extended linear i/o map. Write
ker 7r-/r= DfI-U. Then D- exists and is strictly causal; i.e., the elements olD- are in
-1z f-K.

Proof. The existence of D-1 follows immediately from Proposition 6.16. From the
strict causality of f it follows that z f-U c ker 7r-f, whence by Theorem 6.2 there exists
a causal matrix R such that zI DR. Thus D-1= z-lR and z-IR is clearly strictly
causal.

Let A c AU be a full finitely generated f-K-submodule and write zk Df-U. We
call the columns d, , d, of D a polynomial be:is of A if the matrixD is a polynomial
matrix, i.e., with elements in f+K. We call the basis a strictly polynomial basis if its
elements are strict polynomials, i.e., with elements in zf/K. If in addition D is a proper
basis we call it a properpolynomial basis, respectively, proper strictly polynomial basis for
A.

THEOREM 6.19. Let f" AU--> A Y be an infective extended linear i/o map. Then
ker rr-f has a proper strict.ly polynomial basis.

Proof. Let all,’’ ", d,, be a proper basis for ker 7r-/ and for each write di
dij z -j di + d- where di= <0 dijz-i z U and d i_o diz- f-U. Then
zd 7, zf-U ker zr-f, the inclusion following from the strict causality of [. Thus,
there are elements ol.ii -g f--1,..., m, so that zd 7, --Ei=lOiij. Defining the
matrices D := Ida,..., d,,],D := [d,..., d] and A := [ai] we can thus write J0
D +z-A, or alternatively, D (I- z-IA). Since A is causal by definition of the c,
it follows that (I- z-A) is a bicausal matrix. Consequently, by Corollary 6.3, we have
ker 7r-f D-U Df-U so that the columns d,..., d,, of D also form a proper
basis for ker 7r-f. That this basis is strictly polynomial follows directly from the
definition of the di. E!

For an infective extended linear i/o map it is convenient to define a set of
nonnegative integers, called latency indices, which are associated in one-one cor-
respondence with the latency list of . We proceed as follows. Let d1,..., d, be an
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ordered proper basis for ker r-f. Then, as we have seen, for each 1,..., m,
ord di-<_-1. We define the latency indices {el," ", urn} of f by ui :=-ord dz- 1. The
relation of the latency indicates with the latency list is clearly established by Corollary
6.14, and if {} is the latency list of f then we have

(6.20) 1) -j- 1 for/--1 < _-< , j kA, kA + 1," ,
where kA =ord ker r-f. Clearly u >- 0 for all 1, ., m, and f is nonlatent if and only
if all its latency indices are zero.

We conclude this section with the discussion of certain invariance properties of the
latency indices. We have seen previously that if fl" AU -* AY and f2" AU AY are two
extended linear i/o maps and if lpo" A Y AY is a AK-linear bicausal isomorphism
such that f2-- /po" fl, then fl and f2 have the same latency kernels; i.e., ker 7’/’-fl
ker rr-f2. If there exist both a bicausal postcompensator as above and a AK-linear
bicausal precompensator Ipr" AU AU such that f2 /po" fl /pr, then ker r-f2 ker
’rr f lpr, and since uker r-fl" /pr if and only if /prb/ ker r-fl, it follows that
Ipr ker r-f2 ker r-fx. Since the map tpr is, in particular, also an l)-K-homorphism
(which we denote /pr) we interpret it as an order preserving D-K-isomorphism
/pr" ker r-f2 ker r-fx. Suppose, conversely, that there exists an order preserving
fUK-isomorphism /pr as above. Fix an integer f and define (as in Lemma 6.15)
Ai(f2 ker "rr-f2. Then, by the same lemma, Ai(f2 is a full finitely generated
submodule of A U, and if dx, ’, d,, is a proper basis for Aj(f2), it is clearly also a basis
for A U. Let /pr" AU- AU be the (unique) AK-linear map whose action on the di’s is
that of /pr. Then, l-pr is order preserving and thus a bicausal isomorphism A U--, A U.
Moreover, since /prU =/prU for all elements u ker r-f2, it follows that /pr ker r-f2
ker r-fx whence ker r-f2- ker or-f1 /pr. Applying now Corollary 5.7 to the above
kernel equality, we conclude that there exists a bicausal AK-linear postcompensator
/po’ AY A Y such that f2 -/po fl/pr. We have just proved the following.

THEOREM 6.21. Let fx, f2" AU - AY be two extended linear i/o maps with U and
Y finite dimensional K-linear spaces. There exist bicausal AK-linear compensators
/pr" AU AUand/po" A Y - AY such that f2 =/po’ fl /pr if and only if there exists an
order preserving l-l-K-isomorphism/pr" ker r-f2 - ker

We now restrict Theorem 6.21 to the injective case to obtain the following
invariance characterization of the latency indices.

COROLLARY 6.22. Let fl, f2" AU- AY be two infective extended linear i/o maps
with U and Y finite dimensional K-linear spaces. There exist bicausal AK-linear
compensators/pr:AU --) AU and/po:A Y- AY such that f2 =/po" fx /pr if and only if
fl and f2 have the same latency indices.

Proof. By the injectivity of fl and f2, both A1 ker r-fx and A2 ker r-f2 are of
rank m, where m dim U, and in view of Theorem 6.21 it needs only to be shown that
A1 and A2 have the same latency indices (or latency lists) if and only if there exists an
order preserving l)-K-isomorphism/pr" A2 Ax. Let dxl, , dl,, and d21, , d2,, be
ordered proper bases for A and A2, respectively, and let D1 and D2 be the correspond-
ing matrices. Then an order preserving isomorphism/pr" A2 A1 exists if and only if the
matrix D1D is bicausal which is easily seen to be the case if and only if ord dlj
ord d2. for all 1,. ., m. Employing Corollary 6.14 completes the proof.

Theorem 6.21 and Corollary 6.22 could, of course, have been stated for any
AK-linear maps and not only strictly causal ones. The proofs did in no way depend on
the causality properties of the maps involved. Also, Corollary 6.22 could have been
obtained as an application of the existence of, so called, Smith canonical forms for
matrices over Euclidean rings (see, e.g., MacDuffee [1934]).
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7. Precompensation and feedback. Let f" AU-> A Y be an extended linear i/o
map and let ’" AU -> AU be a AK-linear bicausal precompensator. Write --1 L h
where L’ AU --> AU is static and h AU --> AU is strictly causal. We have seen in 5 that
can be realized by a static precompensator (i.e., coordinate change in the input value

space) and output feedback around f (i.e., h f for causal AK-linear map
A U) if and only if ker -f c ker r-h (see Theorem 5.2). When f is a nonlatent map,
feedback realization as above is thus possible for every bicausal map I. In general,
however, feedback realization is not possible for every precompensator . We shall say
that has a (, ,) representation if it can be expressed as -= l-.)= (I + f-)-15 where

" AU --> AU is a bicausal isomorphism and " AY -> AU is a causal AK- linear map. We
call the map 7 in the above representation the precompensator remainder of the
representation. The precompensator can thus be realized as feedback whenever has
a (, ) representation with 5 V, a static map.

In general, the precompensator remainder is dynamic and can be represented as
7 V + 6c where V is the static part of 5 and Oc" A U--> AU is strictly causal, i.e., an
extended linear i/o map. We recall (see, in particular, Hautus and Heymann [1978])

+ .+that the dynamic characteristics of 5c are determined by ker r 5c "I which is an
+K-submodule of I+U and can be represented by

(7.1) kerr Jc’l =kerzr 5. I =D U,

-t- o-t-where D is a polynomial matrix whose columns form a basis for ker zr ! The
degree n of the determinant of D (when D is nonsingular) is the dimension of the
minimal state space realizing tSc. More specifically, if D in (7.1) is selected to be proper,
i.e., the columns of D are properly free (in the sense that the leading coefficient vectors
are K-linearly independent just as in 4 above), then the column degrees trg,

1,. m are the reachability indices of 5c and their sum is ymi= 10"i n deg det D.
It is of interest in selecting a (5, ) pair representing a given precompensator to

choose the representation in such a way that the precompensator remainder has least
dynamic order, i.e., is realizable by a state space of least possible dimension. In this way
the precompensator is realized "as much as possible" by feedback. The following
theorem provides a bound on the dynamic order of the precompensator remainder
which need not be exceeded in the realization of any bicausal precompensator l, and
which is dependent only on the dynamic properties (latency) of the i/o map f under
consideration.

THEOREM 7.2. Let f’AU-->AY be an injective extended linear i/o map with
latency indices V >-" >- Vm. Let AU --> AUbe a bicausal AK-linear map. There exists
a (, g) representation/’or such that the precompensator remainder has (ordered)
teachability indices o’1 >-" >- o’,, satisfying o’i <- ui, 1, , m.

Remark. 7.3. It is interesting to observe that Theorem 7.2 explicitly implies what
we have seen previously, namely, that if f is a nonlatent i/o map, then every bicausal
can be realized as output feedback. Indeed, if f is nonlatent, its latency indices ug are all
zero, whence by Theorem 7.2 there exists a pair 05, g) with 5 having reachability indices
all zero, that is, with 5 static. [-1

To prove Theorem 7.2 we shall need the following lemmas.
LEMMA 7.4. Let U be a finite dimensional K-linear space and let " AU - AUbe a

+ .+ -1 .+bicausal AK-linear isomorphism Then ker r 1 and ker r+O 1 have the same
lists of reachability indices.

Proof. By Hautus and Heymann [1978, Theorem 6.11] the lemma will be proved
upon showing that there exists an order-preserving l+K-isomorphism ker r !

+ --1 ,+ker rr v .! We shall see that the map 5 itself, which is in particular also an order
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preserving fYK-isomorphism, satisfies the required properties. Indeed, let :
ket r v ] be any element. Then 5./’+ U and since also U we have

+ -1 +(=O-(6()=O-af+(O()6+U, whenceOker "i completing the proof.
Let f" AU AY be an injective extended linear i/o map and let dl, , dm be a

proper strictly polynomial basis for ker -f (see Theorem 6.19), and write ker w-f
D-U where D =[dl, , din]. Then z-lD is also polynomial and the column degrees
of z-lD are (by definition) the latency indices of Below we shall not distinguish
sharply between maps and their transfer functions. Let -" AU -U’Zutz-t
to utz-t denote the causal truncation. Let N" AU -U be defined as the (unique)
AK-linear map whose transfer function is given by

(7.5) N := -(’-D),
and define the AK-linear maps

(7.6) AU AU" u ND-au,
(7.7) v := -&.

LEMMA 7.8. With and- as defined in (7.6) and (7.7) the following hold true"
(i) ker rr-f ker

+ --1 .+(ii) z-aD+Uker .v ’1
Proof. (i) Let u ker -f. Then u Dw for some w -U and we have &u

ND-au ND-Dw Nw -U since N is a causal map, and hence -u 0 so that_
+uker-. (ii) If uz D Uthen u=z-aDw for some we U, andwehave,

,+ --1using the definitions of g-a and of , -1 u =v z-aDw=(f -)z-Dw
-1 1Dz (F- -N)w. Now, in view of (7 5) the map (F-D N) has a strictly polynomial

transfer function so that z-(F-D-N) is polynomial. Since also w is polynomial it
ljfollows that z (F-D -N)w U, whence u ker - as claimed.

Proof of Theorem 7.2. If is a bicausal precompensator for f and (, ) is a
representation of then F (I . )-, whence F- - -. . -where the map fi - is clearly also causal. By Lemma .4, and - have the same
reachability indices. Hence the theorem will be proved if we can show that F- can be
represented as

satisfying the following requirements: (a) -" AU AU is a bicausal AK-linear map
such that its reachability indices w satisfy w v, 1, .., m. (b) The AK-linear map
$" AU- AU is strictly causal and can be represented as $ . f for some causal
AK-linear map fi" A Y A U. As we see below, the maps and -1 as defined in (7.6)
and (7.7) satisfy the required conditions. Indeed, Lemma 7.8(i) combined with
Theorem 5.2 implies that $ =. [ for some causal . Since f is strictly causal by
definition, it follows that so also is $. Hence condition (b) above holds. To see that (a) is
also satisfied note first that the difference between a bicausal AK-linear map and a
strictly causal one is bicausal (see e.g. Corollary 2.11). Hence the map - is bicausal.
Now Lemma 7.8(ii) implies the requirement on the reachability indices since, in
particular, it implies that - can be realized with state space +U/z-DD+U whose
reachability indices are the column degrees of z-D. (The reader is referred to Hautus
and Heymann [1978] for relevant details on the problem of realization.)

While Theorem 7.2 gives an upper bound on the required dynamic order of
precompensator remainders, it has been, so far, seen only in the nonlatent case that this
bound is tight. It is clear that in general, except in the case of nonlatent i/o maps, the
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maximal required order of precompensator remainders depends not only on the i/o
map f but also on the specific precompensator under consideration. It turns out that
the bound of Theorem 7.2 is tight, however, in the following sense" There always exist
bicausal isomorphisms for which all precompensator remainders satisfy the condition
that n ]i=1 ri->-’=1 ’g, where n is the minimal state space dimension and the o’ are
reachability indices of the precompensator remainder, and the ’i are the latency indices
of the i/o, map f.

THEOREM 7.9. Let f" AU - AYbe an infective linear i/o map with latency indices
’1, ", u,,,. There exists a AK-linear bicausal isomorphism AU - AU such that the
following holds" If (, g) is any representation of and if or1," , crm are the teachability
indices of the precompensator remainder , then ’ o’i >m ’i.i=1 i=1

Proof. Let d a, , d,, be a proper strictly polynomial basis for ker.zr-f and write
ker r- D-U where D -[dl, , dm]. Then the matrix D1 := z-lD is also poly-
nomial and D[ is causal (see Proposition 6.18). Below we shall use the same notation
interchangeably for matrices and their associated AK-linear maps. Let L"AU AU be
any static AK-linear map such that L+D-; is bicausal. Consider the bicausal pre-
compensator [:=(L+D[a)-a. If /5 is any precompensator remainder for /, then
--1 [-1 ]-1v -5[= L +D -Of for some causal map 5. By Lemma 7.4, j has the same
reachability indices as g-x and the latter has the same reachability indices as Di- -Sf-
Now, we have

D-1 -/5’ j--(I-5. )v. D1)D]-I l-*" D]-1

where [* I-t [" D1 is bicausal because the composite [. D1 is strictly causal, the
latter following since ker zr-]" D1 V-a ker zr-/z=V-1 (zDI)-U z--U. Let
l--,D[a p. O-a be a coprime fraction representation of [* D-a (see, e.g., Heymann
[1972] or Hautus and Heymann [1978]). Then clearly P is nonsingular, and computing
determinantal degrees gives us (because l* is bicausal) that

n :=deg det Q =deg det P +deg det D1 _->deg det Vx.
Since n equals the sum of the reachability indices of the i/o map P. 0-1 the proof is
complete. ]

Note added in proof. The reader is also referred to Emre and Hautus [1980], where
certain solvability conditions for rational matrix equations are given that are related to
the causal factorization problem.
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REFLECTED BROWNIAN MOTION IN THE
"BANG-BANG" CONTROL OF BROWNIAN DRIFT*

STEVEN E. SHREVE"

Abstract. Let w(t) be a standard one-dimensional Brownian motion, and define the Brownian motion
zx(t)=-sgn(w(s)+x) dw(s). It is shown that a reflecting Brownian motion related to {Zx(S),s>=O}
coincides with Iw(t) + x[. A related computation yields the joint distribution of w(t) and its local time. These
results are applied to the control problem of minimization of EyZ(T) subject to

y(0) x, dy(t) u dt + dw(t).

The optimal control law is known to be u -sgn y(t). We compute the optimal transition density and value
function.

1. Introduction Let {w(t), => 0} be a standard, one-dimensional Brownian motion
defined on a probability space (l), , P), and let (t) be the o--field generated by
{w(s): 0=<s -< t}. By a result due to Skorohod [12] and reported by McKean [11, 3.9],
for each x -> 0, there is a unique pair of nonanticipating processes (so(t), r(t)) satisfying

(1) :(t) x + | sgn (w(s) + x) dw(s) + ((t)
ao

such that {:(t), t->0} is nonnegative and {r(t), t->0} is nondecreasing with r(0)=0.
Moreover, ’(t) is the local time at zero of (t).

It is easy to see ( 2) that Tanaka’s formula gives the solution to (1). This solution
shows that {so(t), t-> 0} is a reflecting Brownian motion beginning at x, and r(t) is the
local time of {w (s), s => 0} at -x. We use these facts in 3 to identify two apparently very
different reflecting Brownian motions. In 4 we compute the joint distribution of w(t)
and its local time at x. The distribution was previously known for the case x 0 [9, p. 45,
Problem 2.3.3]. In 5 we apply the results of 1-4 to the computation of the transition
density for the system

(2) y(O) x,

(3) dy(t) -sgn y(t) dt + dw(t).

The origin of this system as a solution to an optimal control problem is also discussed
in5.

2. Tanaka’s formula. For the moment, we allow x to be any real number. We
single out the negative of the Ito integral

(4) z(t) sgn (w(s)+x) dw(s)

appearing in (1) for further attention. It is well known that {z (t), _-> 0} is a standard
Brownian motion adapted to {(t), _-> 0}. A simple proof of this can be given using time
substitution as described in [11, 2.5].

It is perhaps worth noting that for fixed >0, w(t) and zo(t) are uncorrelated
normal random variables which are not independent. The correlation coefficient can be
computed by applying Ito’s lemma to w(t)zo(t). The lack of independence follows from
(6). In fact, the joint density can be obtained by setting x 0 in (20)-(22).

* Received by the editors February 1, 1980, and in revised form July 7, 1980. This work was supported by
the University of Delaware Research Foundation.

" Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
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Corresponding to the Brownian motion {w(t), t->0} there exists a function
l: [0, o)R x f [0, o) called local time, characterized by the following properties:

(L1) For each to f, l(t, , to) is jointly continuous in (t,
(L2) For each to f and R, l(t, , to) is nondecreasing in t.
(L3) There is a subset f* of f of full measure such that for each to f*,

b

(5) fo l[a’b](W(S’ to)) dS fa l(t, , to) d, t>=O, a, b R, a <b.

The existence of local time for Brownian motion was first proved by Trotter [13]. (See
also Ito and McKean [9, 2.8]). Local time has the following interpretation. For each
to f and > 0, there is a measure/x (t, to) on the Borel subsets of R given by

/x(t, to)(B) Lebesgue measure {s: 0 <= s <- t, w(s, to) B}.

Condition (L3) states that l(t,., to) is the density for this measure. Hereafter we
suppress the sample point to.

The Brownian motions {zx (t), _-> 0} and {w(t), _-> 0} are related by the formula

(6) zx(t) -Ix]- [w(t) + x[ + l(t, -x), x R, >- O.

Equation (6), which is easily seen to be equivalent to Tanaka’s formula [11, pp. 68-70],
holds except on a null subset of f independent of t. A heuristic proof of (6) (and
Tanaka’s formula) can be given by differentiating (5) with respect to b and evaluating at
b =-x to obtain

g(W(S) + x) ds l(t, -x),

where 6 is the Dirac delta. Now apply Ito’s lemma to Iw(t)+ x[ to obtain

io i0I (t) + xl- Ixl + sgn (w(s)+ x) dw(s)+ 6(w(s) + x) ds,

from which (6) follows. The argument can be made rigorous by taking smooth
approximations to the functions involved.

3. Reflecting Brownian motion. In this section we assume the number x in (4) and
(5) is nonnegative. Due to the symmetry with respect to the origin of {w(t), => 0}, this
represents no loss of generality, and the corresponding results for x -< 0 can be written
down with only a moment’s reflection.

Corresponding to any standard Brownian motion {w (t), -> 0} and x => 0, there are
two "reflecting Brownian motions." The first is

w+(t)=lw(t)+x[.
To obtain the second, define

(7)
min {s => 0: w(s) x},

Wmax(t) max {w(s): " _-< s _-< t}.

The second reflecting Brownian motion is

w-(t)={ w(t)+x’
Wmax(t)--w(t),

After time z, the trajectories of w/(t) and w-(t) are in general different for the same to,

but {w/(t), t->0} and {w-(t), t-<0} are identical in law [9, 2.1]. The question arises
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whether we can find a standard Brownian motion {b(t), t-> 0} such that {w/(t), t-> 0}
and {b-(t), => 0} are the same process. The answer of the next theorem is that such a
{b(t), t->_ 0} exists and is intimately connected with {zx(t), >= 0}.

THEOREM 1. Let {w (t), _--> 0} be a standardBrownian motion, letx >- 0 be given, and
let {z,(t), t_-> 0} be defined by (4). Define z by (7) and

b(t)=lw(t), O<--t<=r,
z(t)-2x, t>z.

Then {b(t), >_- 0} is a standard Brownian motion, and for to in a set offull measure,

(8) w/(t) b-(t) It >-_ O.

Proof. Note first of all that b(z) -x, while Zx(Z) x, so b(-) Zx(’) 2x. For > z,
we have

while for <_- z

b(t) [z (t)- z(z)] + b(z)

I -sgn (w(s) + x) dw(s) + b(z),

b(t) Io dw(s).

We summarize this as

b(t) Io [lo,,(s)- l(,.)(s) sgn (w(s) + x)] dw(s),

and from this representation we can use the time substitution argument [11, 2.5] to
show {b(t), _-> 0} is a standard Brownian motion.

+It is clear from the definitions that for t-< z, w (t) b-(t). For t->_ z, we have

and from (6),

SO

(9)

bmax(t) max {b (s)" - -< s -< t},

b(t)=z,(t)-2x

-Iw(t) + xl-x + l(t, -x)

<--x+l(t,-x),

bmax(t)<=-x+l(t,-x).

Furthermore,

(10) b-(t) bmax(t)- b(t) <- w+(t).

Since both {b-(t), _-> 0} and {w /(t), >- 0} are reflecting Brownian motions, and for both
of them - is the time of first passage to the origin, they must have the same distribution
on {-<_-t}. Thus (10) implies that for almost all to satisfying z(to)_-< t, we have b-(t)=
w/(t). Since these processes are continuous, there is a subset f* of fl of full measure
such that to ll* implies b-(t) w+(t) for every _-> z(to).
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COROLLARY 2. Under the conditions of Theorem 1, ]:or to in a set offull measure,

(11) l(t, -x) x + bmax(t)

Proof. Equality in (10) implies equality in (9).
Let us define for _-> 0

Zmax(t) max {zx (s): 0 _-< s _-< t}.

Note that the maximum is taken over s [0, t], rather than s 6 [, t].
COROLLARY 3. Assume the hypotheses of Theorem 1. Then, for all to in a set offull

measure,
(12) z min {s => 0: zx(s) x},

(13) Zmax(t)>xCl(t, --X) >0’< t,

(14) Zmax(t)= x Cr)o’= t,

(15) w(t) -z(t) Vt [0, ’],

(16) ]w(t)+xl=Zmax(t)-Zx(t) Vt[’, o0),

(17) Zmax(t)=l(t,--X)+X Vt E r,/-, oo).

Proof. Equation (15) is an immediate consequence of (4) and (7), and (7) and (15)
imply (12). Since Zx(t)<x for -> and z=(z)= x, we have

(8) bmax(t) Zmax(t)-- 2X,

and (17) follows from (11). Suppose to is in the set of full measure for which (12), (15)
and (17) hold, and for which the law of the iterated logarithm holds for the Brownian
motion {Zx(r + t), >- 0}. Then Zmax(t) > X for " < t, SO Zm,x(t) X is equivalent to

-= t, and Zmax(t)> X is equivalent to , <t. Furthermore, Zm,x(t)> x and (17) imply
l(t,-x)>0. On the other hand, (17) implies l(-,-x) 0, and since l(t,-x) is nonde-
creasing in t, l(t, -x) > 0 implies - < t. This establishes the equivalences of (13).
Equation (16) follows from (8), (18) and the definitions. F1

4. The joint distribution of Brownian motion and its local time. To simplify
notation, we fix x -> 0 and > 0 and set

W=w(t), M=zm,x(t),

Y=w(t)+x, K=l(t,-x).

Z=z(t),

The joint density of (Z, M) is [9, 2.1

(19) ]’z.M(z,m)
2(2m z) [ (2m-z)2

]_tx/-
exp

2t
z_-<m, m_->0.

LEMMA 4. On the set {M >= x}, the distribution of Y conditioned on Z is symmetric
with respect to the origin.

Proof. Let y(s) w(s) + x. From Corollary 3 we know that {M >= x} is almost surely
equal to {--< t}, and on this set

Z x + | -sgn (y(s)) dy(s)

x + f, -sgn (-y(s)) d(-y(s)).
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Since the processes {y (s)1 tt__>x, s >- 0} and {-y (s)1 M__>x, s _-> 0} are identical in law, they
have the same joint distribution with Z on {M => x}. In particular, (Z, Y) and (Z, -Y)
are identical in law on this set. The lemma follows.

We now compute the joint distribution of (Y, Z). For this purpose, we introduce
three subsets of the (y, z)-plane. Define

R {(y, z): z + y x, y > 0},

R2 {(y, z): z + y >x, y >0},

R3 ={(y, z): z-y.x, y<0}.

The joint distribution of (Y, Z) can be characterized by a nonnormalized density on
R21.3 R3 plus a singular distribution on R1. The singular part arises from (15). To see
this, observe first that P{M x} 0, so we need only consider the cases {M < x} and
{M>x}. When M<x, we have z>t and (Y,Z)RI (see (13)-(15)). If {M>x}, -<t
and [Y[ M Z (see (13)-(16)). Depending on whether Y > 0 or Y < 0 (P{Y 0} 0),
we have (Y, Z) e RE or (Y, Z) e R3, and for fixed Z, Lemma 4 states that each of these
two cases is equally likely. Therefore, for any z -< x,

P{(Y,Z)RI, Z <-z} fz,M(, m) dmd

/t -E
exp

\ -- d’,

while for any Borel set B contained in RE U g3,

(21)

where

P{(Y, Z) B} Ifv,z(y, z) dy dz,

(22) fy.z(y,z)={fz,M(Z,Z+y) if(y,z)R2,
1/2fz.(z,z-y) if (y, z) R3.

We define three subsets of the (w, k)-plane:

Sx={(w, k): w+x >0, k =0},

S2={(w, k): w+x >0, k >0},

S3={(w,k): w+x<O,k>O}.

It is a consequence of Corollary 3 that there is a subset of f of full measure on which
(W, K) Si if and only if (Y, Z) Ri, 1, 2, 3. We have from (20),

(23)

and

(24)

P{(W,K)Sl, W> w}=P{(Y,Z)6R,Z <-w}

4 w-Ex
exp (- dsr’

P{(W, K) Sl} %/t exp -- dsr.

W -->--X,
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This describes the singular part of the distribution of W, K), the case where K 0. For
any Borel set B contained in $2 LI $3,

P{(W, K) B} Infw,K(W, k) dw dk,

where, from (16), (17), (19) and (23),

k+2x+w

(25) fw,,,:(w, k)=
k w

4texp

(k+2x+w).] w+x>0 k>0, x>0,exp
2t

2i _1’ w+x<0, k>0, x>_-0.

The distribution of (W, K) for x _-< 0 can be obtained from (23)-(25) and symmetry
considerations. We summarize these results as a theorem, in which we give the joint
distribution of (w(t), l(t, x)) rather than (w(t), l(t, -x)).

THEOREM 5. Let {w(t), _>-- 0} be a standard Brownian motion and let l(t, x), >-_ 0,
x R, be its local time. Fix > 0, x R and set W w(t), L l(t, x). Then

exp - dr,P{L O}
x/t.o

and

1
exp - dsr,

P{W < w, L O}
r1 I_ exp( -)dsr,P{L=O}- w+2x

w <=x, x >=0,

w >-x, x <=0.

For any Borel set B contained in the half-plane {(w, 1): > 0},

P{( W, L) B} fs fw,t(W, l) dw dl,

where

and

q(l + 2x w),

=(l+w),&,,(w, )
l,(- w)
/
[p(l- 2x + w),

w<=x, x >-O, 1>0,

w>=x, x>=O, I>0,

w<-x, x<=O, I>0,

w>-x, x<=O, 1>0,

q(u) tx/t exp --5. The "bang-bang" control problem. The control problem which motivated this
inquiry is the following.

Minimize

(26) Ey2(T),
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subject to

(27) dy(t) u(t, y(t)) dt + dw(t),

(28) y(o) x,

(29) lu(t, y)l =< 1, 0 =< t-<_ T, y R.

We assume also that u [0, T] R [- 1, 1 is jointly Lebesgue measurable. This model
is a special case of the one studied by Bene [2], and the result of [2] specialized to our
case says that the "bang-bang" control

(30) u(t, y(t))= -sgn (y(t))

is optimal. Bene [3] shows that for almost every sample path of the solution of (27),
where (28) and (30) hold, the set of for which y(t) 0 has Lebesgue measure zero. The
definition of sgn (0) is thus inconsequential. We take sgn (0)= 0. The optimal control
law for this problem has also been derived by Davis and Clark [5] using martingale
methods, Ikeda and Watanabe [8] using a stochastic ordering principle, and Haussmann
[7] using a stochastic maximum principle.

The purpose of this section is to "solve" the differential equation (27), where (28)
and (30) hold, and evaluate Ey2(T). A "solution" consists of using the Girsanov
transformation to compute the transition density for y(t), and this involves the process
{Zx (t), >_-0}. We then obtain an explicit formula for Ey2(T) (Corollary 7). Bene, Shepp
and Witsenhausen [4] have recently used the forward and backward equations of the
controlled system to determine the Laplace transform of the transition density.
Balakrishnan 1 has found the transition density, albeit in a less explicit form than given
here.

We wish to solve the stochastic differential equation

(2) y(0) x,

(3) dy(t) -sgn y(t) dt + dw(t).

Although the drift coefficient is discontinuous, there is a unique continuous stochastic
process {y(t), -> 0} adapted to {(t), _-> 0} satisfying (2) and (3) [14, Theorem 3]. This
is the strong solution of (2), (3). The uniqueness of this solution implies that its transition
density will agree with the transition density of any weak solution. We compute the
transition density of the weak solution given by the Girsanov transformation.

To use the Girsanov transformation, define processes

(4)

zx(t) Io -sgn (w(s) + x) dw(s),

qx(t) exp [ zx(t)--].
Since sgn (w(s)+ x) is bounded and

x(t) is of the form

Isgn w(s) + xl2 ds -1 ds]exp [/o/3(s) dw(s)-- Io [/3(s)[
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and {(r,0x (t), (t)), ->_0} is a martingale [10, eg. 1, p. 220]. We define a new probability
measure/3x on (T) by

(31) /Sx (A)= E[1ACpx(T)], A (T),

where 1A is the indicator of A. If A (T) and T’> T, then

Px(A)=E[1Aqx(T)]

E{1AE[Cpx(T’)I;(T)]}

E[la0x(T’)],

so the definition of/Sx on (t) is independent of T, provided only that T -> t. We denote
by Ex the expectation corresponding to Px.

We now define yx(t) w(t) + x and

(32) fix(t) w(t)+ J0 sgn (yx(s)) ds.

Girsanov’s theorem [10, Thm. 6.3, p. 232] states that {fix(t), 0-< <- T} is a standard.
Brownian motion on (ll, 7,/x). From (32) we have

dyx (t) -sgn (yx (t)) dt + dffx(t),

and so {yx(t), 0-<-t -< T} is a solution of (3), except, of course, w(t) in (3) must be
replaced by fix(t). Furthermore,/Sx{yx (0) x} Ex{lw(O)=Oox(T)} 1, so yx(t) satisfies
(2) as well. Our goal is to calculate the transition density p(t, x, y) (0/0y)/Sx{yx (t) _-< y}
and to compute the optimal cost J(T, x) xy2 (T)

Recalling the notation introduced at the beginning of 4 and equations (20)-(22),
we write

p(t, x, y)= P{Y <- y}

For y > O, = ly__<yexp Z-

p(t,x, y)=-y _,exp z- fz,t(z,z+rl)dzdrl

+ exp z- /z,t(z, m) dm dz,
OY -y

where the second term on the right side comes from the singular part of the distribution
of (Y, Z) as described by (20). Taking first the partial derivatives and then performing
the integrations, we obtain

1 [ ( (x-y-t).)+e_YIx ( (v-t)t(33) p(t,x, y)=/ exp +yexp ]dv
x>_-O,

For y < O, we have

p(t,x, yl=yy +nexp z- fz,(z,z-nldzdn

y=>O.

+yexp z-- fz,(z, z-y) dz.
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Computing the integral leads to

[ ( ) f;(+e2y exp ) ]1 (X y + t) 2. (V .tt)
2

(34) p(t,x,y)= exp 2x-
2t -y

dv

x_>0, y_--<0.

Since (33) and (34) coincide when y 0, we can take either as the definition of p(t, x, 0).
Symmetry allows us to relate p(t, x, y) for x <= 0 to the formulas just computed. Indeed,

(35) p(t, x, y)--p(t, -x, -y) /x, y R.

We summarize with a theorem.
THEOREM 6. Let {w(t), --> 0} be a standard one-dimensional Brownian motion, fix

x R, and let v(t) be given by (32). Define y(t) w(t) + x. Then under the probability
measure x defined by (31), {rx(t), 0<= <- T} is a standard one-dimensional Brownian
motion,

(36)

and

yx(t) x f0 sgn (yx (s)) ds + x(t),

x{Yx(t) <-- y} p(t, x, rl) drl,

where p(t, x, y) satisfies (33)-(35).
As one would expect, p (t, x, y) is a fundamental solution of the backward equation

p** sgn (x)px Pt 0

and the forward equation

pyy + sgn (y)py Pt 0

associated with (36). These facts can be verified directly from (33)-(35).
COROLLARY 7. Under the hypotheses of Theorem 6, let J(t, x) aE,y (t). Then for

> O and x R,

J(t, x)=+ (I/I- t- 1) exp (Ix[2t- t)2

1[ J f
([x[-t)/(t)’/2

(37) + (Ixl- t)2 + t-

In particular,

+ [x]+t-- e

2

[xl+t)/(t)1/2

Proof. The proof of (37) for x_->0 is by substitution of (33) and (34) into the
definition of J(t, x). The integration is lengthy but straightforward. For x <-0, (37) can
be obtained from (35) and the case x >-0. 71

We can now apply the Hamilton-Jacobi-Bellman equation [6, Thm. 4.1, p. 159] to
J(t, x) to give still another proof that the control law (30) is optimal. In this case the
sufficient condition for optimality reduces to

(38) sgnx=sgnJ(t,x) xR, t>-O.

lim J(t, x) x, lim J(t, x) 1/2.
t$O t-oo
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Since J is an even function of x, it suffices to show that Jx(t, x) > 0 for x > 0, > 0. (Since
J(0, x) x 2, (38) is trivial for 0. It is also easily checked that Jx(t, 0) 0.) Compu-
tation reveals

t--X)/(t) 1/2

-u2/2 2x f( -u2/2 ]e du +(x +t) e e du x >0.
t+x)/(t) 1/2

If 0< t_-<x, (38) is clear. If 0<x <t, we make the change of variables v (U2--4X)1/2

in the second integral and bound the resulting function v/(v 2 + 4x)1/ by its value at the
lower limit of integration to obtain the desired result.
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ON APPLICATIONS OF CONTROL THEORY TO INTEGRAL
INEQUALITIES: II*

M. B. SUBRAHMANYAM"

Abstract. In this paper a theorem is given for the attainment of the best possible constants in integral
type inequalities. Using a control theoretic formulation for such inequalities, necessary conditions for an

optimal control are derived in both finite and infinite interval cases. The utilization of these results is
demonstrated by means of an example.

1. An existence theorem. In [8] and [9] we treat some problems related to the
application of control theory to integral inequalities in the finite interval case. Here we
consider a general case in which the interval of interest need not be finite. We also
derive the necessary conditions for an optimal control in a number of problems.

To be more specific, consider the n-dimensional system

(1.1) A (t)x + B (t)u, X(to) O,

where [to, tl], tl Z. We impose a finite number of constraints on the trajectory x
and the control u, such as, lim_ x(t)- O, u p dt O, p O, and so on. We lay some
restrictions on these constraints later.

The functional to be minimized is

(1.2) F(x, u)---[tt t2(x, t)f(t) dt]

where a >0, f(t)>-O is measurable and u is a measurable control. We make the
following assumptions"

(a) A(t) and B(t) are continuous n n and n r matrix functions respectively.
(b) For 1, 2, d is continuous in x, u and t. Also, for each t, d is convex in u.
(c) Admissible controls are measurable functions on [to, tl] such that to b dt < o.
(d) d(u, t)>-a lu[, a >0, p > 1, and b2(x(t), t)_->0 along any x(t) which is the

response to some admissible u(t).
(e) For each K < c, there is an integrable gc(t) such that, if [[u[Ip --< K, then

(1.3) ]q52(x(t), t) f(t)[ =< gi(t)

a.e. on [to, tl] for any admissible u whose trajectory obeys any constraints imposed.
(f) There exists k > 0 such that, for every c >-0,

d(cu, t)=ckd(u, t),
(1.4)

cb2(cx, t)= ck/d2(x, t).

By (1.3), this assumption implies that for every c > 0, F(cx, cu)= F(x, u).
(g) There exists an admissible control the trajectory of which satisfies the imposed

constraints and is such that

> 2(x,t)f(t)dt>O.

* Received by the editors May 30, 1980.
? Department of Mathematics, University of Wisconsin, Madison, Wiscongin 53706’ currently at

Department of Electrical Engineering, Texas A & University, Kingsville, Texas 78363.
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We call a constraint regular if the following two conditions hold:
(1) (x, u) satisfies the constraint => (cx, cu) satisfies the constraint for every c > 0.
(2) Let (x 1, ul), (x 2, u 2), be admissible pairs such that ui u weakly in

Zp(to, tl) {u (U, .Ur) Eto, t13- Rlllull $f2 [ul dt < o}. Suppose (x", u")satis-
fies the constraint for each n -> 1. Then (x, u) obeys the constraint. (It is shown in
the proof of Theorem 1.1 that u is necessarily admissible.)

PROPOSITION 1.1. Consider all pairs (x, u) that obey (1.1) and the constraints.
Assume that all the constraints are regular, and let

O l(u, t)dt(1.5) A inf F(x, u)= inf
(x,u) (x,u) [tt /2(X t)f(t) dt]

(A is well defined by assumptions (c) and (g).) Also, let

(1.6) inf &e(u, t) dt=J subjectto &2(x, t)f(t) d =M>0.

Then A JIM.
Proof. ClearlyJIM >-_ . To reverse the inequality, let t be such that F(7, ) =< A + e

for some e => 0. Let [tt & 2(y, t)f(t) dr]" =/r (<oo by assumptions (c), (d) and (e)), and
ix =(M/))/. Then (/zY,/xfi) obeys all the constraints by the regularity of the
constraints, and by assumption (f), [tt &2(/xY, t)f(t)dt]"= M and FOXY,/xt)_-<A + e.
By (1.6), J/M<-A +e. Since e is arbitrary, the conclusion of the proposition
follows. [3

THEOREM 1.1. Consider the system (1.1) and (1.2) along with assumptions (a)-
(g). Also assume that the constraints on x and u are regular. Then there exists a control
among all admissible controls that minimizes (1.2).

Proof. By Proposition 1.1, it is sufficient to exhibit a minimizing control among all
admissible controls for which [tt & 2(x, t)f(t) dr] M > 0 and the trajectories of which
satisfy (1.1) and all the constraints. Let J=inf,tt&a(u,t) dt subject to
[, &2(x,t)f(t)dt]=M. Choose {(x , ui)} such that limi_, to &(u , t)dt=Y with
[t & 2(xi, t)f(t) dr] M for each i. By assumption (d), {u i} form a bounded sequence in
Lp(t0, t), and hence a subsequence, still denoted by {ui}, converges weakly to some u
in L,(t0, ta). Let x be the response of (1.1) to u. By assumption (a) and by the weak
convergence, xi(t)--> x(t) for all e [to, h). By the regularity of the constraints, x(t)
obeys all the constraints. Assumption (b) :::> 2(x (t), t) converges to & 2(x(t), t) for all
in [to, tl). Since [lugl]p-<g for some g < o, by assumption (e) and by the Lebesgue
dominated convergence theorem,

b2(x(t), t)f(t) d lim & 2(xi (t), t)f(t) d M.
o

If tl < c, then we have by assumption (b) (see [6, p. 209]),

4) (u t) dt < lim inf (u t) dt J.

If t oo, [to, t)= U ;o[to+], to+] + 1]. We have on each subinterval,

f,o++ f,o++ tai O (u, t) dt < lira inf & l(u g, t) d
"to+j icx3 .to+j

=> F. a. _-< Y. lira inf a.g _-< lira inf Y. ag J,
=0 =0 i-oo i-oo =0

by Fatou’s lemma. Thus the proof is complete. [3
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2. Finite interval case with integrable f(t). In the next few sections, we will
develop the necessary conditions for optimal controls in various situations. Let I
t0, tl], tl < co, and C(I) be the space of all continuous x(t)- (Xl(t)," , x, (t)): I--> R"
such that IIx[I--max {[[xll],""", ]lx[I}, where [[Xill-’sup[to,tx] [Xi(t)[. Once again, consider
the n-dimensional system

(2.1) A (t)x + B (t)u,
dt nr

with

(2.2) X(to) c, x(h) d, tl < co,

(2.3) Itt; (1)l(g/, t)dt
F(x, u) =[itt  bZ(x, t)f(t) dt]

where f(t) is integrable and a e R. We make the following assumptions.
(a) A(t) and B(t) are continuous n x n and n x r matrix functions respectively.
(b) Admissible controls are measurable functions such that Itt 4) l(u, t) dt < co.
(c) l(u,t)>--alu]", a>0, p>l, and cb2(x(t),t)f(t)>-O a.e. on [to, h] for any

trajectory x(t) which is the response to some u L,(to, h).
(d) Let b be continuously differentiable in u and b2 be continuously differenti-

able in x, and both be measurable in t. Moreover, let bl(u(t),, t)Lq(to, tx) for all
u Lp(to, h), (l/p) + (l/q) 1. Also, let 2 be bounded for bounded x, the bound being
uniform for almost all t.

(e) Let b, and b 2x be locally Lipschitzian in u and x respectively, i.e., there exist
> 0, K1, K2 > 0 depending on (x, u) such that for all Y e C(I) and t7 e L(to, tl) with

IIll -< , Ilall. =< , we have

[a (x + , t) (x, t)l Kll[II
a.e., and

(f) (x(t), u(t)) minimizes (2.3) subject to (2.1) and (2.2)

=)>co> bl(u(t), t) dt>O, co> ba(x(t), t)f(t) dt>O.

(g) The pair (A(t), B(t)) is completely controllable (see [5] for the definition of
complete controllability and related discussion).

By assumption (f), we can consider the alternative cost functional

(2.4) G(x, u)= In 4) dt-a In b2f(t) dt
0 0

in place of (2.3). In order to establish our necessary conditions, we will make use of
the Dubovitskii-Milyutin theorem [3, Thm. 6.1]. For the definitions of various terms,
we refer the reader to [3]. If K is a cone in a Banach space E, we mean by the dual cone
K* the set {g E*I g(x) >- 0 for all x K}. Now we state the necessary conditions for an
optimal control.

THEOREM 2.1. Consider the system (2.1)-(2.3) along with assumptions (a)-(g).
Suppose that (x(t), u(t)) minimizes (2.3). Then there exists tp(t) C(I) such that

(2.5)
dt

-A 7- (t)O h4 x2 (x o, t)f(t),
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where

Itt 0& (u t) dt
(2.6) A ,to &2(xO, t)f(t) dt

and

(2.7) 1 (uO(t) t)-aBrO(t) 0 a.e. on [to,

Proof. Let E C(I)x L,(I). Our admissible controls form a subset of L,(I). But
by assumption (f), the optimal cost is finite and hence we can regard u to be optimal
with respect to those controls in Lp(I) whose trajectories obey (2.1) and (2.2). Thus, we
take our space of controls to be Lp(I).

(a) Cone of directions of decrease. By assumptions (d) and (e), the Fr6chet deriva-
tive of the functional G in (2.4) is given by

(2.8) 0 O) ,It’ (t (/./O t), U) dt i,o (&2 (x, t), x)f(t) dt
O (X U (X, U) It’; l(gO, t)dt - Itt &2(x, t)f(t)dt

By [3, Thm. 7.5], (x (t), u(t)) lies in the cone Ko of directions of decrease in E if and
only if G’(x, u)(x, u)< 0. By assumption (f), (x, u)e Ko if and only if

(2.9) (&(u,t),u)dt-ah, (&:(x t) x)f(t)dt<O,

where is defined by (2.6). If Ko &, then by [3, Thm. 10.2], for any go K,

(2.10) go(x,u)=-ho (a(u t), u)dt-ah (2(x t),x)f(t)dt ho>O.

(b) Cone of tangent directions. To find the tangent directions in E at (x, u), we
will apply the results of [3, Lecture 9]. Let

(.)

toNtNtl, X(h)=d},
where (t) is a fundamental matrix of A(t)y with (to)= I, and let

(.1) P(x, u)= (x(t)-(t)c-(t) -(s)B(s)u(s) ds, x(t)

which maps E into C(I)x R . Also

(.13) P’(x u)(x, u)= (x(t)-(t) -(s)B(s)u(s) ds, X(tl)

where P’(x, u):E C(I) x R . We wish to show that P’(x, u) is onto.
Let (a(t),

L, (I) such that

(t) ft -I(s)B(s)(s) ds b-a(tl).

Set (t) (t) Itto -l(s)B(s)(s) ds + a(t). Then P’(x, u)(, ) (a(t), b). By [3,
Thm. 9.1] the set K1 of tangent directions at (x,u) is given by {(x,u)
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E[P’(x, u)(x, u)= 0}. Thus K1 consists of all (x, u) satisfying

(2.14) A(t)x + B(t)u, X(to) O,
dt

(2.15) X(tl) 0.

Let L
___
E denote the pairs satisfying (2.14) and L2

_
E the set of (x, u) satisfying

(2.15). It follows that (see [3, Lecture 12]) K =L +L, and if g2L’, then
g2(x, u) a x(tl) for some a 6 R n. If gl 6 L, then gx(X, U) 0 for all (x, u) L1, since
L1 is a subspace.

(c) Application of Dubovitskii-Milyutin theorem. The above theorem [3, Thm.
6.1] states that there exist goK*o, gx L*I and g2L’, not all zero, such that for all
(x,u)E,

(2.16) go(x, u)+gl(x, u)+g2(x, u)=0.

Let u be arbitrary and x be a solution of (2.14) for this u. Then gl(x, u)= 0, and
hence

(2 17) -ho (ok u) dt ah (k 2 > O.x)f(t) dt + a TX(tl) 0, A0--

o has to be positive, because if o 0, then from (2.17), ax(tl) 0. If a 0, we would
have gl= g2 g3--0 by (2.16), which is not possible. If a 0, by the complete
controllability of the pair (A(t),B(t)) in (2.14), we can select some x(t) for which
X(tl) a, which gives the contradiction that a 0. Hence o>0. (2.17) becomes

(2.18) (6a 1
u) dt-ah (62 x)f(t) dt-a X(tl)=0.

Ao
Define by

(2.19)

Then

(2.20)

Thus (2.18) becomes

(2.21)

_dO- -A% hck x2 (x o, t)f(t), O(tl) .a
dt ah0

h (kf(t),x) dt=- -ff[+AT,,x dt

T tl
X(tl) + (,B(t)u) dt.

(ck’ --aBTO, u) dt=O

for arbitrary u. Hence

(2.22) aB 7"0 0 a.e. on [to, t]

(d) Case when Ko b. If Ko b, then

(2.23) ()lu, u) dt-ah (CZx, X)f(t) dt=O

for all (x, u)6 E, and we can proceed on as above, letting 0(tl)= 0.
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It is possible to extend our necessary conditions to more general functionals than in
(2.3); for example, to functionals of the form

tt) l(x, hi, t)at
[I,t &2(x, u, t)f(t) at]

However, additional assumptions have to be made on 01 and &2.
3. Finite interval case with nonintegrable f(t). We consider the scalar system

defined by

(3.1) k u, X(to) 0, x(tl) 0 or free,
with

o (u, t) dt
(3.2) F(x, u)=[tt, O2(x t)f(t) dt]’ a R, f(t)>-O a.e.

Let/=[to, t],Lp(I)= {u [tqo ]u[p dt < oo}, p(I)= {u Lp(I)ltt u dt= O} and L(I, Ix)=
(x j’t’o [xl dz <, d =f(t)dt}.

We make the following assumptions:
(a) Admissible controls are measurable functions such that

& (u, t) dt < cx3.

(b) & l(u, t) >= a[ulp, a > 0, p > 1 for almost all s L
(c) (x(t), u(t)) minimizes (3.2) subject to (3.1)

oo> &(u, t) dt>O, 00) 2(xO, t)f(t) dt>O.

(d) Let b be continuously differentiable in u, &2 be continuously ditterentiable in
x, and both be measurable in t.

(e) &Z(x, t) >- blx[ k, b > 0, k > 1 for almost all L
(f) OlsLq(I), for all uLp(I), (1/p)+(1/q)=l, and &2xL,(Llz), (l/k)+

(1 /m 1, whenever x Lk (I, I).
(g) There exist 6, K1, K2 > 0 depending on (x, u) such that for all [[hl] <- 6 and

I111 --< we have

[[&au(U + a, t)-&u(U, t)llq

[l& (x + h, t)-&x(X, t)l[. --< g2llhl[.
(h) (i) If the boundary condition x(t)= 0, then x Lk(L I) for all u

(ii) If X(tl) is free, then x Lk(L I) for all u Lp(I).
THEORZM 3.1. Consider (3.1) and (3.2) along with assumptions (a)-(h). Suppose

(x(t), u(t)) is optimal. Then there exists (t) such that

Itt 2t I(o/AO t)dtd4’_-hO 2 (x o t)f(t), h tti & (x t)f(t) dt
(3.3) d--
and

(3.4) O ,(u, t)-aO(t) constant a.e. on I.

Moreover, if x(tl) is free, the constant in (3.4) can be taken to be zero.

Proof. Case 1. x (tx) O.
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Let E Lk (I, IX) p(I). By assumption (c), we can consider the alternative cost
functional

ft
tl It t’

(3.5) G(x, u)= In b l(u, t) dt-a In b2(x, t)f(t) dt.

By assumptions (c), (d), (e), (f) and (g), the Frchet derivative of G at (x, u) is
defined by

--1/ 0
to q)utu t)u dt t’ t2(x 0, t)xf(t) dt

(3.6) G’(x u)(x, u)= 7v 7-- -a
]to q) tu t) dt t’ qb 2(x, t)f(t) dt

As in the proof of Theorem 2.1, if go s Ko* where Ko is the cone of directions of
decrease, and if Ko b, then

(3.7) go(x, u) --/0 luU dt-ah 42xXf(t) dt ho_->O.
0

To get the tangent directions, the relevant equations are (using the same notation
as in the proof of Theorem 2.1):

(3.8) O={(x,u)eE x(t)= u(s) ds, X(tl)=O

(3.9) P(x, u)= x(t)- f, u(s) ds,

and

(3.10) P’(x, u)(x, u)= x(t)-It u(s) ds.

Note that by assumption (h), I,o u(s)ds is in Lk(L Ix) and hence P maps E into
Lk(I, Ix). Letting u=0 in (3.10), we see that P’(x, u) is onto L(I, Ix). Hence the
tangent directions are given b,y {(x, u)s Eldx/dt u, X(to) 0}, which automatically
implies that x(h) 0 since u Lp(I). Proceeding as in the proof of Theorem 2.1, we get
(after an application of the Dubovitskii-Milyutin theorem)

(3.11)

Define 0 by
It tl

4) ,u dt ah 4) xf(t) dt O.

(3.12) d___= _h4)(x o, t)f(t).
dt

makes sense by assumption (f). By (3.11), (3.12) and the boundary conditions, it
follows that

(3.13) (qb . aO)u dt O

for any arbitrary u /2p (I). (3.13) implies that 4) 1 (u o, t) ag/(t) constant a.e. on L The
case where Ko b can be handled easily.

Case 2. x(h) is free.
Take E Lk (L Ix)x Lp(I) and proceed as in Case 1. In this case define 0 by

(3.14) ’’d--z- =-A&, (x, t)f(t), O(h) O.
dt
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We get in place of (3.13) for any u L.(I)

( 5) (,-aO)udt=O,

which implies that b lu -aS 0 a.e. on L 71

4. Infinite interval case. Consider the scalar system

(4.1) 2 u, X(to) O,

with

Itoe I(H, t) dt
(4.2) F(x, U)=[etelo 42(x’ t)f(t) dt]

a R.

Let I [to, oe). We make the following assumptions:
(a)-(g) are identical to those in 3.
(h) Assume that x Lk(L tx) for all u eLp(I) and c2(x(t), t) f(t) is integrable for

each u Lp(I).
(i) lim,_,oo x(t) 4) 2 (x(s), s)f(s) ds 0 for every u Lp(I).
THEOREM 4.1. Consider (4.1) and (4.2) along with assumptions (a)-(i). Suppose

(x(t), u(t)) minimizes (4.2). Then there exists O(t) such that

J,o d (u t) dtdO
-Ab2 (X 0 t)f(t) A 2 0(4.3)

dt to qb (x t)f(t) dt

and

(4.4) cu(u, t)-aO(t)=O a.e. on I.

Proof. Let E Lk (/,/x) Lp (I). By assumption (c), we can consider the alternative
cost functional

(4.5) G(x, u)= In / bl(u, t)dt-a In / b2(x’ t)f(t)dt.
ato

By assumptions (c), (d), (e), (f) and (g), the Fr6chet derivative of G at (x, u) is
defined by

--1 0
to cptu t)u dt to (x, t)xf(t) dt

(4.6) G’(x u)(x, u) ---- a
Jto 0 tu t) dt to 2(x, t)f(t) dt

If go Ko*, where Ko is the cone of directions of decrease, and if Ko # d, then

(4.7) go(x, u)=-Ao cb,u dt-aA qb2xf(t) dt Ao->0.

To get the tangent directions, we have

(4.8) Q { (x, u) e E x(t) u(s) ds

(4.9) P(x, u)= x(t)-It u(s) ds e’(x, u)(x, u).
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We now mimic the steps in the proofs of earlier theorems.
Applying the Dubovitskii-Milyutin theorem, we arrive at

(4.10)

Define 0 by

ck uU dt- aA ck xflt) dt O.

(4.11) dt- -A2 (x t)f(t), t(oo) 0
dt

which makes sense by assumption (h). Now

(4.12)

tO

By assumption (i), limt_, x4,(t)= 0. Thus (4.10) implies that, for any u L,(I),

(4.13) I, ,-O)udt=O.

By assumption (f), b a, Lq(I) and (4.12) implies that O e Lq(I) (since , u$ dt < oo for
every u e L,(I)). Hence ,- a0 0 a.e. on L The case where Ko $ can be easily
handled.

Several examples in the finite interval case are given in [8] and [9]. We now
consider an example in the infinite interval case.

Example. If 2 L2(1, oo) and x(1) 0, then for u > 2

2

(4.14) 2 2 dt >= -- dt,

where A is the least positive number such that

Ax
(4.15) 2+--=0, x(1) =0

has a nonzero solution on [1, oe) such that 2 e L2(1, oo). (That a least positive number
exists such that the above conditions are satisfied follows from our theory, as we will
see.) Moreover, equality in (4.14) holds if and only if x is a solution of (4.15).

Proof. Let 2 u and for x 0, consider the functional

(4.16) [1 hI2 dt
F(x, u) I x-?t;-dt"

To verify assumption (e) of Theorem 1.1, observe that

(4.17)
x 2 1]?-I <-- Ilul, , u> 2.
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Thus there exists an optimal u for (4.16). Also we have

(4.18) ]Oz (x(s), s)f(s)l 12x!s) < CS-v+(1/2)

s

(4.19) Ioo &2f(s) ds <-_ Ct-+(3/2>,

and

(4.20) x(t) &2f(s) ds <

Equations (4.17), (4.18) verify assumptions (f) and (h) of Theorem 4.1, and (4.20)
verifies assumption (i). Thus, applying Theorem 4.1, we get u /2, d//dt -2h x/t,
where u is optimal and h is the value of (4.16) for this u. Hence,

x
(4.21) 2+A=O, x(1) O.

Thus, if equality holds in (4.14), then x satisfies (4.21). Now .suppose x0 satisfies
(4.21) for some A > O, 2 L2(I). Then 1 22 dt x217- 2x dt, where (x2)(oo) 0
by assumption (i) of Theorem 4.1. Hence

(4.22)
1 x dt

A.

So A is the least positive value such that (4.21) has a nonzero solution with x(1) 0
and 2 L2(1, ). We also deduce that if x is a solution of (4.21) for the optimal A, then
equality holds in (4.14). This concludes the proof.

For the special case of v 3, we get

x
(4.23) g + .--. O, x(1) O, 2 L2(1, oo),

U

and we are seeking the least positive I such that (4.23) has a nonzero solution x. Letting
r -a, the conditions become

d2x 2 dx a fl(dx] 2

dr2 +- --+-x 0 x(1) O, Jo r
2 dr < oo(4.24)

r dr r \dr/

This is a special case of equation (3) on p. 97 of [10], and the general solution is
given by

(4.25) X (’r) mT"-1/2J(/-’) +Br-/2 Yx(4r),

where J1 and Y1 are Bessel functions of the first and second kinds respectively. The
condition that 0 (dx/dr)2

r
2 dr is finite eliminates the solution r-/2 YI(/--). Since

x(1) 0, we have J(/--) 0. Since we are looking for the least positive A, x/-- has to
be the first positive zero of J1, which is approximately 3.8317059702. Thus, A is
approximately 3.67049266.

We finally remark that almost the same proof as that of Theorem 4.1 leads to the
necessary conditions when X(to)= c # O.
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DISTURBANCE DECOUPLING BY MEASUREMENT FEEDBACK
WITH STABILITY OR POLE PLACEMENT*

JAN C. WILLEMSt AND CHRISTIAN COMMAULT

Abstract. In this paper we solve the disturbance decoupling problem by measurement feedback and
requiring stability or pole placement on the closed loop system. The problem is attacked using the geometric
approach through the concepts of A(mod )-invariant and controllability subspaces and their duals,
Al’{-invariant and complementary observability subspaces. The solution of this problem has an interesting
structure consisting of a feedback processor which decomposes into (i) a disturbance decoupling loop; (ii) a
disturbance input stabilization or pole placement loop, and (iii) a controlled output stabilization or pole
placement loop.

1. Introduction. Consider the dynamical system with signal flow graph depicted
in Fig. 1.

]31STURBANCES
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u
CONTROLS

CONTROLLED OUTPUTS
Z

Y
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FIG.

If this system is controlled by means of the feedback processor shown in Fig. 2,

CONTROLS
U
.UREMENTS
PROCESSOR y

FIG. 2

then one obtains the closed loop system shown in Fig. 3.

DISTURBANCES

CLOSED LOOP SYSTEM

CONTROJ=I_ED OUTPUTS

FIG. 3

One of the most easily motivated control synthesis questions is the problem of
designing a feedback processor such that in the closed loop system,
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Domaine Universitaire, BP 46, 38402 St. Martin d’Hres, France.
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(i) The disturbances are completely decoupled from the controlled outputs; and
(ii) the closed loop system is internally stable or
(ii)’ (in the linear case) the closed loop poles may be arbitrarily assigned.

We will call these problems, following the acronym perversion propagated in [1]:
DDPM (for (i)), the disturbance decoupling problem with measurement feedback;
DDPMS (for (i) and (ii)), the disturbance decoupling problem with measurement
feedback and stability; and DDPMPP (for (i) and (ii))’, the disturbance decoupling
problem with measurement feedback and pole placement.

The disturbance decoupling problem in all its variations has been studied exten-
sively before, and has motivated much of the development of the geometric approach in
linear (and recently also in nonlinear) system theory. However, the early papers in this
area have primarily been about disturbance decoupling using state feedback with or
without stability or pole placement requirements [1, 4.3, 5.6]. These results are
based on the concepts of A(mod )-invariant and controllability subspaces. There
have also been a number of papers on DDEP, the disturbance decoupled estimation
problem, or, what amounts to the same thing, the unknown input observer design
problem (see [2], [3], and for earlier references, [4], [5], [6]). This problem will be
treated in 4. The crucial concepts in this context are those of A lfff-invariant and
complementary observability subspaces. These are the duals of A(mod )-invariant
and controllability subspaces. They may be introduced by formal dualization (see [1,
Ex. 5.17], or [2], where DDEP is solved this way) but they can also be defined directly,
in a more intrinsic way in connection with observer synthesis questions [3], [5], [6].

In most industrial applications it will not be possible to assume that all the state
variables are measured. Consequently, there is a direct practical motivation for studying
the disturbance decoupling problem in the context of measurement feedback. Recently,
in fact, DDPM has been solved in I-7] and in [3]. Actually DDPM had already been
formulated by Basile and Marro who, for this purpose, introduced the notions of
controlled and conditioned invariant subspaces (we will call these A(mod )- and
Alff’-invariant subspaces) and they actually obtained as necessary conditions the
conditions which, as shown in [3], [7], are in fact sufficient and hence lead to a synthesis
for DDPM.

In all of the above references, the stability or pole placement question was not
considered. It goes without saying that in applications one will need to consider also the
stability aspects. In the present paper we will solve this problem (see (ii) and (iii) of our
theorem).

It is quite surprising that DDPMS and DDPMPP have not been solved before even
though their solution has been very much in reach, through the combined results in the
work of Wonham [1], Basile and Marro 1-6] and the compensator design by output
feedback of Brasch and Pearson 18] (see also [1, 2.8]). The solution which we have
obtained is in a sense what could have been conjectured from I-3] or [7]. However, the
resulting synthesis is a rather intricate and complex one.

We have attempted to make the paper reasonably self contained. Given the
potential practical interest in this problem, one could hope that this true culmination of
the disturbance decoupling circle ot ideas ought to serve as the theoretical basis for
some convincing specific applications.

We would like to emphasize that the disturbances could be also state or parameter
dependent. The theorem which will be obtained also gives disturbance decoupling when
the disturbance is of the form d((x(.))(t), , t), with an (unknown) dynamic
function of the state and a an unknown parameter.
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2. Mathematical problem formulation. Consider the plant equations given by

,: ic Ax +Bu + Gd, y Cx, z Hx,

with x s " =: , the state, u s " =: q/, the control, d s q =: @, the disturbance,
y s [P =: , the measurement and z s l =: y, the controlled output.

The DDPM problem is to find (real) feedback matrices {F, E, M, N} defining the
feedback processor

,r" v Fw + Ey, u Mw + Ny,

with w k ._.: o//ff,, the state of the feedback processor, such that the closed loop system
Zcl :-" ’ X Erlfeedback’

,v_,. [.’] [A+BNCIB-FM- ][] []EC
+ d, z=[Hi0] v

which may be written compactly as .e =Aex +Ged, z--Hex e, has zero transfer
function, He(Is-Ae)- G =0; i.e., the controlled output z is influenced only by the
initial conditions and not by the disturbances d.

DDPMS requires in addition some conditions on the spectrum of A e, tr(Ae). This
stability requirement is modelled, as usual, by requiring o’(A e) Cg with Cg a given
subset of the complex plane C which is symmetric ({A Cg}C:{A Cg}; denotes the
complex conjugate), and which contains at least one point of the real axis. Simple
asymptotic stability is thus obtained by taking Cg {A CIRe A < 0}.

DDPMPP requires pole placement in the sense that for any Cg which is symmetric
and contains at least one point of the real axis it should be possible to achieve
tr(A e) Cg. (The results essentially imply that the closed loop characteristic polynomial
can be chosen arbitrarily, provided that this characteristic polynomial have a sufficiently
high degree and can be factored into two real factors of the right degree. These details
we leave to the reader to fill in.

Some notation.
1. We will throughout use lower case letters for vectors, capitals for matrices and

linear operators, and script for linear subspaces and vector spaces. If M: 2 and
=a, then MI’’--,:, denotes l--Ml, while M(mod)’x(mOdl)
’2(mod M5’1) denotes x (mod ,ffl) (Mx1)(mod MI). If 2 C 2, then
MI-2" M-X2 2 denotes 12-MI2, while M(mod 52)’ 1 2(mod 2) denotes
x (Mx1)(mod 2). If M"- and c is M-invariant then ]V" - denotes
l-Ml, while M(mod) denotes x(mod )--(Mx)(mod &o). With Q’s representing
canonical injections (Q" x-x) and P’s canonical projections (P:x-x(mod )) these
definitions may be visualized in the commutative diagrams
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If M: and 1,2c , then .1 is said to be M(mod2)-invariant if,.for all
la, Mlax(modz). It is said to be M[-invariant if, for all
Ml .z. Thus 1 is M(mod z)-invariant iff Mc1+2 and M[z-invariant iff
M(fqz)2. These concepts, which are very natural in the context of a linear
algebra, also turn out to have very natural system theoretical interpretations!

The spectrum of M:Y’- is denoted by r(M). It is a set with multiplicity. The
characteristic polynomial of M will be denoted by XM.

2. Consider the system E" Ax + Bu, y Cx, which we will sometimes denote
n--1

by (A, B, C). Let := Im B and Y" := Ker C. Then (AI) := --o A denotes
the reachable subspacc, while =(Y{IA):= -=o A-Y{ denotes the unobscrvablc
subspace. Both and c are A-invariant subspaces. In fact, they are respectively the
infimal A-invariant subspacc containing and the supremal A-invariant subspacc
contained in Y’. The system is reachable iff , and observable itt c- {0}. If both
conditions hold, then wc will call the system minimal. If A (rood ) and AiV arc stable
(relative to some C), then wc will call stabilizable and detectable.

The reachability index of Y, , is defined as the smallest integer such that
l--1 i=oA , while the observability index of , is defined as the smallest integer

such that l-
i=0 A-iy[ V’.

It is well known that { stabilizable and detectable (relative to Cg)}c=>{there exists a
feedback compensator such that the closed loop system is stable (relative to Cg)} and
that { minimal}<=> {for any Cg there exists a feedback compensator such that the closed
loop poles ar contained in Cg}. The required dimension of the feedback compensator
achieving these properties is bounded above by (min (, u)- 1).

Let be A-invariant. Then one may define the system by ]f := {A’, B’, C’}
with A’ := A[, B’ := B[ and C’ := CIr. Similarly the system (mod) is defined
by (mod ):= {A", B", C"} with A" := A(mod ), B" := B(mod) and C" :=
C(mod ’). These are illustrated in the commutative diagram.

B A C

;(mod )" (mod) a(m )
,(mod )’C’(m ei’(md C)

3. We will use, as standard notation, AF for A +BF and AH for A +HC.
3. DDP. Consider the linear system N" 2 Ax + Bu, y Cx. Let ;x denote all

state trajectories of this system. Formally, Ex := {x’N-lx abs. cont. and 2(t)-
Ax(t)e 1 := Im B a.e.}. A subspace is said to be a controlled invariant subspace iffor
all x0 e there exists x e Ex such that x(0)= Xo and x(t)e for all t. A subspace is
said to be a controllability subspace if for all x0, x there exists T > 0 and x e Ex such
that x(O) xo, x(T) x, and x(t)e for all t. We will denote the set of all controlled
invariant subspaces by and the set of all controllability subspaces by __.

It is well known [1, Chaps. 4, 5] that {’ is controlled invariant}:{ is A(mod N)-
invariant}: {A c F + }={there exists F such that ’ isAinvariant}. The family of
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all such F’s will be denoted by if(W). Furthermore: { is a controllability subspace}:>
{_there exists F and 1 Y3 such that (AI) Y}{ _, and for any real poly-
nomial p of degree=dimY, there exists F such that XAFI=p}Cr){IE

_
and

X(AF, B, -)[ is controllable for all if(Y/)}.
Finally, if W E

_
is such that there is an F if(7/’) such that tr(AFIW) c Cg, then we

call W a stabilizable controlled invariant subspace (relative to Cg). The family of all
stabilizable subspaces is denoted by _g.

It is well known and easy to prove that _, _, and _g are closed under subspace
addition, and thus there exists a supremal element of all elements of _7/’, _, and
contained in any given subspace of . These subspaces will be denoted by U.,
and *Wg.e, respectively. We recall the following algorithms for computing 7/’ and

Algorithm (ISA) (the invariant subspace algorithm; see [1, p. 91])"

/r.+l := OA-l(/,,.+); /,o =.
Algorithm (ACSA) (the almost controllability subspace algorithm; see [1, p. 106]

and [9], [10]: . := f) (A.+ 9); o {0}.

The sequence reaches, strictly decreasingly, its limit o//. dim&’+l
e 7/’e and "reaches, strictly increasingly, its limit Y dim.LP

e Ye Furthermore

Computing a corresponding feedback matrixF such that AFI/’e c [/’ requires solving a
set of linear equations. Finding an F such that

AFI 1: and XAe P,

requires a standard pole placement computation.
One of the main applications of the above concepts is the disturbance decoupling

problem. The main results are summarized in the following proposition.
PROPOSITION 1. (See [1, ’s 4.3 and 5.6]). Consider 2 Ax + Bu + Gd, z Hx and

the control law u Fx. Then"
(i) DDP. There exists Fsuch thatH(Is-AF)-IG=O iff Im G 7/’er H.

(ii) DDPS. There exists Fsuch that H(Is-AF)-aG 0 and tr(Av) Ca iff (A, B)
is stabilizable (relative to Cg) and Im G c g.Ker H.

(iii) DDPPP. For any Cg there exists Fsuch that H(Is-Av)-IG 0 and tr(AF)
Cg, iff (A, B) is reachable and Im G R*KerH.

An important refinement of the above proposition occurs when one allows a
feedforward term in the control.

PROPOSITION 2. (See [1, Ex. 4.10, 5.12]). Consider2 Ax +Bu + Gd, z Hx and
the control law u Fx + Rd. Then"

(i) DDP’. There exist F, R such that H(Is-AF)- (G+BR)=O iff ImGc
r+.

(ii) DDPS’. There existF, R such thatH(Is-AF)- (G +BR) 0, and o’(AF)C
Ca, iff (A, B) is stabilizable (relative to Cg) and Im G //’g,Ker/4 + N.

(iii) DDPPP’. For any Cg there exist F, R such that H(Is AF)-1 (G + BR) 0 and
o’(AF) c Cg, iff (A, B) is reachable and Im G 9e/4 + N.

Proof of Propositions 1 and 2. Because of the references given it suffices to prove
(iii) which, however, follows directly from the fact that g*.Kr/4--*Kr/4 whenever
Ca rl o’((AFI ?/’*Kr/4) mod *Kr/4) , for any F e _F(:er/4).
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To contrast with what is to come we summarize some of the main features of the
above results.

1. The situation with the spectrum may be illustrated (see [11]) as follows:

fixed

assignable

fixed

assignable

(AI) + //’*Ker H

Ker H

Ker H

2. We use the following notion of genericity. Consider all (A, B, C, G, H)
belonging to a given algebraic variety Z. Let Z t.J/u= Zi, be a decomposition of Z into
its irreducible components. Let denote all (A, B, C, G, H) for which a given problem
(e.g., DDP) is not solvable. Then we will say that the problem is generically solvable iff
Zi 715 is a proper subvariety of Zi for all i.

If we consider all elements of (A, B, C, G, H) to be free, then DDP is never
generically solvable; DDP’ is generically solvable iff

4 controls_-> : controlled outputs.
This condition also holds for the generic solvability of DDP, if we consider the subclass
of systems with HG -0. For DDPPP’ the condition becomes

4 controls> : controlled outputs,

while DDPPP needs again the added a priori assumption HG -O.

4. DDEP. The dual notion of controlled invariance is that of conditioned
invariance which has been introduced in [6] and further studied in [3], [12] (see also [13]
and [1, Ex. 5.17]). We prefer the following definition.

DEFINITION. Consider the system Ax, y Cx. A subspace e X is said to be
conditionally invariant if there exist matrices F, E such that z := x(mod ) satisfies. =Fz +Ey.

This definition may seem a bit "ad hoc". In fact, its discrete time analogue may
be introduced in a more intrinsic way by defining 5 to be conditionally invariant
for x(t+l)=Ax(t), y(t)=Cx(t), if there exists f such that x(t+l)(modSe)=
f(x(t)(mod 5), y(t)).

The following conditions are equivalent: { is a conditioned invariant subspace}:
{5 is A]Ker C invariant}" :{A(Sef3 Ker C) = }:{L exists such that ASe= 9} (L is
related to F, E in the above definition by F A(mod 5), and E =-L(mod 5e)).
Indeed, assume that 0 is a conditioned invariant subspace. Then if x Ker C, it follows
that ()(mod 5) (d/dt)(x (mod )) Fx(mod 0) (Ax)(mod ow), which shows that
A(0f3 Ker C)= 5. A simple linear algebra calculation shows that this implies the
existence of L such that A = 5. For such an L there holds (for Ax, y Cx)

---a (x(mod 5e)) (k)(mod 5’)= (Ax)(mod
dt

(ALx)(mod 5e)-L(mod 9)y

AL(mod 9)x (mod 9)-L(mod St)y,
which shows the equivalence of the above statements.
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The class of all conditionally invariant subspaces will be denoted by _5 and for
6 _5, _(5) := {LIALc }.

It follows from the definitions that AlKer C-invariant subspaces are immediately
related to the construction of observers. For the stability properties of conditionally
invariant subspaces it is not tr(ALIS) but tr(AL(mod 5)) which is relevant. Indeed,
consider the data processor, AL(mod )z L(mod 5)y,

as estimator for x (mod 5e) in Ax, y Cx. Define e := z x (mod ) and note that in
this case we need not have z(t)=x(t)(mod 5), since it is not assumed that z(0)=
x(0)(mod 6). Then e is governed by =AL(mod )e. Consequently, the error
dynamics are governed by tr(AL(mod 6)), which leads naturally to the following
definition.

DEFINITION. A conditionally invariant subspace S is said to be a complementary
observability subspace if for any given real polynomial p of degree n-dim 5, there
exists L _(6) such that

/’AL(mod 6) P"

It is said to be a complementary detectability subspace (relative Cg) if there exists
L _(6), such that tr(At’(mod 5)) c

There holds: {5 is a complementary observability subspace}::,{6 _6 and =IL,
’{1 9’[ := Ker C such that (:IIA ’) 6e} {6e _6e and (AL, -, C)(mod ) is
observable for any L _(6)}.

These statements follow immediately from duality. Indeed, let and _6eg denote all
complementary observability and detectability subspaces associated with a given pair
(A, C). It is easily seen that AlKer C-subspaces behave dually to Ar(mod Im.Cr)
subspaces: 6e _6 (resp. _, g) relative to (A, C), iff 6e+/- _7/(resp. , _7/g) relative to
(A T, cT). In particular _6, _5, and

_
are closed under subspace intersection and thus

there exist infimal elements of all elements of _6, _Se,, and containing a given subspace
[ of . These subspaces will be denoted by * 5* andW respectively.YC g,

In order to compute . and ., it suffices to dualize the algorithms given before.
Let f :- Ker C, and consider the following algorithms.

Algorithm (ISA)’:

5+’ := ’ +A(" f3 [)’, 0 ={0}.

Algorithm (ACSA)"

z := &’ + (A-1N.’) f’) tr;

The sequence 6. reaches (strictly increasingly) its limit 6:e--
,_n -dim .L’+ ,t/,n -dimand N., reaches (strictly decreasingly) its limit ..Furthermore,

and NS 6. +N. N..
Computing a corresponding output injection matrix L such that

requires solving a set of linear equations. Finding an L such that

AL,AfS C d/S and XaL(modAC) P,

requires a standard pole placement computation.
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Before introducing the disturbance decoupled estimation problem, we give a
simple but very useful result concerning the role of dynamic extensions of linear
systems.

Let E: Ax + Bu, y Cx be given. We will call the system e.. Ax + Bu,
v, considered as a system with input (u, v) and output (y, w), denoted as ze: e=
Aex + Beu e, ye CeX e, with e 6() o, etc., an extension of ,E. The dimension of V
is called the dimension of this extension. We will denote by P the canonical projection

P
x (x, w) x. It is important to note that static feedback around e corresponds to
dynamic feedback around Y_,, and that any (finite dimensional) feedback processor
around E may be visualized in this way. We have the following simple relations between
invariant subspaces of and Ee.

PROPOSITION 3. Let _e be an extension of ,. Then,

{a/,e

_
} cr> {po]/,e

_
}, {,.e C=

_
e},::> {,_e n },

and {5 e }<=>{Y n
{7

_
e}4p{P7e

_
}, {afl E _fle}:::) {

_
Consider now the plant Y_,: k Ax +Bu + Gd, with observation (y, u) where y

Cx, and the output to be estimated z Hx. The disturbance decoupled estimation
problem DDEP is the problem of constructing a data processor, (an observer) Ep:
Fw /Ey + Ku Mw +Ny / Su, such that the resulting estimation error e := z
depends only on the initial conditions and not on the disturbance d or on the input u.
The resulting signal flow graph is then as shown in Fig. 4.

DISTURBANCES . TO BE ESTIMATED OUTPUTS ./’ESTIMA_TION ERROR

P T_u
CONTROLS MFASUREIVlENTS ] DATA I

_IPROCESSOR|

FIG. 4

We emphasize again that, as in the disturbance decoupling problem, the disturbance
may also depend on the state through an unknown function or on unknown parameters.

Since in a disturbance decoupled observer the transfer function d, u e is zero, all
signals e(. ), obtainable by varying the initial conditions x(0), w(0), are exactly those
obtainable by varying the initial conditions v(0) as the output of a system of the form
3 Pv, z Qv, for some P, Q. If (P, Q) is observable (which we may always assume
to be the case) then we will call tr(P) the spectrum (or poles) of the error dynamics of the
observer. Note that in an input decoupled observer x(0)= 0 and w(0)= 0 together
imply e(t)= 0 for all (i.e., we have the possibility of perfect tracking of the to be
estimated signal by means of the observed signal).

The following proposition treats the disturbance decoupled estimation problem
DDEP. This refers to the possibility of finding a disturbance decoupled observer. The
problems DDEPS and DDEPPP add the stability or pole placement requirement to the
estimation error dynamics.

PROPOSITION 4. Consider the system Ax +Bu + Gd, with observation (y, u)
where y Cx, and the to be estimated output z Hx. Consider an observer of the form

Fw +Ey + Ru, Mw +Ny + Su. Then"
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(i) DDEP. There exists a disturbance decoupled observer, iff 9*m fqKer C c

KerH.
(ii) DDEPS. There exists a disturbance decoupled observer with error spectrum

Cg, iff g*. Im G f’ Ker C = Ker H.
(iii) DDEPPP. For any Cg there exists a disturbance decoupled observer with error

spectrum contained in Cg, iff WI*m (3 Ker C Ker H.
Proof. Claims (i) and (ii) are essentially proven, by duality arguments, in [2] (see

also the references of this paper). For completeness, we include a short proof.
I Necessity. Let e :=z-., and consider the dynamics of x =(x, w)/g

written as e =Aex +Ge(u, d), e =Hex +De(u, d). This must have zero transfer
function (u, d)-e. Equivalently, D 0 and (Aellm Ge) (Ker HelAe) =: See.
Obviously, St is Aeoinvariant and Im B See Ker Ce. Now y_.e. Ax + Bu + Gd
rO Fw +Ey +Ku is clearly obtainable from an extension of Z by extended output
injection. Hence any Ae-invariant subspace belongs to _See. St 6 _See and, from Pro-
position 3, 9e=:ow, which implies ImG=f’lImGe=S=KerHe=
Ker (H-NC), which yields 5 (3 Ker C c Ker H. This proves (i). To prove (ii) it suffices
to note that the spectrum of the dynamics e equals the spectrum of A (mod 5e). Hence
if,e6 _ff,, and thus 5t’ _fig (see Proposition 3), if DDEPS is solvable, whereas the
condition for DDEPPP follows directly from the fact that g*. Im NIm 6, whenever
Cg f3 o’(AL(mod 5t’*m )lWm (mod 5*m )) , for any L _L(SI*m ).

II Sufficiency. Assume _St’, Im G 5, and 5t’f3 Ker C Ker H. By this last
inclusion there exists M,N such that Hx =Mx(modS)+NC. Let L_L(_5a) and
consider the observer ff AL(mod 5) w -L(mod )y +B(mod) u, Mw + Ny,
with -(mod 5), and M, N such that Hx Mx(mod if’) + NCx. A simple cal-
culation then shows that the following equation holds,

d L

td
--:x(md St)= A (mod 6e)x(mod 6e)-L(mod ff’)y + B(mod 9)u.

Thus e := z ., is governed by AL(mod 6e)r, e Nr, with r := x (mod if’)- w. Hence
the transfer function (u, d)-e is zero, which yields (i). If 6 _g. ImG, or o(7/9 _Im G, then
this reasoning yields (ii) and (iii).

Remarks.
1. In some applications it may be desired that the observations should in any case

be "filtered" before being used in .. This requirement is translated into the constraints
N 0, S 0. The results of Proposition 4 then need to be modified, respectively, to:

(i) DDEP’. 6e*m c Ker H,
(ii) DDEPS’. 6eg*. Im G C Ker H,
(iii) DDEPPP’. W*m c Ker H.

2. The estimate given on the order of the observer given in the above proposition
is, in general, conservative. In fact, the minimal order estimator design is the dual of the
minimal dynamic cover problem, and is not solved at this point. However, it is easily
seen from the above proposition that if the to be estimated output is the state, then the
dimension of the required observer is at least n-Rank C. The proposition hence also
shows in what sense the "Luenberger observer" is minimal. In fact, the order of the
observer which achieves pole placement needs, assuming (A, C) to be observable, only
be n-Rank C, whereas the above proposition would predict n. This is due to the result
described in [1, Lemma 3.5, Th. 3.3]. The procedure described there may actually be
generalized to the situation at hand, but we will not go into that here.
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3. The situation with the spectrum of conditioned invariant subspaces may be
illustrated [11] as follows"

assignable {
fixed {

assignable {
fixed {

{0}

(Ker CIA) 0 ST*m

4. If we assume all elements of (A, B, C, G, H) to be arbitrary, then DDEP is
generically solvable iff

measurements >- disturbances.

This condition also holds for DDEP’ provided we add the a priori requirement HG O.
DDEPP instead requires

# measurements> # disturbances

while DDEPP’ again needs the a priori assumption HG O.

5. DDPM. In this section we will give the main result of this paper" the dis-
turbance decoupling problem with measurements and stability or pole placement
requirements.

DEFINITION. Consider the system 2 Ax + Bu, y Cx. The subspace = F is
said to be an (A, B, C)-invariant subspace if there exists K such that (A + BKC) .

We will denote all (A, B, C)-invariant subspaces by _. The following proposition is
easily seen.

PROPOSITION 5. ’ o//, .
In fact, if _, then it is a matter of solving a set of linear equations to compute a

suitable for it.
The following elegant result of [3] shows how one can produce (A, B, C)-invariant

subspaces by extension.
PROPOSITION 6. Let t/"

_
and 5a _5a, with 5a 7/’. Then there exist an extension of

Y of dimension _-<dim o//._ dim 5a and an e
_

e, such that 7# pe, and 5a e fq .
Proof. The idea behind this proof is shown in Fig. 5. Take //’(mod 5a), i.e.,

dim dim ?/’-dim 5a, and e := ff3 7/7. Let 7’ be such that 7/’ 5a ’, and
= o//., //., such that CI o//., f-) o/ {0} and dim ’ dim ’ dim /4/’. Now
e :_._ ,1,_, will have the required properties (see Fig. 5). 71

FIG. 5
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Remark. The above proposition in effect shows how one can produce an
(A, B, c)e-invariant subspace from a pair 6e c 7/’. Actually this result also solves the
following problem. Consider A Ax +Bu, y Cx. Let c and suppose that we
would like to make V invariant by feedback from y. Clearly for this V needs to be
A(mod )-invariant. A systematic procedure for achieving such a feedback law is given
in Proposition 6. First choose an A lKer C-invariant subspace 6e c V, taking 6e {0}
shows that it is always possible to achieve this.

Now lete be such thatpe o//,, ande i’ ,-. Then (e I _e, and, hence, there
exists g (defining a dynamic feedback law) such that (A +Betece)e ,e. The
ensuing closed loop system will have the property that if x (0) e, then x (t) e, i.e.,
pxe(t) F" for all t, as desired. Actually this procedure may be viewed in terms of
separation, with an observer used to estimate the feedback law u Fx, with F

We continue with a lemma which is an interesting generalization of well-known
results about stabilizability and pole placement by output feedback.

LEMMA. Let : Ax + Bu, y Cx be given, and letLbe an A-invariantsubspace
o.

I. Consider the system [and assume that it is stabilizable and detectable. Then
there exists an extension of and a static feedback law Ke around such that, with
A 1,cl := A +Beg Ce,

(i) o/.1 is A 1,c/-invariant,
(ii) o-(A 1,c/l(@ l) Cg,
(iii) r(A 1,1 r(A 1,c1).[ (@ /1)) LI r(A(mod S)).

This can always be achieved with an extension of dimension of at most

3’1 := min (:xlL, v.lL)- 1 _-<min (Kx, vx)- 1. Moreover, if[is minimal, then given any
real polynomial px of degree >-dim + 3"1 one can in fact achieve this with the charac-
teristic polynomial ofAx,/[(L’ o/.) equal to pl.

II. Consider the system Z(mod ), and assume that it is stabilizable and detectable.
Then there exists an extension Zz of and a static feedback law K2 around 2 such that,
with A2,cl := A _[_ B eK2eC

(i) is Az,cl-invariant,
(ii) o’(A 2,c/(mod ’)) Cg,
(iii) cr(A2,cl) o’(A[) cr(A2./(mod )).

This can always be achieved with an extension of dimension of at most 3"2 :=
min (K(mod), VX(mode))-- 1 --< min (z, v)-- 1. Moreover, if. (mod ) is minimal,
then given any real polynomial p2 of degree >- n-dim + 3"2, one can in fact achieve
this with the characteristic polynomial of A2,/(mod ’) equal to p2.

Proof. In an suitable basis with @W(mod ), - (mod - ),
C (mod C), E may be written as

1 X1Yl(12) (1 12 12A22’(12)+( (2) (;2)=(11IB22]

In this representation,1 {A 11, Bll, Cll} and Y_,(mod ) {A22, B22, C22}. In order
to prove the lemma it suffices to synthesize a Brasch-Pearson stabilization or a
placement compensator (see [1, 3.8]) from y to Ul for (i), or Y2 to U2 for (ii).

It remains to be shown that min(gzl,Vl,z), min((mode),V=(mode))_--<
min (:x, v=). This however is due to the fact that Kle <-- . (this follows from the results
in [14]) and that vele _-<v, which is easily derived from first principles. Dually,
K,V.,(mod.’) KX, and Vxl. -<- vx,
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The above lemma shows under what conditions stabilization or pole placement by
feedback from y to u can be done in a decentralized fashion by feedback from yl to ul
and from u2 to u2 without destroying the special subsystem structure induced by the
A-invariant subspace

We are now in a position to state .and prove our main result.
THEOREM. Consider the system ,:2 =Ax +Bu + Gd, y Cx, z =Hx, and the

feedback processor Er" Fw + Ey, u Mw + Ny. Let Eel be the resulting closed loop
system with

Acl :=
/C I/’- J"

Then

(i) DDPM ([2], [3]). There exists , such that the transfer function d z in ,c is
zero iff 2f*Im CrI. Moreover the required dim /4/’_-< dim //’r --dim 6e*m .

(ii) DDPMS. There exists , such that the transfer function d z in ,a is zero and
r(Acl)C Cg iff Y is stabilizable and detectable and 6g*,m l/’g*,r . Moreover the
required dim /’_-< dim //’g*,Cr U--dim 6eg*,im o-2(min (uz, v.)-1).

(iii) DDPMPP. For any Cg there exists Ysuch that the transferfunction d z in Ect
is zero and r(At)c Cg iff Y is minimal and 3C*mO R*rU. Moreover, the required
dim 7g/’_<- dim *ru-dim I*m 2(min (u., vz)-1).

Proof.
I. Necessity. Assume that a required ; exists. Consider the extension e on which

static feedback results in a Y_, with zero transfer function d z, and write it as
"cl" 2 AclX + Ged, z Hex e. Hence, (A/llm Ge) (Ker HelAcl) =: e. Obviously
oe is Acl-invariant and hence, as shown in the proof of Proposition 4, .e _e
_e _ce. Furthermore, Im G .e Ker He. Hence, Im G c fq. Im G e ’__: oqa c :__ p.oe p Ker H Ker H. From Proposition 3, it follows that e and
6e e _6e, as desired.

The above reasoning also shows the solvability of DDPMS. Indeed, when Act is
stable then Acl[ is stable as well; thus .e

_
_;, which by the above reasoning

shows that there exist 7/’g _g and 6eg e _6eg such that Im G c 6eg c 7/’g c Ker H. That
stabilizability and detectability of Y- is also a necessary condition follows from general
principles.

Consider now DDPMPP. If Cr((AFl//’*KerH)(modCerH))Cg= for F
F(cier H), then * *g.Ker H and, dually, if cr(Ac(mod 6*m )1Ker H

3C*m a(mod *m )) f-1Cg , for L L(6em_ a), then 6eg.im* a 3C*m a. Hence, there
’s such that Cg,Ker* H --lKerH and 6eg.im* a 3C*m , which yieldsexist plenty of Cg

,A/’Im (7 Ier H, since if DDPMPP is solvable, then DDPMS is solvable for those Cg’s,
as required. That minimality of 2; is also a necessary condition follows again from
general principles.

II. Sufficiency. This part of the proof is constructive and the procedure may be
divided into three parts. ,

Step 1 (Disturbance decoupling). Since 9’*m a c CKern there exists, by Proposition
7 a first extension of E, Y_, of dimension <dim V* -dim S*m and an (A, B, C)KerH G

invariant subspace L such that *m= f’lX cp F*ern. Write E as 2
lX +BUl +G d, yl =ClX, z =HlX. Hence Im Gc cKerH. Thus there

exists K such that is Al.c/(: Ae +BeKC )-invariant. Since (Al,/lIm G
c (KerH IA 1.c) this yields the solution to DDPM. The resulting closed system is

.__e1,cl: fl =Al,clXl +BlUl +Gd, y =Cx,z =Hx1.
It is disturbance decoupled but enjoys no further stability properties as yet.



502 JAN C. WlLLEMS AND CHRISTIAN COMMAULT

We now consider DDPMS. If E is stabilizable and detectable, so are E and ,X ,cl.
oQgg,Im G g,Ker H.Let 01 be cOnstructed as in the previous paragraph starting from * o//..

Hence is A 1,c/-invariant, Im G c c Ker H, and _6e,g fq ,g. Consider
X,,c/l and E,t (mod S). Now, Eel,cll is stabilizable and detectable; stabilizable
because _W,g, and detectable because E is. Dually, ,X,z (modA is stabilizable
and detectable; stabilizable because E,t is and detectable because _6el,g.

Using these properties of E,cll- and E,I (mod) it is now possible to carry
out the stabilization steps by a decentralized procedure, by first putting feedback
around E,cll,V_, (we will call this the disturbance loop stabilization) and then putting
feedback around .,et,cl (mod) (we will call this the controlled output loop stabiliza-
tion ).

Step 2 (Disturbance loop stabilization). Let us now use procedure (i) of the lemma
on ,,clle. This yields a new extension ,X and a feedback such that 0 := (R) 74/2
is A.,/-invariant, tr(A2,I1) c Cg, and tr(A2,/(mod S’)) tr(A 1,/(mod ’)) Cg.
Furthermore, Im G c KerH remains satisfied, which still yields a disturbance
decoupled system.

Step 3 (Controlled output stabilization). Let us now use procedure (ii) of the lemma
on X,,c(mod ). (Note that ,/(mod)= ,S_,,/(mod’ ).) This yields an extension

X and a feedback such that [ remains A3,/-invariant, which implies Im G
KerH and hence, the DDPM conditions will remain satisfied. Furthermore,

cr(A3,/(mod )) Cg and o’((A3,/)loL’) 0"((A2,/)[.) Cg, which yields DDPMS.
We still need to show the estimate on the required order of the extension. This

follows from the estimates

x., (mod <= K x., Kx x,
nd

with similar estimates for the observability indices.
Turning now to DDPMPP we see that the procedure sketched above will also work

with an arbitrary Cg provided N*m C YKer H, since ,l, as constructed in Step 1, will
then be such that Y. ,c/(mod ’ and E,l] are both minimal, and hence Steps 2 and 3
can be done with pole placement.

This ends the sketchy proof of the theorem. 1-1
Remarks. 1. DDPM is solvable only if HG O. However, in this subclass we have

generic solvability if and only if

# controls_-> # controlled outputs,

# observations_-> # disturbances.

For DDPMPP this condition becomes:

# controls> # controlled outputs,

: observations> # disturbances,

Finally, if feedforward is allowed (i.e., d is measured and available in the feedback
processor) then we have solvability of DDPM, (resp. DDPMPP) iff we have it for DDP,
(resp. DDPPP).

2. Note that the estimates for the dimension of the feedback processors as given in
the theorem and the lemma are conservative, and may in any specific situation be
improvable by analyzing the comrollability and observability indices of EI and
E(mod f). Of course, the minimal order required, or generically required, is not known
and will be a complex combination of the minimal cover and the minimal order
stabilizing compensator design (research) problems.
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3. We have been referring to Step 2 in the proof of our theorem as disturbance loop
stabilization because it stabilizes the loop which is influenced by external disturbances
(even though it does not influence the to be controlled outputs). Step 3 is called
controlled output stabilization because it stabilizes the loop which influences the to be
controlled outputs (even though it is not influenced by the disturbances).

The total design procedure with the disturbance decoupling loop and the two
stabilization loops has an appealing hierarchical structure. This structure may be made
more elegant yet by viewing all three control loops in terms of a separation philosophy,
with the observer elements driven by the estimation errors and having their own
internal control feedback. It seems appropriate to mention at this point that, as shown in
[3], in a closed loop configuration it is in general not possible to distinguish observer error
dynamic modes and state feedback controlled modes.

The signal flow graph of the controller may be visualized as shown in Fig. 6.

d z

Y
ue ye

DISTUPANCE DECOUPLING

STABI LIZATION

FIG. 6

Altogether this results in a complex, but nevertheless logically structured and,
from a cybernetic point of view appealing, synthesis. Even though the order of the feed-
back control compensator may be up to three times the dynamic order of the plant,
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the resulting feedback controller could be implemented on a microprocessor for
moderately complicated plants.

4. The synthesis procedure explained in the proof of the theorem can obviously be
made into a computer-aided design algorithm. In the case of DDPMPP one would
proceed as follows:

Data. A, B, C, G, H, (which must satisfy HG 0), and the desired Cg (or the
desired symmetric set of poles A 1, A 2, , AN, or the desired characteristic polynomial p
of degree N. The synthesis will work as long as N is large enough and as long as a
factorizability condition on p, which comes out of the structure of the controller, is
satisfied).

Verify whether m > and p > q. If so, proceed with confidence (see Remark 1). If
not, count on luck due to special structure of the system matrices.

Step 1. Compute Ci*m and KerH using, e.g., the linear algorithms given above. If
N*m c Yer n, proceed. Otherwise, look for some other control system
design approach, e.g., an LQG approach.

Step 2. Solve DDPM by computing and K, using the ideas in the proofs of
Proposition 6 and Step 1 of the theorem.

Step 3. Design Brasch-Pearson compensators for E(mod 5) and
Obviously, in order to implement such procedures into good working high level

computer-aided design packages, a lot of numerical work remains to be done [15].
However, it seems very important that such packages be developed, and the failure of
control theorists to give adequate attention to such efforts undoubtedly contributes to
the widely advertised gap between control theory and practice.

Acknowledgment. I would like to thank Dr. J. M. Schumacher for some useful
discussions.
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SELECTING SUBSETS FROM THE SET OF NONDOMINATED VECTORS
IN MULTIPLE OBJECTIVE LINEAR PROGRAMMING*

J. G. ECKER" AND NANCY E. SHOEMAKERt

Abstract. In this paper, we develop methods for selecting certain subsets from the set N of
nondominated points for multiple-objective linear programming problems. One such subset is the set of a
points x in N for which the maximum deviation of the objective function values Cx from some ideal vectorM
is as small as possible. This subset can be obtained as the set of nondominated points for a multiple-objective
problem that is considerably smaller than the original problem and the proposed method does not require that
the set N be calculated explicitly. The method is extended to obtain another subset of N called the trade-off
compromise set that has some interesting properties and that gives valuable information about possible
trade-offs amongst the objectives.

1. Introduction. In a multiple objective linear programming problem, a convex
polyhedron X R is given over which several linear objectives are to be maximized.
These objectives are given as the components of a column Cx where C is a k n matrix
with k denoting the number of objectives. A point xX is called nondominated if
there is no x X with Cx >= Cx and Cx Cx. Nondominated points are sometimes
referred to as Pareto optimal or efficient points.

Methods for generating the set of all nondominated extreme points have been
developed by several authors; see for example Philip [13], Evans and Steuer [19], Yu
and Zeleny [17] and Ecker and Kouada [20]. Methods have also been developed for
describing the entire nondominated set N as a union of maximal nondominated faces as
in Yu and Zeleny [17], Gal [14], Isermann [15] and Ecker, Hegner and Kouada [16].

Once the set N has been generated, the problem of using this (often large) set in the
decision process remains. In this paper, we develop methods for selecting subsets of the
nondominated set. One important class of subsets is determined by considering those
points x N for which Cx is as close as possible to some vector of ideal values for the k
objectives. In [8], Zeleny defines an ideal vectorM by letting

Mi =max Cix, i= 1, 2,..., k,
xX

where C denotes the ith row of C. We assume throughout that X is bounded. Given
these maxima M/ of the individual objectives over X, a point x X is called a
compromise solution (as in [5], [7] and [8]) with respect to the/w-norm if it is optimal for
the program

Qo(X): min max (Mi Cix).
xX

Compromise solutions in multiple-objective programming have been investigated
by several authors; see, for example, references [1]-[10]. In [5], a general framework
for studying the relation of compromise solutions and the set of nondominated solutions
is presented. In this paper, we will be concerned with the compromise solutions defined
by the /w-norm and we will restrict our discussion to the linear multiple-objective
problem.

* Received by the editors December 8, 1978, and in revised form June 30, 1980. This research was
supported in part by the National Science Foundation under grant MCS 75-09443 A02.

t Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181.
t Department of Mathematics, Oakland University, Rochester, Michigan 48063.
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2. Finding all nondominated compromise solutions. The set N of all non-
dominated compromise solutions, which we seek, is the set of alternate optima for the
program

Q(N): min max (Mi Cix).
xN

If x is optimal for O(X), then x is not necessarily nondominated and the two programs
Q(N) and Q(X) are not equivalent. However, as established by Dinkelbach and
Durr in [2], there is at least one x s X that is optimal for both O(X) and Q(N) and,
consequently, these two programs have the same optimal value. In particular, if O(X)
has a unique optimal point x*, then it follows that x* is the unique optimal vector for
Q(N) and the set of nondominated compromise solutions consists of the single x*. In
the remainder of this section, we propose a method for finding all nondominated
compromise solutions when Q(X) has alternate optima.

It is well known that Q(X) can be reformulated as an equivalent linear program
(see [11], for example). However, because N is not necessarily a convex polyhedron,
the program Q(N) has no such reformulation. In [8], Zeleny proposes a method for
solving Q(N) by using concepts from two-person zero-sum games. In some cases,
however, the method in [8] may yield solutions that are dominated (see [12] for an
example).

Our approach for solving Q(N) first requires solving Q(X) as a linear program;
namely the well-known program Q below.

Q" min w

subject to M- Cx <= we and x s X,

where w s R 1, and e is a column vector with each component equal to one. By using the
optimal value for program Q, the following theorem (which is the main result in this
section) indicates how the setN of nondominated compromise solutions can easily be
determined.

THEOREM 1. Let >0 be the optimal value for program Q. The set No of
nondominated compromise solutions is equal to the set of nondominated points ]:or the
multiple obfective program

P: max Cx

subject to M- Cx <-_ e and x X.

Proof. Let N* be the set of nondominated points for P. Suppose x is a
nondominated compromise solution. If y is feasible for P with Cy => Cx, then Cy Cx,
since y s X and x s N. This shows that N

___
N*. Now suppose that x s N*. To show

that x s N, we first note that the optimal set for program O is given by {x s XIM-
Cx -< ve}, which is the feasible set for P. Thus, x s N* implies that x is a compromise
solution. To see that x s N, suppose that there exists y X with Cy => Cx (so that
M-Cy <= M-Cx). Thus, M-Cy -< e and so y is feasible for program P. But then
x s N* implies that Cy Cx. Therefore x N and x is a nondominated compromise
solution which shows that N*

___
N, and the proof is complete.

In view of the above result, solving O(N) can be accomplished without explicitly
finding the nondominated set N. One simply solves the linear program O to obtain v
and then the nondominated set for the multiple objective program P is generated using
one of the existing methods referenced earlier.
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The optimal tableau for the linear program Q can be used to obtain the initial
tableau required by methods, as in [16], to generate the nondominated set for P. For
details on computational considerations in solving P, see [12], where the fact that the
feasible set for P is simply the set of alternate optima for Q is exploited. We will also see
in the next section that in the special case where the original multiple objective problem
has three objectives (k 3) then the multiple objective program P reduces to an
ordinary linear program. This occurs because at least two of the three objectives will be
constant over

In the next section, we consider an extension of our method for finding a subset of
No which provides valuable information concerning possible objective function trade-
offs amongst the set of nondominated points.

3. The trade-off compromise set. Given the ideal vector M, let d(x) denote the
deviation vector defined by

di(x) Mi Ci(x), i=1,2,...,k.

A point $ X is called a trade-offcompromise point if Qx > C/$ for some x X implies
that there is an index such that Cix < CiY and di($)di($). Given a trade-off
compromise point , if we wish to improve the objective function value Cfi of the/’th
objective, then we must be willing to accept a decrease in another objective function
that is no better off relative to its ideal value than the/’th objective. If such a decrease is
not acceptable then no increase in Cix is possible.

It is clear from its definition that a trade-off compromise point is nondominated. In
fact, if T denotes the trade-offcompromise set, then we will show below that T

_
No, the

set of nondominated compromise points. The name "trade-off compromise" was
chosen because of the information that such points provide about possible trade-offs
and because such points are nondominated compromise points.

The set T of trade-off compromise points depends on the ideal vector M. After
presenting a method for determining the set T, in the next section we will show how M
can be altered to provide further information about possible trade-offs amongst the
objectives.

To help motivate the algorithm for generating the trade-off compromise set T,
consider the following process. Suppose we solve program Q in 2 and discover that its
optimal set Xo does not consist of just a single point. As established below, there will, in
general, be at least two objectives satisfying

Mi-Cix

for each x Xo. Suppose we then define a new ideal vector M’ by

M Mi , if x 6 Xo implies Cix Mg ,
M Mi, if =Ix s Xo with Cix > Mi .

That is, the ideal value is changed to the only attainable value for the objectives that are
worst off. For the objectives that can get closer (over Xo) to their ideal values, we could
then try to find an x Xo that minimizes (over this smaller set of objectives) the
maximum deviation. This suggests the iterative process described in the algorithm
below. Each iteration of this algorithm involves solving only a single linear program.

4. An algorithm for generating the trade-off compromise set T. In this section, we
present an algorithm that consists of a finite sequence of no more than k linear programs
for generating the trade-off compromise set T, where k is the number of objectives.
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After presenting the algorithm we will develop the results necessary to show that
the algorithm converges to T. Some additional characteristics of the set T will also
be discussed.

ALGORITHM A.
Step O. Let Jo={1,2,... k}, X X, n =0.
Step 1. Solve the linear program

O" min w
subject to Mi Cix <- w, J,, x X and w _-> O.

Let w" be the minimal value.
Step 2. Let X"+={x X"[Cx >-Mi-w", J,}.

LetJn+l={f Jn[ixXn/l with Cjx>M.-wn}.
If J+ , stop.
Otherwise, let n n + 1 and go to Step 1.

When n 0, notice that program Qo is simply program Q. Also notice that, since Mg is
the maximum of Cgx over X, it follows that if w" =0 then J,/l =4). The set Jn+l
identifies those objectives that can get closer over X/1 to their ideal values. In
particular, when n 0, the set J1 identities those objectives that can be improved over
the set X of optimal solutions to program Q.

A proof of convergence of the algorithm depends on the following lemma.
LEMMA 1. There exists ] eJn such that Cjx =M.- w" for all x eX"+, so Jn+l J,

forn>-_O.
Proof. Suppose for each ] e Jn, ::Ix e X"+x such that Cix >M w. Consider the

point

where m is the number of indices in J,. Notice that 2 e X"+, since Xn+l is convex, and
so 2 e X", since X"+1

_
X". We will now show that exists such that (2, ) is feasible

for Q, with < w ", contradicting the assumption that w be the minimal value for Q,.
To this end, observe that for each e J,,

XZ -Ci 2m

1
m

1
i)Z (M- Cix) +--( Cix

m ]eJ.-{i} m

1 1 i).--(m- 1)w" +--(-Cix
m m

The last inequality holds since x X"+ for each ]. Thus,

z < w for each

since-Cix < w by choice of x i. Letting

max z i)
iJn

we see that rP < w n. This contradiction completes the proof.
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Lemma 1 implies that eventually the algorithm will reach a stage with Jrq b for
some N. In the development below, we show that the corresponding set Xr is, in fact,
the trade-off compromise set T.

THEOREM 2. Algorithm A terminates with JN qb for some N <= k and the set X
generated is such that:

(a) x, y X implies Cx Cy;
(b) Xr

_
E.

Proof. The existence of N is immediate from the finiteness of J0 and Lemma 1. Let
/" {1, 2, , k}. Then since Jr b,/" J0, and Jn /1 c Jn for all n, there is an n such that
/" J, -J,/l. From the definition of X"/1 and J,/l, it follows that Cjx M- w for all
xXn/l. But Xr ___X"/1 so Cjx =M.-w for all xX. Thus each Cx is constant
over Xr which proves (a). To prove (b), choose x Xr. Choose y X with Cy ->_ Cx.
Then we have X X so y X. For 0-< n < N, consider the induction hypothesis
yX". Then X___X"/1 implies Cix>=M.-w for each/’J,. But Cy>-Cx then
implies Cy-> M.- w for each f J,. By the induction hypothesis, we then conclude
that y X"/1. Therefore by induction, y X" for 0-<n =<N. From (a), y Xr implies
Cy Cx and therefore x E. Thus, X E and the proof is complete.

For the next theorem we need some notation and preliminary results. Let the
vector z denote the objective function values given by any point in xr; that is, let
z Cx for some xXr. Without loss of generality assume that the sets J are
constructed so that

Jo {, 2,...,/o},
J1 {1, 2," kl},
J2 {1, 2, ., k.},

J=.

kl < ko,
k2<kl,

Note that if kn+l < <- k, (that is, eJ, Jn+l), then z M w". From Algorithm A we
know that w" > w "/1, n 0, 1, , N- 1. Furthermore, from our definition of the sets
X", we observe that

X" {x X[Cix zi for > kn-x
and Cix >= Mi w for <- K,_1}.

THEOIEM 3. Let z Cx for some x X1. For any x X, if Cix > zi ]:or some ] such
that k, < ] <- k,-1, then there exists > k, such that Cgx < z.

Proof. Assume there exists a point e X such that Cfi > zi and Ci$ >= zi for all
> k,, where k, </" =< k,_ 1. By changing the choice of ], if necessary, we can assume that

either C z for each > k,-1, or that n 1, in which case C z for > k,-1, holds
vacuously. We will show that the existence of such a point is inconsistent with a
property of the set J,-1-Jn, namely that Cix z for all x e X" and all e J,-1-J,
{k,+l, k,+2,..., k,-1}.

Pick eXr and let x(a)=a$ + (1-a), 0<a < 1. We will show that:
(1) Cix(a)>z forO<a<l, and
(2) x(cr) e X" for a sufficiently small.

Recall that Cfi > z and Cfi zi, so (1) follows immediately. For > k,_, C zi and
for all we have by definition that C zg. Thus, Cx(a)= zg for all i> k,-1. For
k, < <= kn_l, Ci. zi Mi w n-l, and Ci$ > z M w Thus, for k, < < -1,

Cix(a) >=Mi w "-1. For all such that k,, < < k,,-1 < k,, Cg zi Mg w "-1 >
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Mi w ’-1, so for a sufficiently small Cix(a) > Mi w n-1. Thus, x(a) X for ce
sufficiently small which proves (2) and completes the proof.

Before giving the characterization of the set XN as the trade-off compromise set T,
we state two corollaries of Theorem 3 related to the number of iterations needed for
convergence of Algorithm A for small values of k.

COROLLARY 1. Iffor any f Jo- J1 there is an X such that Cfi > zi w,
then Jo-J contains at least two indices.

Proof. Letting n 1 in Theorem 3 provides the proof.
The next corollary shows that when k 3, program P of 2 reduces to an ordinary

linear program.
COROLLARY 2. Ifk 3 and ff > 0 in program O, then program P reduces to a linear

program.
Proof. For/" J0-Jx, let be optimal for max Cix subject to x X. Then Cfi

M >M k, so by Corollary I at least two objectives are constant over X, the feasible
region for P.

The following corollary is simply a restatement of Theorem 3, in terms of the
definition of a trade-off compromise point.

COROLLARY 3. Suppose Algorithm A terminates with X. If Xv, then is a

trade-off compromise point.
The following completes the characterization of Xv.
THEOREM 4. If X is a trade-off compromise point, then x X.
Proof. Given x X with the trade-off compromise property, let . be a point in

X. We will show that Cx C which implies that x Xv.
Assume that C Cx. Since both and x are efficient, we can choose an index i

such that Cq() > Cil(X) which implies

(1) dil()<dil(x).

Since x T, there is an index i2 with

(2) Ci2() < Ci2(x) and dia(x) >- di(x),

and from the strict inequality in (2) we also have

(3) di2() > di2(x).

From (1)-(3), we have

(4)

Similarly, from

dil(.) < di(x) <- di2(x) < di2(.).

c(x)>C(),

and the fact that T by Corollary 3, an analogous argument implies the existence of
an index i3 such that

(5)

Thus we have,

d6(x) < di2) <= di3(.) < di3(x).

(6) di(.) < di(x) <= di2(x) < di2() <= di3(.) < di3(x).

But

di()<di3(x) implies Ci3() > Ci3(x).
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Using the fact that x T gives the existence of an index i4 such that

di3() < di3(x) <= di4(x) < di,(.).

Notice that the indices il, i2, i3 and i4 are distinct. Continuing, we could obtain an infinite
sequence {in} of distinct indices. However, these indices must be chosen from
{1, 2,..., k}. This contradiction implies that the assumption Cx C must be false;
and the proof is complete.

Thus from Corollary 3 and Theorem 4 we conclude that the set XN generated by
Algorithm A is precisely the set T of trade-off compromise points. In the next section
we present a numerical example to illustrate Algorithm A and to provide further insight
into the trade-off compromise set T.

5. A numerical example. The multiple objective program used in this example
was given by Yu and Zeleny in [17]. In [18], Isermann considers this same problem and
lists all 29 nondominated extreme points. The problem has five objectives and is given
as

max Cx

subje,ct to

3 -7

1 3 -4
5 2 4
0 4 -1

-3 -4 8
12 8 -1
-1 -1 -1
8 -12 -3

15 -6 13

410-1-1 81 x l
// /

5 0 6 7 2 61///--1 -1 -3 0 0
1 1 1 1 1 ldLxs/

1 -1 1 2
-1 3 7 2
-1 -3 0 0
2 3 -4 5
4 0 1 1

-1 -1 -1 -1
4 -1 0 0
1 0 0 -1

7
1

-1
0

-1
0
1

-X1

40
84
18

100
40

-12

_ 00_

with x 1, , x8 => 0. The ideal vector M of individual maxima over the feasible set X is
given by

117.25

176.83M 79.06
18.00
39.35

In the first iteration of Algorithm A for n 0, we solve

min w
subject to M- Cx <- we and x X

and obtain an optimal point (w, x) with

ow =76.03,
0x (0, 0, 0, 9.58, 17.54, 1.69, 0, 4.17) 7"
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From the optimal tableau for Qo we note that there are multiple optima.
Here

and we observe that

41.22-]
100.80|
142.03/
58.03/
32.971

Mi-Cix= w fori=l 2and4

Thus objective functions C3x and C5x are the only ones that may get closer overX to
their ideal point.

On the next iteration, n 1, we therefore have J1 {3, 5} and consider the linear
program

QI" min w
subject to M3- C3x <- w

M5- C5x <= w
M- Cx <= we and x X.

)Here we obtain an optimal point (w 1, x with

w =37.03,

x (0, 0, 6.12, 10.80, 14.70, 2.91, 0, 1.11),
with

41.22
100.80

Cx= 1142.03
35.01

In this case, there is only one objective with

Mi Cix w ,
namely, for 3. This illustrates the one case where an iteration will not yield at least
two objectives that are constant over the optimal set for Q1. This happens because the
third objective is, in fact, constant over X. This can be determined by considering the
optimal tableau for Qo. Notice on this iteration that Csx is closer to its ideal value and
since the slack variable associated with M5- Csx <- w in Q1 is positive at optimality, we
see that J2 {5} for the next iteration.

When n 2, we therefore consider

Q2’ min w
subject to M5- Csx <- w

M3- C3x w

Ms-Csx <= w
M- Cx <- we and x X.
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On this iteration, we obtain

w2=3.18,
2

X (0, O, 1.40, 9.20, 17.10, O, 4.59, 3.87) 7,
with

41"221
/ 00,80/

Cx2=/142.03/
1- 8.03[
/ 36.163

In this case, we have J3 & and so the algorithm terminates. From the optimal tableau
for Qz it is an easy matter to describe the setX3, and from examining that tableau in this
case we observe that the set X3 consists of more than a single point; that is, program Q2
has multiple optima, but the vector of objective function values Cx, is identical to Cx
over the set of multiple optima.

Of course, as discussed above, this set X3 is precisely equal to the trade-off
compromise set T. Suppose we re-order the objectives according to their distance (in the
/w-norm) from the ideal point M. In this case we obtain the following schematic:

objective deviation

36.16 5 3.18

[ ]-4-270-3/ 3 37.03

z=| -4572-2/ 1

/100.80/ 2 76.03
[_-58.031 4

Suppose for example, we wish to find a point x X where the third objective is better off
(has a deviation smaller than 37.03). We must in this case be willing to accept a decrease
in the first, second or fourth objective. It is not possible, in view of the above
development, to find a point in X where the third objective is increased only at the
expense of the fifth objective.

Of course, the vector Z of objective function values for each point in the trade-off
compromise set, as obtained above, is dependent upon the ideal vector M chosen. A
different M may yield a different ordering of objectives but once the trade-off
compromise set for this ideal vector is determined, then it too would give valuable
information about other possible trade-otis.

Our intent is to develop an interactive procedure based on Algorithm A. To
illustrate one such approach, we continue with the above. After obtaining the trade-off
compromise set T(M) and the corresponding set of objective function values Z(M)
given above, suppose we wish to find a nondominated point where objectives number 1
and 2 are increased from their current values of 41.22 and 100.80 respectively. Of
course, since these objectives are in the "poorest class" we must be willing to accept a
decrease in the fourth objective which is also in that class and weassume here that such a
decrease is acceptable. One way to proceed would be as follows. Instead of using the
original ideal vector M, use

M M+ 10e + 10e2,

where ei is the identity vector with all components equalling zero excepting the ith
component, which is equal to one. Using this ideal vector M, the application of
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Algorithm A yields a trade-off compromise set T(M1) given in the schematic below"

Z(M1)

objective deviation

36_. 5_6_1_ 5 2.79

48.69_1 3 30.37

104.14/ 2 82.69
64.69] 4

Notice that objective number four has decreased as we know it must, and in this case, all
the other objectives actually increased. Suppose now that objectives 1, 2 and 4 are at
their minimum acceptable levels. Our theory tells us that it is impossible to find a
nondominated point where objective number three is greater than 148.69. In addition,
if objective number 5 is to be increased above 36.56 then we must be willing to accept a
decrease in the third objective from 148.69 if no decrease in the poorest class is
acceptable.

By appropriately changing the ideal vector M we can alter the "class structure" of
the vector Z(M); that is, some objectives that are, for example, in the poorest class
relative to one ideal vector may not be poor relative to another ideal vector. To
illustrate this point, consider the above example where the ideal vector is M2=
M+ 60e3. This choice will increase the actual value Z3(M).but at the same time may put
the third objective in the poorest class because its deviation from M3 + 60 will be large.
If we apply Algorithm A using this ideal vector M2 then we obtain the following"

/lO6.O6/ 2
Z(M:Z) / 46.48_1 1

3
L-68.53_J 4

objective deviation
5 2.57

70.76

86.53

Here the "class structure" has changed considerably and the information on possible
trade-offs that is provided by this class structure is also different. Objectives 1 and 2, for
example, are no longer in the poorest class. If we are unwilling to accept a decrease in
objectives 3 or 4 from their current levels then it is impossible to find a feasible point
where objectives 1 and 2 are increased from their current levels.

We are currently investigating an iteractive procedure for systematically using the
theory developed in this paper to analyze trade-offs. For example, if a decision maker
decides that an objective does not need to be increased above its current level then that
objective could be eliminated by adding new constraints. The smaller multiple objective
problem could then be analyzed and possible trade-offs could be explored.

Acknowledgment. The authors would like to thank Mr. Michael Kupferschmid for
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NECESSARY AND SUFFICIENT CONDITIONS OF
APPROXIMATE CONTROLLABILITY FOR GENERAL LINEAR

RETARDED SYSTEMS*

A. MANITIUS t

Abstract. Necessary and sufficient conditions of approximate controllability, in the space R"
La([-h, 0], R"), of general linear retarded systems are obtained. It is shown that approximate controllability
is equivalent to two conditions: a) spectral controllability, and b) the existence of linear feedback which
transforms the original system into a system with a complete set of generalized eigenfunctions. Both
conditions are expressed in algebraic form. The proof of this result is based on recently obtained criteria of
completeness of generalized eigenfunctions associated with retarded systems and on an algebraic approach to
functional differential equations. Practical verifiability of the new conditions is demonstrated on several
examples.

1. Introduction. This paper gives necessary and sufficient conditions of approxi-
mate controllability, in the space R L2([-h, 0], Rn), for linear autonomous retarded
functional equations (FDE) of the general form

0

(1.1) 2(t) | drt(O)z(t + O) + Bou(t),
.1_ h

where z(t)s R , u(t)R’, h <, r/(.) is an n n matrix of functions of bounded
variation, consisting of an absolutely continuous part of a finite number of jump
discontinuities, and Bo is an n m matrix.

The approximate function space controllability of simple retarded systems of the
form

(1.2) 2(t) Aoz(t) +A lZ(t- h + Bou(t),

where Ao, A are n n matrices, has been investigated by this author and R. Triggiani
[16]. Starting fr.om abstract operator type controllability conditions for differential
equations in Banach spaces, we have obtained several verifiable conditions expressed in
terms of the original system matrices. It remained, however, an open question whether
such verifiable conditions could be obtained for general systems of type (1.1).

In the present paper such conditions are obtained by making use of several recent
results, namely the criteria of completeness of the generalized eigenfunctions asso-
ciated with equation (1.1) 14], the properties of the structural operator F induced by r/

[3], [6], and the algebraic approach to functional differential equations in the style of
[2], [13].

As a corollary to these new conditions, a very simple controllability criterion is
obtained for systems (1.2). This criterion extends the result [16, Prop. 7.6] to an
arbitrary n, giving in this way a counterpart to the existing results for exact control-
lability of neutral systems [20], [21].

A somewhat surprising feature of these results is that the approximate control-
lability, which is a topological notion involving the closure of a subspace of a Hilbert
space, can be verified via an algebraic criterion.

* Received by the editors January 1, 1980, and in revised form September 4, 1980. This research was
supported in part by NSERC of Canada Grant A-9240 and in part under Grant FCAC 1978/79 of the
Quebec Ministry of Education.

f Centre de Recherche de Math4matiques Appliqu6es, Universit4 de Montr6al, C.P. 6128, Montreal,
Quebec, Canada H3C 3J7.
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From a more general point of view, the results of this paper are of some relevance
to the theory of abstract systems governed by differential equations in Banach spaces.
As the paper shows, linear retarded systems provide an example of a class of infinite
dimensional systems in which approximate controllability is equivalent to two condi-
tions: a) spectral controllability, and b) the existence of linear feedback that transforms
the original system into a system with a complete set of generalized eigenfunctions. It
may be interesting to see whether there are other physically significant examples of
systems of the same class.

Other recent contributions to the controllability of FDE’s are described in [11],
[12], [13], [15], [16], [19], [21], which contain many references to earlier research in this
area. An up-to-date survey of controllability of other infinite dimensional systems is
contained in [23].

As in 16], the investigation of approximate controllability of equation (1.1), in the
space Rx L2([-h, 0], Rn), has been motivated by the existence of general control-
lability criteria for abstract differential equations in Banach spaces [7], [25]. Since these
latter were usually expressed in an abstract operator form, their translation into
concrete, practically verifiable criteria for various special classes of equations was a
problem in itself (for more details see [16, 1]). The present paper completes this task
for systems governed by (1.1). However, other aspects of controllability of systems (1.1)
still are worthy of further investigation; for instance, it is not known what the
approximate controllability of (1.1) implies about the type of closed-loop system
behavior that can be achieved by using state feedback; the relationship between this
type of controllability and the one obtained via an algebraic approach [13] is also not
known.

2. Notation and preliminaries. Let R and C denote the fields of real and complex
numbers, respectively. The symbol R" will denote n-dimensional Euclidean space. The
letters R and J will denote rings to be specified later. L,(a, b), L,([a, b], Rn), p 1, 2,
will denote the customary Lebesgue spaces of scalar valued functions or n-vector
valued functions, respectively, on [a, b].

Let o denote the Hilbert space R L2([-h, 0], R n) now often used in studies of
FDE’s (e.g., [1], [3], [5]). We assume that h s (0, ). For x , let x, x denote its R"
and L2 (I-h, 0], R") components, respectively; i.e., x (x, xa). If K is a subset of ,/
will denote its closure in the strong topology of . If H is a bounded linear operator
from one Hilbert space to another, H* will denote its adjoint. A centered asterisk will
denote a certain convolution product. For vectors, elements of R", or for matrices, the
superscript T will denote a transpose. The symbol Xt will denote a characteristic
function of a set L

It is well known (e.g., [1], [3], [5]) that (1.1) induces a strongly continuous
semigroup {S(t)}t>_o on . Let z(t) be a solution of (1.1) corresponding to some initial
conditions z(O) b, z(O) 4 (0), 0 I-h, 0), 4’ (b, 4’ 1) YT, and to some control
u(" ) LI([0, T], R"), T>0. Let zt denote the function 0 -> zt(O) z(t + 0), 0 I-h, 0].
It is well known (e.g., [1]) that x(t) (z(t), zt) is the "mild solution" of the abstract
differential equation

(2.1) (t)=Ax(t)+Bu(t), x(0) b, t->0,

where A :@(A) c --> is the infinitesimal generator of {S(t)}t>_o, (@(A) is the domain
of A), and B :R --> is a bounded linear operator Bu (Bou, 0). For a given > 0, let
Kt denote the attainable set at time of (2.1) corresponding to 0, [16], and let
K LI ,>oK,.
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System (2.1), or equivalently system (1.1), is said to be approximately controllable if
K .

Throughout this paper we assume that r/(. in (1.1) is given by

(2.2) rt(O) =-AoX(-,o)(O)- Y Aix(-m,-h,) (0)- E(oz) dc,
i=1

where N is a fixed positive integer, 0 ho < h <’ < hv h, Ai are constant real n n
matrices and E(. is an n n matrix of functions in L2(-h, 0). With this r/(. ), (1.1) can
also be written as

(2.3)
2(t)= E Aiz(t-hi)+ E(O)z(t+O)dO+Bou(t).

i=o h

Let (0) rt(0) +AoX-,o (0), and define
0

(2.4) (H&)(0) | d@(s)O(s-O), 0 [-h, 0].
h

It is known [3], that H is a linear continuous mapping from Lz([-h, 0], R") into itself.
By definition, H depends only on the strictly retarded part of . The adjoint H* of H
has the same form as H except that the matrix @ is replaced by its transpose r. Note
that the right-hand side of (2.4) is a convolution. H induces the mapping

F’, F=
0

(where I is the identity map on R ") referred to as the "structural operator". For more
details, see [3], [6], [15].

In this paper controllability will be related to the spectral properties of system
(1.1). Let () be the characteristic matrix

o

(2.) a(x) tx [ (0) ex.
d_h

We recall that the spectrum of A is (A) { [det ( 0}. For h (A), let denote
the (largest) generalized eigenspace ofA corresponding to , that isx Ker (Ih -A),
where k is a positive integer such that Ker (Ih -A) Ker (Ih -A)+i, ] 1, 2, (for
a characterization of elements of x see [14]). Let span{[ (A)}.

The generalized eigenfunctions of A are said to be complete in if . By 14,
Thm. 5.1], the completeness holds if and only if Ker H* {0}.

We recall that (2.1) is said to be spectrally controllable, if for each (A) the
canonical projection of (2.1) on is completely controllable [16]. By [20] a necessary
and sufficient condition for spectral controllability of a retarded system is

(2.6) rank [(), Bo] n Uh C.

Finally, we recall an abstract characterization of controllability [7]. System (2.1) is
approximately controllable if and only if

(2.7) B*S*(t)x 0 Ut Ox O,

where B* and S*(t) are adjoints of B and S(t), respectively.

3. General necessary conditions. For simple systems (1.2), conditions of control-
lability were given in [16] in a number of different forms. A necessary condition [16,
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Thm. 3.1] is that a rank of certain n nm polynomial matrix P(A) be equal to n. This
implies another, simpler, necessary condition

(3.1) rank [A 1, B0] n.

Independently of (3.1), spectral controllability is also necessary for approximate
controllability 16, Prop. 7.1 ].

We now give a corresponding result for general systems (1.1). Let us define the
following linear mapping, D* L2([-h, 0], R n) - L2([-h, 0], R")

(3.2) (D*qb)(O) B49(O) a.e., 0 [-h, 0],

where Bo
r is the transpose of Bo.

THEOREM 1. If system (1.1) is approximately controllable, then
(i) rank [A(A), Bo] n, /A e C; and
(ii) Ker H* fl Ker D* {0}.
Proof. The necessity of condition (i) is known (see e.g., [16, Prop. 7.1], or [7, Cor.

3.2] combined with (2.6)) 1. It remains to prove (ii).
Suppose that (ii) is not satisfied; i.e., there exists b # 0, b e Lz([-h, 0], R n) such

that D*& 0 and H*& 0; i.e.,

Let

If dr(O)ck(O-a)=O
h

a.e., a I-h, 0].

0

tl(o)-’fO )(o)dol,, 0 I-h, 0],

and let O (0, 01). Then 01 is absolutely continuous, its derivative is in L2, and
01 (0) 0. Hence 0 0 e N(A). Furthermore,

o
(3.3) (D*a)(O) Jo B(a) da 0 V0 I-h, 0].

By [6, Lemma 3.2] the fu.nction 0 (H*O)(0) is absolutely continuous, (H*x)(-h)
0, and

d dr(O)O(O_a)= dr(O)O(O_a) dnr(O)O(O_a)=O"
d h h h

Hence 01 eKer H* f’l Ker D* and OKer F*f"I@(A).
Let G* - be the linear operator

o

[G*](0) Xr(h + 0) +| Xr(h + 0 + s)l(s) ds,
d_h

[a*]= [G*](0)

0 I-h, 0],

where X(.) is the fundamental matrix solution of the homogeneous part of equation
(1.1). By [14, Props. 3.1, 3.2] G* is one-to-one, continuous and its image in coincides
with (A). Since O(A), there exists a nonzero such that = G*. But
F*O 0; hence F*G* 0. Since, by [14, Prop. 3.5], F’G* S*(h), where S*(t) is the

See also 7.3.
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adjoint semigroup of S(t), we have, by the semigroup property, that

S*(t) 0 /t >- h,

hence also

(3.4) B*S*(t) 0 Vt >- h.

For s [0, h

(3.5) B*S*(t) (B, O)S*(t) B [S*(t)j].
Let 0 + h, I-h, 0]. The explicit representation of S*(t) l-3, (5.18)] yields

o

BTo[SCC(Oq h)]0--

h

B[G*](O)=

=(D*O’)(O)=O VOe[-h, O].

Hence B*$*(t)j =0 for all =>0, while # 0. By condition (2.7) the system is not
approximately controllable.

Remark 1. Condition (ii) of Theorem I contains (3.1) as a special case. For system
(1.2)

(H*&)(O)=A&(-h-O), O[-h, 0].

Hence (ii) can be written

A(&(-h-O)=O a.e. andBff&(0)=0 a.e.::>&(0)=0 a.e. in I-h, 0].

This yields (3.1) at once. One can also prove that for differential-difference equations
(E(.) 0) the analogous necessary condition is rank [As, Bo] n. This will be further
discussed in 5.

4. An algebraic characterization of controllability. In this section condition (ii) of
Theorem 1 is transformed into an equivalent algebraic form which has two advantages:

a) It is more easily verifiable than the original condition (ii);
b) It will enable us to prove the sufficiency of the condition (ii).
It will be more convenient to work on the interval [0, h] than I-h, 0]. By making

the substitutions: s=z-h, z[0, h], t=h+O,t[O,h],l(z)=Cl(z-h), z[0, h],
0(t) &(-t), t[0, h], in (2.4) one has that (2.4) gives rise to a mapping/-" L2([0, hi,
R") L2([0, h ], R") defined by

(4.1)

(IO)(t) Io dCt(z)O(t-r), t[0, hi,

N-1

I0=mNO(t)+ Aid/(t-bi)X[b,,h]+ E(r)O(t-r)d’,
i=1

where ’(r) E(r- h), [0, h], bi h hi, 1,.. , N- 1. The value of at -h
becomes the value of at 0. Analogous transformations performed on H* yield/-)*
which differs from H only by a transposition of all the matrices.

At this point we shall^employ an interesting idea due to Bartosiewicz [2], which
consists of representing H as a certain module homomorphism. Similar algebraic
techniques had been first applied to FDE’s by Kamen [13].
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It is well known [8, 1, 16] that the space L1(0, h) endowed with standard
addition and with the convolution product

(4.2) (f , g)(t) f(t- r)g(r) dr 0 <-_ <- h

is a commutative ring. If we extend f and g to [0, oo), by putting both f(t) and g(t) equal
to zero for > h, then the product (4.2) in LI(0, h) is a restriction to the interval [0, h]of
the convolution product of the corresponding functions in L(0, oo).

Let 6b denote the Dirac distribution concentrated at the point {b}. Let J denote the
set consisting of all formal sums of the form

N

(4.3) /x= E ai6b,+f,
i=0

where N {0, 1, 2,. }, ai, bi are real numbers, 0 bo < bl <’ < bu -< h and f e
LI(0, h)./z is a distribution with a support contained in [0, h].

The set J can be regarded as a subspace of a space @_ of distributions over R, with
support bounded on the left. It is well known [24], [22] that the convolution of
distributions @’+ is associative and commutative. If /z, u J, let /z, u denote the
restriction to [0, h] of the standard convolution of distributions @’+. Hence if/x
Ei ai6bi -[-f 12 Ej Cj6d -- g then, by [24, Chapt. VI, Thm. VIII,

(4.4)

where

/x *u=EE (aiSb,) * (ClSd + _, (aiSb,) * g + ., (CSd) *f+f * g,

(4.5) (a6b)* (C6d) {C6b/d otherwise,ifb + d <- h,

(4.6) (6d’f) (t)=f(t--d)X[d,h], e [0, h],

and f, g is given by (4.2). It follows that/x u J and the product is associative and
commutative. Hence J is a commutative ring. It has a unit element given by 60. As
opposed to the ring @_, the ring J has divisors of zero, characterized by the following
statement [2].

PROPOSITION 2. J given by (4.3) is a divisor of zero in the ring J if and only if
ao 0 and f(t)= 0 a.e. on [0, e) for some e > O.

One can equivalently say that the support of a divisor of zero, /., satisfies
supp/z 6[e, h] for some e >0. The proof of this result depends on Titchmarsh’s
theorem [18] and on the fact that a060 +f with a0 0, is invertible [8, 18, *2].

The following two corollaries are crucial for the proof of the sufficient condition.
COROLLARY 3. If IZ and u are divisors of zero in J, the element t- + u is a divisor of

zero in J.
Proof. One has supp/x [el, h], ex > 0 and supp v [e2, h], e2 > 0. Hence/x + to is

null on [0, min (el, e2)]. []
COROLLARY 4. If a finite subset {t,"’, lz} of J does not have a nonzero

annihilator, then at least one of its elements is not a divisor of zero.

Proof. If all/i, 1,. , k are divisors of zero, then their supports are contained
respectively in [ei, h ], h _-> e. > 0,/" 1,. , k. Let eo min ei; then eo > 0. Let 0 < fl <
e0. The element. 6h-t3 G J is nonnull and 6h- */xi 0, j 1, , k. l-]
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Remark 2. Properties given by Corollaries 3 and 4 do not hold in some well-
known rings. Take the ring c, of continuous functions on [0, 1] with pointwise
multiplication [8, 10]. Divisors of zero in are functions that vanish on a subinterval
of [0, 1] of positive measure. Let f, g e C be given by

f(t) {0, [0, 1/2], {zi-t, [0, 32-],
t-3a-, [3x-, 1],

g(t) [-}, 1].

Both f and g are divisors of zero; however, f+ g is not a divisor of zero, nor do f and g
have a common nonzero annihilator. Another example of such a ring is given in 7.2.

Let M be an n x n matrix over J with elements m0. We recall that the determinant
of M over J is defined by (see, e.g., [4], [10])

(4.7) detjM (-1)mlh. m2i2"" * mnj.,
P

(where the sum is taken over all permutations P of indices jl,..., in, and (-1) is a
signature of the permutation). Let jn denote the standard free finitely generated
module J xJx...x J, [10]. Let u=(ua,...,un), v=(v,...,vn), ui, viJ. The
mapping u v M. u defined by

l)i mii * Ui, 1, , n,
/=1

is a module homomorphism J"
Let denote the n x n matrix over J

N-1

(4.8) s Au6o + 2 Air’b, + J-,,
i=1

where Ai, " and bg are as (4.1). It follows from the form of /-) and from the
multiplication rules (4.2) and (4.6) that for (0, ", 0n) with 0i L2(0, h)

(4.9)

The following result combines two earlier results given by [14, Thm. 5.1] and
[2, Thm. 1]. Here 7, is the transpose of

THFOREM 5. The following statements are equivalent:
(i) the generalized eigenfunctions ofA are complete in
(ii) Ker H* {0};
(iii) sCT,*u=0=),u=0foruJn;
(iv) detjs is not a divisor of zero in J.
Proof. See 7. 71
COROLLARY 6. Ker F {0}: Ker F* {0}.
Proof. This follows from the fact that deDs deD s7,. I-!
We are now ready to recast statement (ii) of Theorem 1 into algebraic form. Let

be an n x m matrix over J defined by

(4.10) BoSo.

One easily verifies that the mapping & D*& given by (3.2) can be represented by the
module homomorphism jnj,, given by 7,*, where =(0,’" ’,

L2(0, h), 0(t)= &(-t), [0, hi, with similar identifications for D*& and N 7-. 0.
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PROPOSITION 7. A necessary condition for approximate controllability of system
(.) is

(4.11) s47"* u =0 and Y3 7"* u =0:ffu =0.

Proof. This follows from condition (ii) of Theorem 1 and the formalism introduced
above. In particular, the equation D*b 0 becomes (Bc)(O) 0 a.e. for 0 I-h, 0],
that is (Br)(t) 0 a.e. t[0, h] where L2([0, h], Rn); that is B6o * 4,=0; hence

7-. , 0. This, (4.9) and Remark 1 of 7 conclude the proof. [3
The interpretation of (4.1 1) is that the n rows of the n (n + m) matrix [s, Y over

J should be linearly independent.
Given a rectangular matrixM with elements in some commutative ring , its rank,

denoted by rankRM is defined 17] as the greatest positive integer r such that the set of
all determinants (over [) of square minors of M of order r, does not have a nonzero
annihilator. If all the elements of M have a common nonzero annihilator, then
rankRM is 0.

We now state the main result.
THEOREM 8. A necessary and sufficient condition for approximate controllability of

(1.1) is
(i) rank [A(A), Bo] n /, C and
(ii) rankj [s4, 9 n.

Proof. See 5. 71
Condition (ii) means that the set of all the determinants detj of square minors of

order n of the matrix [4, ] does not have a common annihilator. By recalling
Corollary 4, condition (ii) can be stated alternatively as:

(ii)’ Among all the determinants (4.7) ofsquare minors ofordern ofthe matrix [g, Y3
there is at least one which is not a divisor of zero.

COROLLARY 9. Consider a differential difference equation

N

(4.12) z’(t)= Y aiz(t-hi)+Bou(t).
i=0

A necessary and sufficient condition of approximate controllability is

(i) rank [A(A), B0] n /, C and
(ii) rank [AN, B0] n.

Proof. For system (4.12) the matrix [s4, 9] is given by
N-1

[, 3]= [au6o + E a,6b,, Bo6o],
i=1

where bi hN hi, 1, , N- 1. Any determinant of a minor of [, ] is a sum of
products of go and 6b, with appropriate coefficients. It is not a divisor of zero if and only
if it contains the term go* go*"" * go with a nonzero coefficient. For nth order
determinants this occurs if and only if the real matrix [AN, Bo] has rank n. 71

ForN 1, this corollary contains the necessary condition (3.1) and, moreover, says
that (3.1) along with spectral controllability is also sufficient. This enables us to
generalize [16, Prop. 7.6] to arbitrary n.

COROLLARY 10. For system (1.2) with m 1 and arbitrary n approximate control-
lability hoMs if and only if
(4.13) det P(A) 0 and P(A)t(e -xh) 0 A C

where P(A is defined as in [16], and v(z)= [1, z,. zn-1] 7"
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Proofi The necessity is proved in [16]. By [16, Thm. 3.6] det P(A) 0, implies
rank [A 1, B0] n, while P(A)v(e-h) 0 for all A C is equivalent to spectral control-
lability [16, Prop. 7.1]. Hence, by Corollary 9, (4.13) implies approximate control-
lability. 71

This result gives the easiest way to verify the approximate controllability in the case
of m 1 and one delay (see [16] for further discussion). An analogue of this result for
the exact controllability in W(z1) of neutral systems has been proved in [21,].

Examples and further comments on the applicability of Theorem 8 are given in 6.

$. Proot of Theorem 8. Before proceeding to the main part of the proof, we
establish two technical results concerning rectangular matrices over J. These two results
depend on the properties of determinants over a commutative ring with identity, and on
Corollaries 3 and 4.

Let M be a rectangular k matrix of elements mii of some commutative ring
with identity. Let 0 be the zero element of and let denote multiplication in R. [17,
Thm. 51] says that the system of linear equations over

(5.1) mij" xj=O, i= l," ,k,
j=l

has a nonzero solution if and only if rankaM< I. It follows [4, Chapt. III, 8] that the
set of columns ofM is linearly independent (as a subset of the module Rk) if and only if
ranknM-I. This statement about the columns is nontrivial if k_-> I. If k <l, by
considering the transposed rfiatrix M, one has that the set of rows of M is linearly
independent (as a subset of [) if and only if rankRM k. In general, if k < the linear
independence of k rows ofMdoes not imply that among the columns ofM there are k
linearly independent ones, although the implication does hold if is a field. An example
of a ring in which the implication does not hold, is the ring of diagonal matrices,
see 7.2.

PROPOSITION 11. LetM be a k (k <- l) matrix over the ring J. Then

(5.2)
rankjM number of linearly independent rows

number of linearly independent columns.

Proof. Let rankjM r. By the definition of rank, the set of all determinantsD of
r r minors of M, does not have a nonzero annihilator (but all the determinants Dr+l of
(r+ 1)x (r+ 1) minors of M do have a common nonzero annihilator). Hence, by
Corollary 4, at least one of the D, say D( is not a divisor of zero. The r rows as well as
the r columns ofD are linearly independent (see [4, Chapt III, 8 or Chapt. IV, 2]).
Enlarging the length of these rows or columns, by adding the remaining elements of
corresponding rows or columns of M, respectively, does not destroy the linear
independence. At the same time, by [17, Thm. 51] no set of r + 1 rows or columns ofM
can be linearly independent, because all the D have a common nonzero anni-
hilator. I-1

LEMMA 12. Let be a commutative ring with a unit 1 O. Suppose that has
divisors ofzero, and, moreover, a sum ofany two divisors ofzero in is a divisor ofzero in. Let sO, be n, n x m matrices over R, respectively. Suppose that the n x (n + m) matrix
[sg, has n linearly independent columns. Then there is an m x n matrix 7 over
whose entries are either 0’s or l’s, such that ranka [sg + Y(] n.

Proof. The idea is to add some columns of to appropriate columns of s to obtain
an n n matrix with n linearly independent columns. Let a1,’", a,, bl,"’,
denote the columns of s and , respectively. Suppose that s has s < n linearly
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independent columns, but any set of s + 1 columns of 4 is linearly dependent (the case
s n is trivial); so without loss of generality we can suppose that the linearly indepen-
dent columns of /are a 1, , as. In fact, by the properties of determinants over a ring
[ [4], [10], the rank of 4 +. 3’/" is invariant with respect to the ordering of the
columns; we can simultaneously reorder the columns of both and 3 3’/’; changing
the order of columns of . /" amounts to changing the order of columns of 3’/" alone.
Also, without loss of generality we can suppose that the columns of 3 completing
{al," , as} to a linearly independent set are {bl," ’, bn-s}; otherwise, we can always
reorder the columns of B with a simultaneous corresponding reordering of the rows of
/’, keeping the product /" unchanged. Hence we assume that {a 1," , as, bl,’ ,
bn-s} is a linearly independent set of n columns of [4, ].

We now form an n x n matrix with columns ci given by

Ci ai, 1, , s,

Ci ai + bi-s s + 1,.. , n.

A simple verification, via the matrix multiplication rule, yields that
where

0 1
1

(.3) C ..
0 0

s n-s

where 0 0R, 1 is the identity in .
Consider the determinant as a function of its columns, @" " . n --> I. Then,

since is multilinear, we have

det (al, as, as+l + bl, , a, +

(al, as, as+l, as+a, ",an)

+ @(al, as, b, a/:z, a,,)

(5.4) + @(a, as, as/, b2, as+3, an)

+(al,’"" as, bl, b:z, as+3, a,,)

+@(a,. ,as, bl," ,bn-s).

Since /has at most s < n) linearly independent columns, by 17, Thm. 51 ], all the
determinants on the right-hand side except the last one are divisors of zero in . Let
denote the sum of all determinants except the last one. It follows from the assumption,
that 6e is a divisor of zero. But then det cannot be a divisor of zero, because otherwise
(al,’’’, as, b,..., b,-s)= det -6e would also be a divisor of zero, a contradic-
tion. Hence rankR ’ n. 71

Proof of Theorem 8.
a) Necessity. By Proposition 7, approximate controllability implies,

7- *u=0=>u=0.
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This means that the n columns of the matrix [, ]T, that is the n rows of [, ], are
linearly independent (as elements of the J module jn/,,). Hence rank [M, g] n.

b) Sufficiency. Condition (ii) implies that the n rows of [., ] are linearly
independent. By Proposition 11, the matrix [M, g has n linearly independent columns.
Since, by Corollary 3, the ring J and the matrix [, Y3] satisfy the assumptions of
Lemma 12, we have that there exists an m n matrix Y{" over J whose elements are
either 0 or 6o such that

(5.6) rankj [s + Y3 ff{’] n.

Actually, the matrix is equal to Bo6o, while Y{" can be written as fit" K6o, where K is
an m n matrix whose entries are real numbers, either 0 or 1. Then
Bo6o * K6o BoK6o.

Condition (5.6) allows us now to introduce into the original system (1.1), feedback
which transforms the system into an equivalent control system with a complete set of
generalized eigenfunctions. Let

(5.7) u(t) Kz(t- h + v(t),

where v(. is another control function. By substituting (5.6) into (1.1) we have
0

(5.8) 2(t)= | drt(O)z(t+O)+BoKz(t-h)+Bov(t),
h

the transformation being, of course, reversible. For every u(. )L there exists a
v(. La such that the solution of (1.1)corresponding to u(. is also a solution to (5.8)
corresponding to v(. ). The operator H defined by (4.1) corresponding to (5.8) is now

(/-0) (t) Io d(rlO(t-’l+BogO(t), [0, hi.

Now, this new induces the following matrix over J:
N-1

AN6o + BoK6o + E Ai6b, + j S + ’ *
i=1

By (5.6), det is not a divisor of zero;hence, by Theorem 5, generalized eigenfunctions
associated with the modified system are complete in .

The characteristic matrix of the modified system is

(, A(A BoKe-.
This implies that rank [,(h), Bo] n for all h C; for otherwise, there would exist a

ho 6 C and a nonzero vector y 6 C such that
T -hoby [A(Ao)-BoKe ]=0 and yTBo=0;

hence yTBoKe-xh 0 and yTA(Ao) 0, yielding rank [A(A0), B0] < n, contrary to

hypothesis (i) of Theorem 8.
Hence, the modified system (5.8) is spectrally controllable. This, by a result of

Fattorini [7, Prop. 3.1, Cor. 3.2] gives for the modified system
-0

whereo andK denote the linear space spanned by the generalized eigenfunctions,
and the attainable set, respectively, of the modified system. By completeness o=

0hence K . But the attainable sets of (1.1) and (5.8) coincide. Hence K
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6. Comments and examples. As the proof of Theorem 8 shows, the following
statement is true.

COROLLARY 13. System (1.1) is approximately controllable in ;Tifand only if: (i) it
is spectrally controllable, and (ii) there existsfeedback (given in fact by (5.7)) such that the
closed loop system has a complete set of generalized eigenfunctions.

We note that spectral controllability is invariant under feedback, while complete-
ness is not. Therefore, the class of approximately controllable systems is feedback
equivalent (via feedback (5.7)) to spectrally controllable systems with a complete set of
generalized eigenfunctions. We note that the feedback operator is not bounded when its
domain is taken as the whole space .

Verification of conditions (i), (ii) of Theorem 8 might appear to be difficult, but
actually it is not, at least on reasonable examples. At first glance (i) might require the
computation of all the eigenvalues. This can actually be avoided by the following device.
Condition (ii) (i.e., (2.6)) is for m 1, equivalent [16, Thm. 7.2] to

(6.1) [adj A(A)]Bo # 0 V, C,

where adj means the matrix adjoint. The implication (6.1): (2.6) is true for any m => 1.
Verifying (6.1) amounts to checking that a system of n transcendental equations in A
does not have a solution.

Example 1.

(h+0)2/2 zz(t + O)dt z2(t)J h+O

As pointed out in [2], the homogeneous part of this system fails to satisfy the
completeness criterion. We check the conditions of Theorem 8.

A(A)
1 + e -x

(i)

h_l+e-
hE-2h +2-2e-

2h 3

To avoid solving det A(A)= 0, we check (6.1). Suppose

]adj A(1)Bo=
1 - =0

for some A. From the first row we have e- 1 I. Substituting this into the second row
we have ,-((1-1+I)/I)=,-1=0, hence I must be 1, but then e-0.
Consequently (6.1) is true for all , e C, and spectral controllability holds.

(ii) H given by (4.1) is represented by A 0, 1,..., N and

"r 7.2/2 r[0, h].

Hence, by 15utting fo(r)= 1, fl(r) r, f2(r)= 7"/2 we have

[fo f 0][’]=
fl f2 to
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deUs =/o * fz-f ,/ 0( (r/2)dr-lo (t-r)rdr=-O on [0, 1]), hence the eigen-
functions are not complete. However,

deb
f 6o =f*8=f"

Since fo is not a divisor of zero, rank [M, 2. Condition (ii) is satisfied. Actually, the
feedback u(t)= z(t- 1) + v(t) causes the closed loop system to have a complete set of
generalized eigenfunctions, because

fo f]=o,/detj
fl-- 8o f2

is not a divisor of zero.

The system is approximately controllable. 71
Let us now consider differential-difference systems (4.12) with commensurate

delays hi id, O, 1, , N, d (0, co), h Nd. We briefly sketch how to verify the
spectral controllability condition (6.1); the other condition (Corollary 9 (ii)) is easy to
check. Suppose m 1 and P(A) is a polynomial matrix defined by the identity

2 (n-1)N)T P(A) has dimen-P(h)v(e -xd) [adj A(A)]B0, where v(/z) (1,/z,/z ,.. ,/

sion n r, r (n 1)N + 1. By (6.1), system (4.12) with delays hi id is spectrally con-
trollable if and only if

(6.2) P(h)v(e-) # 0 VA C.

This is analogous to condition (4.1 3) except that now P(A) is rectangular, n <_- r. Define
an augmented matrix/;(h) at dimension nN x nN

P(h) J_ 0 0
)-q P(A) 0 0

/(a)= / 0 0 P(A) 0 0

0 Of P(A

PROPOSITION 14. A necessary condition of approximate controllability of system
(4.12) with commensurate delays hi id, 1, , N is det/(h) 0. If this condition
holds, spectral controllability of (4.12) is equivalent to (6.2) being satisfied for all h such
that det P(A) 0.

The proof of this proposition is an extension of the proof of 16, Thm. 3.1] and will
be omitted.

Example 2. Consider a two-dimensional system with four delays, n 2, N,= 4. Let
d 1, Ao- 0, and

00] [ ] [ 00] [ 1] [1]0
A3=

-1
A4= Bo=A=

0 0 0 1
0

A1- 1
We have

A(A) [A +e-3X -e -4x

]-e h + e-2

det A(A (a + eTM )(a + e-2 e -sa.
The spectrum is infinite and a direct verification of spectral controllability via (2.6)

seems hopeless. However, by using the method suggested above, we have

P(A)= a 1 0 1
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P(A is an 8 x 8 matrix with det/(h h 3(/ ..[_ 2). Hence we verify that

p(A)v(e-X)= [; + e-2x + e-4x]
+ e_x + e_3X j 0

for A 0 and h =-2. Since the condition is satisfied, the system is spectrally controll-
able. We also have rank [A4, Bo] 2. Hence the system is approximately controllable.

Example 3. Consider the system"

We have

o

41(t)-- I_ z2(t + O) dO,
2

0

2(t) I- Zx(t + O) dO + z3(t- 2),
2

o

z’3(t) I_ Zl(t+O) dO+z2(t-2)+z3(t-1)+u(t).

[adj (A)]Bo [e -2A 1-e-2h ( --2A)2] The_2X, h2_ 1-e
A h

so that (6.1) is satisfied. Now,

[s,]= e 0 8o

where e(t) 1, [0, 2], f(t) X[1.2](t), e [0, 2], det s e f a0- e e * al. det s is
a divisor of zero because both f and 61 are divisors of zero. However, condition (ii) of
Theorem 8 is satisfied, because the last three columns of Is4, Y3 are linearly indepen-
dent. The system is approximately controllable.

As an example of a system which satisfies the spectral controllability condition but
does not satisfy condition (ii) of Theorem 8, one can take a scalar nth order differential-
difference equation

n--1 N
Z(")+ aiz(i)(t-h)+u(t)=O.

i=1 i=1

rewritten as a system of n first order equations.
When a system is spectrally controllable but does not satisfy condition (ii) of

Theorem 8, it may still be approximately controllable in some weaker sense; for
instance it may be F- controllable 15]. One can show that most of the ideas presented in
this paper carry over the the F-controllability case [27].

7. Appendix. The material below is intended to make the paper self-contained.

"/.1. Proot ot Theorem 5. By [14, Thm. 5.1], (i):> (ii). The equivalence of (ii) and
(iii), (iv) is given by [2, Thm. 1] the proof of which is adapted here with some
modifications and clarifications.

The set of all L2(0, h) functions is a proper ideal I in J (by [9, 21.32] and the fact
that 6,,. w I if w I). Let I" denote the corresponding proper subset of J". By (4.1),
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/-* maps I into itself, and

(t*O)(t)=A6(t)+ Y AO(t-bg)x,,a+ (z)6(t-z)dr
i=1

Ao+ E Af6b,+l *0 (t), t[0, h].
i=1

Hence

But Ker H* {0}:> Ker/-* {0}, and the latter is equivalent to

(7.1)

Remark 3. The restriction 0 I can be removed. In fact, suppose that (7.1) holds,
but there exists u # 0, u jn \i n, such that sgr, u 0. By taking w I which is not a
divisor of zero (e.g., w(t)=-lte[O,h]), and taking a diagonal n xn matrix
diag (w,. , w), we have 0=s4r u =1, dr u s4r 1, u =dr 0, where
I because Oi w ui and I is an ideal. Now 0 s4r, 4’ implies 0 0, hence w ui 0
i- 1,..., n, hence ui 0, 1,..., n.

Now (7.1) and Remark 3 prove that Ker/_it, {0}: Ker s4 r {0}. This proves the
equivalence of (ii) and (iii).

s4r represents a J" module endomorphism. By [4, Chapt. III, 8, Prop. 3, p. 524]
or [17, Thm. 51] T is injective if and only if debT is not a divisor of zero.

7.2. A comment on Proposition 11. Relation (5.2) depends crucially on the
property of the ring J expressed by Corollary 4. With another ring, if Corollary 4 does
not hold, (5.2) may be false. As an example take the ring DM3 of 3 x 3 real diagonal
matrices, with standard addition and multiplication operations. Since diagonal matrices
commute, the ring is commutative. The matrices can be represented by triples of their
diagonal elements. Hence x DM3 has a representation {q, 2, 3}, i R. Now

X -1- y {1, 2, 3} -1" {7"/1, T/2, ?’/3} {1 -[- ’?/1, 2 -[- 7"/2, 3 -1" r/3},

X y {:1"01, :2’Y/2,

Obviously, x is a divisor of zero iff one of the i is zero, 1, 2, 3. Corollaries 3 and 4 do
not hold in this ring, as the following counterexamples show"

a) {1, 0, 1}+{0, 1, 0}={1, 1, 1}.
b) The set {0, 1, 1}, {1, 0, 1}, {1, 1, 0} does not have a nonzero annihilator even

though all its members are divisors of zero. Now take a 2 3 matrix over DM3 given by

[{1,1,1} {1,2,0} {0,1,11]M-
{1,0,1} {1,2,3} {1,1,1

The three 2 x 2 determinants over DM3 taken out of this matrix are {0, 2, 3}, {1, 0, -3},
{ 1, 1, 0}. They do not have a common nonzero annihilator. By 17, Thm. 51 ], the rows of
M are linearly independent (this can also be checked by elementary calculations, taking
a, fl DM3 as "coefficients" multiplying the rows, and proving that if a linear
combination of rows is null, then c fl {0, 0, 0}). However, there is no set of 2
linearly independent columns (over DM3) of this matrix, because every 2 x 2 deter-
minant is a divisor of zero. (For instance, the first two columns of M are linearly
dependent with coefficients a {1, 0, 0},/3 {-1, 0, 0}.)
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7.3. A simple proof of condition (i) of Theorem 8. We show that the condition

(7.2) Im (IA A) + Im B W VA o-(A),

is necessary for approximate controllability. Suppose it does not hold. Since the
left-hand side is a closed subspace of , there exist A or(A), x T, x 0 such that (x,
(IA A):) 0 for all sc @(A) and (x, Bu) 0 for all u R m, where (., .) is the
scalar product in . Hence (I A*)x 0 and B*x 0, being a complex conjugate
of A. Take any/x p (A) p (A*) (the resolvent set of A). Hence A, because is in
tr(A*) and tr(A*) is symmetric with respect to the real axis. Take y ( )-lx. But
x (lY )-(lY )x ( )-a(Ii2 A*)x (IlY -A*)y. Now B*x O,
implies 0=B*y =B*(II2-A*)-lx, or (x, (Ilz-A)-lBu)=O for all u

tz p(A). By [16, Thm. 2.1] the system is not approximately controllable.
The equivalence between (7.2) and (2.6) (as pointed out by Bhat and Wonham

[26]) can be obtained via the following calculations. (7.2) holds if and only if for all
y , there exist u R and x @(A) such that (IA A)x +Bu y. Substituting the
expressions for A and B we obtain

0 0

A(A)x + Bou y- I drl(O) fo eh<-)ya(o) do.
-h

The last statement holds for all (yO, yl) s if and only if rank [A(A), Bo] n.
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LOWER SEMICONTINUITY OF INTEGRAL FUNCTIONALS WITH
NONCONVEX INTEGRANDS BY RELAXATION-COMPACTIFICATION*

E. J. BALDER

Abstract. A new approach to the lower semicontinuity of integral functionals is presented. By a
topological embedding of the "control" and "state" spaces in the Hilbert cube and a simultaneous relaxation
of the "control functions," a powerful approach emerges whose main features include:

(i) A generalized convexity condition is imposed upon the integrand of which the classical convexity
condition is a special case.

(ii) In the embedded setting the integrand can be supposed Lipschitz-continuous in "control" and
"state" arguments without loss of generality.

(iii) Convergence in measure of the "trajectories," metamorphoses into L1-norm convergence in the
embedded setting.

1. Introduction. This paper will deal with the following problem: Let (T, ,/z) be
a finite measure space and X1, X2 metrizable Lusin spaces, equipped with given metrics
dl, d2 respectively. Let fbe a nonnegative normal integrand on T (X1 X2); i.e., f is a
functional from T X X2 into [0, ], which is product-measurable and (jointly)
lower semicontinuous in its second and third argument. Here the Lusin spaceX X2 is
equipped with the product topology andmas will be our understanding for all other
topological spaces to be met in the sequelmwith its Borel r-algebra. Given two
collections L and /, consisting of equivalence classes (with respect to equality/x-a.e.)
of measurable functions from T into X1 and X2 respectively, and two sequences {yk},
{uk} converging to y0 and u0 in and d, respectively, we address the lower semicon-
tinuity question for the functional I from into [0, ] defined by

I(y, u)= fT.f(t, y(t), u(t))(dt), y, u /l.

That is to say, we shall address the problem of formulating sufficient conditions so that

(1) y lim inf I(y, u => I(yo, Uo).
k

Here the convergence of the "trajectories" in is of a strong type (to be specified later)
whereas the convergence of the "control functions" in 5/is of a weak type.

The literature on the above lower semicontinuity question is quite extensive, cf.
[1], [2], [3], [4], [5] and the references given there. For the purposes of this paper, it
seems enough to mention here that the problem comes forth quite naturally from the
existence question posed in the calculus of variations and optimal control theory (cf. [3],
[6]). It should also be pointed out that all of the classical sufficient conditions for lower
semicontinuity contain a convexity assumption about the integrand f (viz., f(t, x,. is
assumed convex for every T, x e X). That such a convexity assumption can be quite
unnatural on occasion is clearly illustrated by the "simplest lower semicontinuity
problem," where/x is taken to be a Dirac measure on T. It is the purpose of this paper to
present a new, very general way of studying the lower semicontinuity problem for which
no intrinsic convexity assumptions are needed. We cannot, however, abandon the
convexity notion altogether, for the relaxation of the control functions will play a crucial
role. In order to obtain a high level of generality, we shall use the technique introduced

* Received by the editors November 8, 1979, and in revised form August 15, 1980.
t Mathematical Institute, University of Utrecht, Utrecht, the Netherlands.
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in [7], of "compactifying" the lower semicontinuity problem, by embedding the space
X1 X2 in the Hilbert cube. The separate treatment of topological and geometrical
aspects of the problem thus afforded leads also to great analytical efficiency in switching
the limit and the integral sign: namely, by the embedding procedure and the associated
change of metric, the "ugly ducklings" consisting of the normal integrand f and the
convergence in measure of the sequence (Yk) undergo a metamorphosis whereby:

(i) The normal integrand f can be supposed wlog Lipschitz-continuous on X1 X2
(in the new metric), with a Lipschitz constant not depending upon T.

(ii) The convergence in measure of the sequence {Yk (with respect to the original
metric) transforms into convergence in Ll-norm with respect to the new metric.

As can be gathered from the above, the switch of limit and integral sign has now
become a fairly straightforward procedure. We obtain the inequality

y>--I(yo, ).

Here denotes a relaxed control function from T to X2, which figures as the
generalized limit of a subsequence of (Ugh. Next, the generalized convexity assumption
will pave the way to the final conclusion. Major sources of inspiration for the relaxation-
compactification approach introduced here have been the very interesting works by
Berliocchi-Lasry, McShane and Warga [8], [9], [10]. Particularly in [8], where a one-
point (i.e., Alexandrov) compactification has been applied to the control space, it has
been made quite transparent that in the compactified set-up, the normal integrands of
the original problem can be regarded as the supremum of a collection of very nice
functionals on the extended product space.

2. Fundamentals. Let S be a metrizable Lusin space, equipped with a given metric
d, and let {si} denote a countable, dense subset of S. It is well known that the mapping b
from S to the Hilbert cube =-[0, 1], defined by

{ d(s,
sS,4(s)--

1 +i,i)J
establishes a topological homeomorphism between $ and its image 4(S), when we
equip this image with the relative topology of pointwise convergence on . Moreover,
since $ is Lusin, b($) is known to be Borel measurable in [11, III.20]. Now is
obviously compact and metrizable. In particular, we shall equip it from now on with the
metric p defined by

o(s,s’)-- 2 s,s
/=1

We may identify. S with b(S) for all topological purposes. Consequently, for every
S,S’S

(2) p(s, s’) <= min (d(s, s’), 1).

Let (T, , t*) be as introduced in 1. The following proposition results trivially from (2).
PROPOSITION 1. Let {z} be a sequence of measurable functions from T into S,

converging to another such function Zo in measure, with respect to d (i.e., for every e > O,
lim tt{t T" d(z(t), Zo(t)) > e} 0). Then {z} converges to Zo in Ll-norm with respect
to p (i.e., lim p(z(t), Zo(t))tt(dt)= 0).

As we know from topology, once a space has been embedded, it usually pays to
extend all relevant functionals from the original to the new setting. Naturally, in our
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case these functionals are the normal integrands. In constructing such extensions a
valuable property of the normal integrands comes to light.

The following result was proven in [7] for the case where (T, if,/x) is a complete
measure space and in 12] for the general case. For the sake of completeness, we include
a proof here; it is slightly simpler than that given in [12].

LEMMA 2. Let g be a nonnegative normal integrand on T S. Then there exists a
nondecreasing sequence {P,n } of nonnegative normal integrands on T and a i-null set
N such that:

(3) for every tO:N, sS, lim,n(t,s)=g(t,s);

(4) for everytT, s,s’, nN, [,(t, s)-,(t, s’)l <-no(s, s’).

Proof. For n N, T, s g we first define

g,, (t, s) inf {np(s, s’) + g(t, s’)" s’ S},

in the case where g(t,. is not identically equal to +c on S; otherwise, we set gn(t, n
and (3), (4) will hold trivially. Note that {gn} is nondecreasing and satisfies (4) by the
triangle inequality. To show that (3) holds for {g,}, it would suffice to invoke [13, Thm.
1], since for every s S, the family {-no(s, ): n } is of needle type and g is bounded
below. However, an ad hoc proof is also possible here. Given s S, T, consider the
case where g(t, s)< +c. Given e > 0 (arbitrary), there exists r/> 0 such that for every
s’ S, O(s, s’) < r/, implies g(t, s’) >-_ g(t, s)- e. Clearly, for large enough n N, g(t, s) is
equal to the infimum of no(s, s’) + g(t, s’) over all s’ S, such that p(s, s’) < r/and so not
smaller than g(t, s)- e (note that here the boundedness below of g is essential). In case
g(t, s) +m, a simple modification of the above argument will do. Thus far, we cannot
assert that the g. are normal integrands, since we know only that gn (., s) is universally
measurable for every n N, s . (This follows from the fact that for every/3 , the set
{t T: g.(t, s) </3} is the projection onto T of the product-measurable set {(t, s’) Tx
S" no(s, s’) + g(t, s’) </} in T x g [14, III.23].) We shall now modify g. Let {g} denote a
countable, dense subset of S. For every n,/" e N there exists a/x-null set N,. 3 and a
3"-measurable functional g.. on T such that g.a(t)= gn(t, gi) for all tC_N.,[ll, III.32].
Set N tA., N.,i and define for N, s e S, n e N. (t, s) =-- li;m g.,i,(t),

where {g.,} is an arbitrary subsequence of {gj} converging to s. It is easy to see that this
definition does not depend upon the particular subsequence taken (since the gn have
property (4)). Also, for N, n N, we shall set , (t, 0. By construction, , (., s) is
if-measurable for every s , n N and one checks easily that (3), (4) also hold for the
ft,. Finally, since , (t,.) is continuous for every T, n N, , is product-measurable
[14,111.14].

The fundamental results of this section will see useful service in 3. Proposition 1,
for instance, will be applied to {yk}, i.e., with S X1. Lemma 2 will be used for the
situation where g f, i.e., with S X1 X2. On the other hand, the following result will
be applied to the case where S X2.

Let M() denote the set of Radon measures on equipped with the vague
topology, and let M- () stand for the set of probability measures in M(), andM (S)
for the set of those elements of M- () that are carried by the set $; cf. [11,111.58].
Further, let () denote the collection of continuous functionals on equipped with
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the supremum norm topology. For the sake of notational convenience, we shall denote,
for any measurable functional e on and any measure v M-()’, the integral of e
with respect to v over the set , by e(v). It is well known that the set L(T; M(S)) is the
dual of the space LI(T; ()), the usual Ll-space of (equivalent classes of) measurable
functions from (T, ,/x) into (). We equip L(T; M()) with the weak star topology
and denote by and the subsets of Loo(T; M()) consisting of the M- ()-valued
and M-(S)-valued elements of L(T;M()). The elements of 5() are known in
control theory under the name "relaxed control functions" [8], [9], [10], [14], [15].

LEMMA 3. The set t is a compact subset of Lo(T;M()). Moreover, if the
tr-algebra is countably generated or the completion ofa countably generated tr-algebra,
then is sequentially compact.

Proof. Compactness is a well-known consequence of the Alaoglu-Bourbaki
theorem and we shall not repeat the proof; cf., e.g., [14, V.2]. Sequential compactness
follows from an application of [16, III.12F], since under the additional hypothesis the
space LI(T; (,)) is separable.

LEMMA 4. Let g and h be normal integrands on T S. Suppose that h is nonnegative
and that for every e > 0 there exists f L T ) such that on T X2

max (-g, 0) _--< eh +f.

Then the functional 6 Ir (t, 6(t))Ix (dt) is well defined and lower semicontinuous on the
subset (h) of Loo(T; M(S)), consisting of those i3 satisfying

rh(t, 6(t))lz(dt) <- 1.

Proof. Suppose first that g is also nonnegative. By Lemma 2, there exists a
sequence {,} satisfying (3), (4). By (4), for every n N the bounded functional, =-rain (,, n) is a representation of an element in LI(T; c()). By (3) and the
monotone convergence theorem for every 8 s

6(t))lx(dt)= li]’ Ir, (t, 3(t))lx(dt).

So lower semicontinuity has been proven in this case. In general, we are given that for
every e > 0 the functional g =- g + eh +f is a nonnegative normal integrand on T S.
Therefore, by the above, the functional r "-rg(t, (t))tx(dt) is 1.s.c. on . It
remains to convince ourselves that for every (h),

g(t, 6(t))lx(dt)=sup {r(6)- frfdlx-e" e>0}.
3. Main results. Consider the lower semicontinuity question for the integral

functional I as formulated in 1. Let us introduce the following assumptions on the
nature of the convergence of {Yk}, {Uk}:

(A1) The sequence {Yk} converges to Y0 in measure.
(A2) There exist a nonnegative normal integrand h on T X2, inf-compact in its

second argument, and an at most countable collection of normal integrands on
T X2 such that:

(A2a) For every k NU{0}rh(t, Uk(t))tx(dt)<--l.
(A2b) For every a e sg, e > 0 there exists e L(T; N) such that on T x X2

max (-a, 0) _-< eh +f.
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(A2c) For every a M, B if,

f a(t, uk(t))tz(dt)<= f a(t, Uo(t))lx(dt).limksup
(A2d) For every r/> 0 for/x-a.e, T and every x X2,

f(t, yo(t),x)=sup{-a(t, x): a M,-a(t, .)<-f(t, y0(t), ")+rlh(t, ")}.

(A3) The tr-algebra ff is countably generated or the completion of a countably
generated tr-algebra.

Remark 1. The integrals in (A2c) make sense in view of (A2a, b).
THEOREM 5. Under (A1)-(A3),

lim inf I(yk, Uk)>--I(yo, Uo).
k

Pro@ In the case y +oe there is nothing to prove. Rather than taking a suitable
subsequence, we may suppose without loss of generality that^ all of {I(,k, Uk)} are finite
and converge to y. By measurability of the inclusion X2 c X2, (where X2 is defined as in
2 for S X2) for every k N, euk is in . Here euk (t) is defined as the Dirac probability

measure at Uk(t), T, and is as in 2 for $ X2. By (A3) and Lemma 3 the set is
sequentially compact. Rather than extracting a convergent subsequence, we suppose
without loss of generality that {eu} converges to a certain g 9. We claim first:

(5)

To see this, we define the functional ’ on T x2, by setting h’--h on T x Xa and
a +oo on T x (’\Xz). It is easy to see that is product-measurable and nonnegative.
Also, for every
X2: h(t, x) _-</}. By (A2) the latter is a compact subset of X, hence homeomorphic to
(i.e., identified with) a compact subset of X.. So we can conclude that h’ is a nonnegative
normal integrand on T xX. By Lemma 2, as explained in the first part of the proof of
Lemma 4, the functional -->r(t, 8(t))lz(dt) is lower semicontinuous on . There-
fore, (A2a) entails

Ir f(t, g(t))tx(dt) <= 1.(6)

In view of the nature of f, this implies that for tz-a.e, T the probability measure
8(t) is supported by X2; i.e., (5) holds. Next, we will demonstrate that

(7) , --> I(y0, 8),

where we use the from now on self-evident notation:

I(yo, ,)=- f(t, yo(t), B(t))tx(dt).

To prove (7), note that I lim, ’ , on x/, by an application of Lemma 2 for
S

I,,(y, u)- (t, y(t), u(t))tx(dt), y

with )n defined as , in Lemma 2. By (3), (5) and the monotone convergence theorem, it
is therefore enough to show that for every n s N

(8)
k
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Fix n N, arbitrarily. For every k e N

(9) [,(Yk, Uk)= ([,(y, U)--[,(yo, U))+n(yo, U).

By (4) the first term in (9) can be majorized in absolute value as follows"

]n(Yk, u)-[n(yo, u)l<-_nf px(yg(t), yo(t))tz(dt).

Here pi is defined as p in 2 for S Xi, equipped with the metric di, 1, 2. To apply (4)
we note that p0, which is defined in analogy to p for the Lusin space Xa x X2 with metric
da + d2, satisfies Oo --< pl +

By (A1) and Proposition 1, the first term in (9) converges to zero as k goes to
infinity. Thus,

y lim inf [, (Y0, u).

The functional (t, x)-)(t, yo(t), x) is a nonnegative normal integrand on T x 22, SO (8)
holds, by the lower semicontinuity of the functional 6 --)r] (t, yo(t), 6(t))i(dt) on .
This finishes the proof of (7). We conclude the proof of the theorem by showing that

(10) /(yo, 6)->-I(yo, Uo);

together with (7) this will yield the desired result. First, we fix B -, a M arbitrarily.
Note that g" (t, x)-- 1B(t)a(x) defines a normal integrand on T x X2 which, by (A2b),
has the property that for every e > 0 there exists f e LI(T; N) such that on T x X2

max (-g, 0) -< eh +f.
It follows from Lemma 4 and (5) that

liminf a(t, uk(t))x(dt)>- a(t, 8(t))x(dt).

So by (A2c) we have that

a(t, Uo(t))l(dt)>-_ a(t, 3(t))l(dt).

In view of the countability of the set M we conclude that there exists a/x-null set N such
that for every N

(11) a(t, Uo(t))>=a(t, 6(t)) forevery a M.

Fix r/>0. By (11), for every tN, a sg such that -a(t, ")<-f(t, y0(t), ")+rlh(t, "),

f(t, yo(t), 8(t))+rlh(t, 8(t))>-_-a(t, Uo(t)).

It thus follows from (A2d) and (6) that

I(yo, 6)+ r/>_-I(yo, Uo).

Hence the remaining statement, (10), has also been proven.
Remark 2. In the case where the functional f also takes negative values, Theorem

5 remains valid, of course if f is bounded below by a/-integrable functional on T, but
also under the following more general assumption"

(A4) For every subsequence {(y,, u,)} of {(y, u)} for which {I(yk,, u,)} is boun-
ded above, the sequence {max(-f(., y,(.), u,(.)), 0)} is weakly precompact in
LI(T; I).
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To see this, it is enough to refer to [4], where this "lower compactness property" was
introduced. It is shown there that under (A4) one can suppose without lossof generality
that the integrand f is bounded below in the lower semicontinuity proof. (The argument
is carried over to the present more general setting.)

4. Some applications. We hardly need to mention that the usefulness of Theorem
5 hinges on the satisfaction of assumption (A2). The remaining assumptions are quite
transparent, so the formulation of cases in which they are satisfied can be left to the
reader. In this section we shall formulate a few cases in which assumption (A2) holds.

In the first case we encounter a generalized version of the classical situation, where
the integrand f has a (classical) convexity property. Together with Theorem 5 and
Remark 2 one can thus obtain generalizations of the lower semicontinuity results of [2],
[3], [4].

Case 1. Suppose that X= N", m m N and that for every k N u L(.T; lm).
Then (A2) holds if:

(Cla) the sequence {tz} converges to Uo in cr(L(T; N"), Lo(T; I’)).
(Clb) for/x-a.e, m T, f(t, yo(t), ") is convex.

Pro@ By the theorem of de la Vall6e Poussin [11, II.22, 25] (taking into account
the minor misprint in [11, line 3, p. 39]) and (Cla) there exists a nonnegative lower
semicontinuous functional h’ on N+ such that limo_,o h’()/ +oo and for every k N

h’(lu(t)l)(dt) 1.

If we set h(t, x)= h’(lxl), t T, x I", then (A2a) holds. Let us define s to be the
collection of all functionals az.o (e Q (rationals), z Q", where

az,c(t,x)=-z.x +(, t T, x N’,

(here denotes the usual inner product). The properties of h’ imply that (A2b) is valid,
and (Cla) implies (A2c). Finally, (A2d) holds by [17, Corollary], since for every T
and r/>0 the epigraph of f(t, yo(t), ")+rlh(t, ") does not contain a straight line by
inf-compactness of h (t,.).

Case 2. Suppose that X2 E, a separable Banach space with norm 1[. 11, separable
dual E* and dual norm I1’ I1", that (T, -, z) is a complete measure space, and that there
exists a measurable multifunction F from T into E with convex, compact values such
that for every k N U {0}:

(C2a) for/x-a.e, e T, uk(t) F(t).
Also, suppose that there exists r LI(T; I) such that for every T, x e F(t)"

(C2b) Ilxll--< r(t).
Finally, suppose that"

(C2c) The sequence {uk} converges to Uo in tr(Ll(T; E), L(T; E*)).
(C2d) For/x-a.e. T, f(t, yo(t)," is convex on F(t).

Then (A2) is satisfied.

Proof. Define the functional h on TxE by h(t,x)=-O if x F(t), +oe if x F(t),
e T; then h is a nonnegative normal integrand on T x E, inf-compact in its second

argument and (A2a) holds by virtue of (C2a). Further, for every e T, we define the
convex lower semicontinuous functional fo(t,’) by fo(t,x)--f(t, yo(t),x) if xF(t),
+oo if not; note that we may assume without loss of generality that the convex

functional fo(t, ’) is proper [14, 1.3]. We define the collection by repeating the
argument of I-3] as follows. By [14, VII.2], the functional (t,x*) fo(t,x
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sup {(x, x*)-fo(t, x): x X} is a normal integrand on T E* (as usual, (. ,. denotes
the duality between E and E*). Therefore, by [14, III.22], the multifunction t-
{(x*, /3): /3 =fo (t, x*)} is measurable from T into the separable Banach space E*I
and must have a Castaing representation. That is to say, there exist countable collec-
tions {vi}, {/3i}, consisting of measurable functions from T into E* and R, respectively,
such that for every T

(12) cl{(v(t) B(t)) }={(x*,/3)E*xR /3 =/o (t, x*)}

and

(13) ,(t) > *=fo (t, vi(t)) for every e 1.

By [14, 1.3], fo(t,’) equals its biconjugate for /x-a.e. e T; one easily checks that
therefore for/.t-a.e, e T and every x e E

(14) fo(t, x) sup {(x, v,(t))-/3i(t): e }.

For e T, i, ] e , define (v,,j(t), fl,.j(t)) =- (v,(t), ,(t)) if IIv,(t)ll* j, and I&(t)l j, (0, o)
otherwise. Then the collection d consisting of all functionals (t, x)--i,i(t)-(x, vi.i(t)),
i, ] e , satisfies, in view of (12), (13), (14) nd the nonnegativity of f,

fo(t, x)= sup {-a(t, x): -a(t, )<-_fo(t, ), a M}

for every e T and x e F(t). Therefore, (A2d) holds. It is also easy to verify that, by
(C2b) for every i, ] e [ and every e T, x e F(t),

[id(t)--(X, v,,;(t))l j +fr(t),

and this means that (A2b) holds. Finally, (A2c) follows immediately from (C2c) and the
above.

The next case confronts us with a situation that is also presented by the "simplest
lower semicontinuity problem" (where is a Dirac measure).

Case 3. As Case 1, but without the convexity assumption (Clb). Then (A2) is
valid if"

(C3) the sequence {Uk} converges to Uo in Ll-norm.
Proof. Let h be introduced as in Case 1; then (A2a) is satisfied. Define M to be the

collection of functionals a,.c.z, n , " , z Q", where

Then d has the following needle type property at every point x ’ [13]: for every
d M, e, > 0 there exist a M, r/> 0, r/=< , such that for every x’ "

implies -a (x’) -< -d (x’),

implies -a (x’) _-< e.

It follows from [13, Thm. 1] (where this result was proven for e 0), as extended in [18],
that (A2d) is satisfied, since f(t, yo(t)," is nonnegative and lower semicontinuous for
every T(cf. the proof of Lemma 2). From the properties of h, as described in the
proof of Case 1, it follows that (A2b) is valid. Finally, it is not hard to see that (C3) is
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equivalent to the following: for every a 4, B 6 ,
li In a(t, uk(t))lx(dt)= In a(t, Uo(t))lx(dt).

(Consider step functions with values in Q" and use the fact that these are dense in
LI(T; R").) Moreover, since for every B , z Q the functional u "--B lu(t)- zltx(dt)
is convex and lower semicontinuous on LI(T; R "), assumption (C3) is in fact equivalent
to (A2c) in the presence of (Cla). Thus, the convergence of {Uk} is of necessity of a
strong nature, although the sequence {a(., Uk(’))} does converge weakly.

Remark 3. Let us point out here that the metrizability condition imposed upon
the Lusin space X2 stands in the way of a number of potentially interesting applications
(e.g., the case where X2 is a separable Hilbert space, equipped with its weak topology).
In notable contrast to some results on the generalized biconjugate of an integral
functional (which form the subject of a forthcoming paper by the present author) we
have not been able to rid the space from the metrizability condition. This explains the
relatively simple choices made for X2 in the above case studies.

Note. In [19] the present author has demonstrated that a large number of lower
closure problems with weak convergence conditions, can be reduced to the lower
semicontinuity problem that was solved in this paper. A quite different approach to the
existence problem along the lines of relaxed control theory can be found in [20] (and
other references mentioned there), where "control functions" and "trajectories" are
relaxed.
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OPTIMAL PLAY IN A STOCHASTIC DIFFERENTIAL GAME*

R. J. ELLIOTTt AND M. H. A. DAVIS{

Abstract. This paper considers play in a two-person zero-sum differential game where the dynamics are
given by a differential equation with additive white noise. Feedback strategies are employed. Standard results
from control theory show that the maximizing player has an optimal response to any pre-announced strategy
of the minimizing player. Here it is shown that the minimizing player can achieve the upper value of the game
by playing a strategy which is constructed by performing a pointwise rnin-max on a certain fixed Hamiltonian
function.

1. Introduction. In reference [7] the martingale methods of Davis and Varaiya [4]
were applied to two-person zero-sum differential games, and in a later paper [9] the
existence of optimal strategies in a game was discussed. Roughly, the method of [9] and
[7] consisted of two steps: it was first assumed that the minimizing player J2 would
announce what control z he was going to use throughout the game and the optimal reply
y*(z) for the maximizing player J1 was shown to exist. Then, secondly, the optimal
control z* for J2 was investigated, given that J2 was to play first in the above manner.
However, on re-reading [7] and [9] it eventually became clear that, because the optimal
reply y*(z) depends on the knowledge of the future behavior of z, the upper value
function W- (Vt+ in [9]), is not a submartingale under the measure constructed from
y*(z) and z.

In this paper we show that Wt+ satisfies a certain dynamic programming identity,
Theorem 3.5. For each control z a reply 33(z) is then constructed by maximizing a
certain fixed Hamiltonian, so that ))(z) does not depend on information about future
behavior of z. When the infimum of the payoffs, (or costs), is taken over all the controls
z, the maximizing player J1 can do as well by using the reply 33 (z). Finally, we show that
the player J2 should choose a control z which minimizes the maximum of the
Hamiltonian mentioned above. Thus, the final results of [7] and [8] are correct.

Most results from previous publications that we use below are summarized in [3].

2. Dynamics and payoll. Suppose the dynamics of a stochastic system are
described by a differential equation of the form

dxt f(t, x, y, z) dt + dw,

with initial condition x(0)=0R’. Here tel0, 1] and w is an m-dimensional
Brownian motion. Write c for the space of continuous functions from [0, 1 to R m, -to
for the tr-field in generated by the coordinate functions {xs, s-< t} and t for the
completion of t with all null sets of Wiener measure on (, -o). Finally, let denote
the t-predictable or-field on [0,1] x .

DEFINITION 2.1. The drift function f maps [0, 1] x c x Y x Z into R". Here Y
and Z are compact subsets of Euclidean spaces R k and R t, and are the sets where the
control functions take values. Furthermore, f is supposed to satisfy the following
conditions’

(i) f is jointly measurable with respect to the product tr-field of on [0, 1] x
and the Borel fields on Y and Z.

(ii) For each e [0, 1], x , f(t, x,. .) is continuous on Y x Z.
(iii) If(t, x, y, z)l-<M(1 +llxllt), where Ilxllt=supo<_s<_t Ix(s)l.
Received by the editors November 16, 1979, and in revised form August 1, 1980.
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A player J1 controls the parameter y Y as the game evolves. Similarly, a player
J2 controls z Z.

DEFINITION 2.2. For 0 --< s _--< _--< 1 the admissible control strategies l for J1
for J2) are all Y-valued (Z-valued) -measurable functions on Is, t] cC

Write M M0 and A; . For y M and z write

f’z (t, x)=f(t, x, y(t, x), z(t, x)).

Let /x denote Wiener measure on (, 1), so that {xt} is a standard Brownian
motion on (, 1,/z). E denotes integration with respect to/z. The conditions on f
ensure that

where

E[exp t(fr’z)l;]= 1 a.s.

g",(f’)= f’(r,x)’dx-- If’z(r,x)[dr.

Therefore, for each y , z W, a probability measure/zr, can be defined on by
putting

d
where

p(y, z)=exp o(f’).
Girsanov’s theorem then states the following result.
THEOREM 2.3. Under the measure lzy, the process w ’z is a Brownian motion, where

y,z dxt fy, (t, x) dt.dwt
That is, under the measure tXy,

dxt fY’z (t, x) dt + dw y’z

so that Xt is a solution of the dynamical equation when admissible controls y and z are
used.

Payoff. The cost, or payoff, is supposed to be just of terminal form

P(y, z) E,[ck],
where Ey,z denotes expectation with respect to /Zy, and b is a given bounded
-measurable random variable.

We are considering a zero sum differential game, so J1 wishes to choose y so that
P(y, z) is maximized and J2 wishes to choose z so that P(y, z) is minimized.

3. The upper value. Suppose that J2 announces at the beginning of the game that
he (or she) is going to use control z s Ac throughout the game. Then, because
f(t, x, y, z(t, x)) is continuous in y s Y we can apply the principal theorem of [2] as
reformulated in [:] to deduce that, with the knowledge of z, there is an optimal reply
y*(z) s //for J1 such that

sup Ey, [,b Ey*(),z [4 ].

Note that y* is a strategy-to-strategy mapping, y* :-, and that the optimal reply at
time depends on ’the future strategy I of J2.
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DEFINITION 3.1. The quantity

W inf sup P(y, z) inf P(y*(z), z)
zaV" y./

is called the upper value of the game.
Remarks 3.2. The optimum reply y*(z) to z, described above, is unrealistic

because it supposes that J2 discloses in advance what he is going to do. The discussion
below shows that J1 can attain the upper value by playing an admissible control which
does not depend on future information about the intentions of J2. Furthermore, it
indicates how J2 should play optimally.

DEFINITION 3.3. Similarly to Definition 3.1, we define the upper value process

W- inf sup1EyzE&lt].
.N’I y,Ag

Here the infimum and supremum are taken in the complete lattice Ll(f,/x, t) (see [6,
p. 302]). For any z A/’ there is, again applying the result of [2], an optimal reply )7*(z)
such that

(3.1) sup Ey,z[lt]=E;*(z,z[&lt] a.s.

Therefore,

W --infE;.,z[lt].

The following lemma shows that we may take 37*(z)= y*(z).
LEMMA 3.4. If y*(z) is an optimal to z N overthe whole time interval [0, 1], then

y*(z) is an optimal reply to z over It, 1].
Proof. This is a direct consequence of the "principle of optimality" [3, Prop. 2.8]

which states that W7 is a martingale under/xy.(z).z and a supermartingale under any
other admissible measure. Thus for z , since W a.s.,

W’ =E.(z),z[[St] a.s.,

and for any y //

wT->E,z[l] a.s.

Thus (3.1) holds with 37*= y*.
We next prove a fundamental dynamic programming identity for Wt+.
THEOREM 3.5. For each [0, 1] and h <= 1

Wt+ inf su,p+ Ey, W+h ’-’t ],
z+hy

Remarks 3.6. Again, the infimum and supremum are taken in the lattice
/t/h the supremum is firstL (fl,/x, t) and implicit in the definition is that for each z

taken over y d t+h In other words, y knows in advance what control J is going to use
Aftt+hover I-t, t+h] The infimum is then taken over z ,, Furthermore, again by the

arguments of I-2] quoted above, for any z aY/h there is an optimal reply y*(t, h, z)=
y* such that

su,p+ Eyz[W[+h [,.t] Ey, z[W[+a [t].

We now give the proof of Theorem 3.5.
Proof. Write

I(t, h)=inf sup Ey,z[W+h -t].
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If ps(Y, z) exp (ts(fY’z) we know that Or(Y, z)p ts(y, Z) Or(y, Z) and ps(Y, z) is a
+h /i/,t+ hmartingale on (f, t,/x). Also, for y e ,////t and z e

Ey,z[W-[+h lc;t]=E[ot,+h(y,z)W+t+h l.,] a.s.

By the same argument as used in the proof of [4, Lemma 3 1] Wt+h is ’relatively
complete" in the sense that for any e > 0 there is a z e W+h such that

sup E,,z,[ [,+h]=< W-+ +e a.s.

t+hFurthermore, there is a z’ W/h such that for all y

-,y,z;[W+h I*t]-I(t, h)+e a.s.

Concatenating z’ and z to give a control z * WI we have that for all y /I

Ey.z:[ t] <-_I(t, h)+ 2e.

Taking the supremum over y , and the infimum over z W] we see that W- <_-
I(t,h)+2e.

Now consider any z dV’. For the restriction of z to It + h, 1] there is an optimal
reply y* y*(z)d/ ,+h and certainly

y*,=[ [,+h] Wh a.s.
t+hTherefore, for any y et concatenated with y*

so, for all z W]

Therefore

Ey,z[Ey*,z[ It+h]t]eEy,z[W+h I,.2t]

Wt+ inf sup E[& [t]>-I(t, h)

and the result follows.
Notation 3.7. Write for all the set predictable functions & from [0, 1] x f - Rsuch that

Then, if

we have

where

(3.2)

I(t, x)l - M(1 + Ilxllt).

1L1q(t, x)’ dx-- I,(t, x)l2 dt,

EOo(q) 1,

p (g,) exp sro (q:,).
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From [5, Thm. 2] we quote the following result.
THEOREM 3.8. Define @ {exp (lo ()" P}; then @ is a weakly compactsubset of

LI(", ’1,/).
Note that fx’ , for y de. Consequently, for any sequence {(y, z)}M

there is a subsequence {(y, z)} and an element h such that p(y, z)p(h)
weakly in L1 as k - oo.

Suppose now that {z} is a sequence in such that

decreases to W-, where, as above, y*(zn) is the optimum reply to
Then, by Theorem 3.8, there is a subsequence, again denoted by {zn}, and a

ofunction fo such that 0n p(y*(zn), zn) converges weakly to po(f ). Write for
the probability measure defined by

a* oo o) o*.d

LEMMA 3.9. For the above sequence of controls {zn} we have that

for any F
Proof. From Lemma 3.4 we know that y*(z,) is also the optimum reply on [t, 1] to

zn, so that for each n,

W" Ey*z,,,z,,[ [’e] -> inf Ey,z,[ I:Te] W+ a.s.

Also, for any F

li pnW:" d/z li IF
--lip

Thus

0 <= li.rn IFp,,(W; W)dt <=li.rn Ia p,,(W"- W-)dlx= Ia (p*)o(W*t W-)d,

where Wt* E*[ It]--> Wt+. We shall show that

lip Ira Pn W- W- dtz O.

There is a slight abuse of notation, in that we previously wrote O(Y, z) for what should, according to
(3.2), be denoted 0o (fY’z). This will continue below.
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Indeed, suppose to the contrary that

li fao,,(w;. wT dix I p*(W*t W dix

=2e>0.

Then there is a set A e t, with ix (A) > 0, such that Wt* W- > 2e on A; that is,

W{ + 2eIA < W*t

Suppose y’(0, t, z) y’(z) is the optimum reply to z eN in the game played over [0, t]
with payoff W+ i.e.,

sup Ey,z[ W- ]= Ey,(z),z[ W{ ].
y

Then in particular,

(3.3)

For any n,

(3.4) po(Y (Zn)Zn)iOt (y$(Zn), Zn) dix <-_ po (y*(zn), z,)pt (y*(z), z,)& dix.

Again from Theorem 3.8 there is a subsequence, still denoted by p(y’(z,), z,), and a
function h e , such that

lim Ey,(.).. Wt+ inf Ey,(.).. W+ ],

and the densities p(y’(zn), z,) converge weakly to pro(h). Write ix’ for the measure
defined by dix’/dix p o (h). There is a sequence of convex combinations of the densities
which converges strongly in L (see [6, V.3.14]), so by considering the corresponding
convex combinations of inequality (3.4) and taking the limit we have that

po (h )p (fO) dix <- p (fo)$ dix W.

Therefore, taking the limit in (3.3), we have inf, Ey,(z.).z.[W[]+2eix’(A) <- Wd. But
this is a contradiction because ix’(A)>0, and by Theorem 3.5

W- inf Ey,z).[W{ ].

This completes the proof.
THEOREM 3.10. The process {W } is a martingale under the measure Ix*.
Proof. Consider e [0, 1 ], 0 -< h =< 1 and F -t. We shall show that

W W+h MIx * O,
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where, as above, dtx*/dlz =pod(f) p* and p(fo) is the weak limit of the densities
pn po (y*(z.), z.). Recall that W- Ey.(.),.[ ]]. Consider any e >0.

+ fp(W: W") d

+ vpn(Wh W+h) d

The final term is zero because W- is a martingale under ,, (where d,/d
Because the payoff is bounded, Iv(W- W+h)e L, so there is an n such that, if

(p$-pn)(W WLh) d <5"
From Lemma 3.9 above there is an n2 such that if n >/72"

and

Pn (Wth W+t+h )dtz <-.
Therefore, if n > max (n 1, n2),

fFP*(W{ W+t+h)

where e is arbitrary. Consequently,

w;,
where U* denotes the expectation with respect to *.

4. The mxim|zlng strategy. In the above section we have shown that the upper
value process satisfies a dynamic programming identity

Wt+ inf sup Ey, Wfh ;t],

and that there is a measure/x*, given by d/z* / d/z p o (fo), such that W- is a martingale
under the measure/x*.

-1Notation 4.1. For tel0, 1], h,, n ^ (l-t) and z eW write y* for y*(t, hn, z)
(the optimal reply to z over [t, + h,] in the game with payoff Wt++hn). That is"

Ey,n,z[Wt++hn ,’t] sup Eyz[W+t+hnlt]

By Girsanov’s theorem, the process w is a Brownian motion under/z*, where
dw dx -fo ds. Therefore, by the representation theorem (see 1-4, Thm. 2.3]) there is a
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predictable process {gt* } such that

E*[ IoX (gt*)2 dt]<
and

W- W- + Io g*(dx _fods).

It follows from [8, Lemma 6.6] that

for all y t/, z At, and hence that

y,Zg*s dws

is a martingale under the measure/zy.z (see Theorem 2.3 above). We use this fact below
without further comment.

For any z ear, let ))(z) be a control for J1 such that

,9(z),z > ,y.zgt jt gt a.s.

for all other y . Such a control exists from [1, Lemma 1].2
Write

t+h

A(t, h, y, z) | g*s (f’s ’ fo ds.
"t

THEOREM 4.2. (i) For all n ’Ey...z[A(t, hn, y*, z)lt]->0 a.s.
(ii) For all n"

E.., [A(t, h,, (z), z)[]>-E..,[a(t, h, y,*, z)[ /]
>-_E)[a(t, h,, (z), z)l,] a.s.

Pro@ For y , z ’ 3r we have from the above representation that
t+h t+h

WT+h W- nI- It gs (dx -fYs ’z ds)-- It gs (fYs ’z -fs)ds.

Therefore,

Ey,[W-+ W- [;t]=Ey,z[A(t, h, y, z)l ,].
Suppose now that y n* is the optimum reply to z, as above. Then

E,...z[A(t, h., y, z)l,]e,,z[a(t, h., y, z)

and, because minz Ey,z[A(t, h,, y, Z)[t] 0, by Theorem 3.5,

E,.z[a(t, h,, y, z)[ ,] 0,
so establishing inequality (i).

Note that (in contrast to y*(z)) :9(z)t depends on z only through the value zt.
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From the definition of 19(z) we have that A(t, h,, 3(z), z)-> A(t, hn, y*, z)

Ey.z[A(t, h,, (z), z)[;t]>--_E,..,.z[A(t, hn, y*,

>=Eg(z.[A(t, h,, (z), z) t] a,So

Rephrasing the above inequalities we have the following corollary.
COROLLARY 4.3. For any set F

p +h" (y,* Z A t, h y z) dt.,. > 0

and

+h * IF + h * *Ot (y, z)A(t, h, )3(z), z) d/x > 0 (y, z)A(t, h., yn, z)

t+hn>= pt (9(z), z)A(t, h, 9(z), z)

Remarks 4.4. By multiplying by n and letting n tend to infinity, we wish to
differentiate these inequalities. However, as it is pointed out in [8, 7] (see also [10]),
care must be taken to show that there is a single subset T c [0, 1] of measure zero such
that the results hold for all t T. This can be done because both the o--fields and the
spaces of controls are countably generated (see [8] and [10]).

Because the trajectories in are continuous almost surely, r is countably
generated for every rational number r [0, 1] by sets {Air}, 1, 2, . Suppose dt is
the set of measurable functions {y} from (, t) to Y R k. Because Y is compact,
E[yl < oo if y dt, and if y(. ,. is an admissible control for J1 y(t, x(. )) is in dt. There is
a countable dense subset Gr {Y’r} Of % and, if Gt U r<-t Gr, then Gt is a countable
dense subset of ,%.

Similarly, if N5 is the set of measurable functions {z} from (, ,) to Z R there
is a countable dense subset Ht of Ygt for each t, where Ht U<_, Hr. Suppose, zj Hr.
Then, as a function constant in time, z. can be considered as belonging to Wt,/h for any
t>__r.

As above, write y* (Zr) for the optimal reply to z over It, + h ]. Then for each i, ], r

t+hn IA t+hn , eg(zir),zir 0lim n Pt ((Z]r), Zir)gs ,s -fs dlx ds

exists and equals

* "ef zJr)’zi

for almost all [0, 1 ]. Consequently, there is a set T1 [0, 1 of zero measure, such that
for t T1 and all i, f, r
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Also, there is a set T2 c [0, 1], of zero measure, such that if t T2,

t+hn

li,rn n E[g 2 ds E[g ].

t+hBecause all the densities p (y, z) form a uniformly integrable set, and because

t+hlim 0, (yn (zjr), Zjr)= 1 a.s.,

we can then prove, as in [8, Lemma 7.2], the following result.
LEMMA 4.5. For e T T1 U Te, all r <- and all i, f,

lim n Ot (y (z), Zr)g*([%’--) d ds

d.
OA

Therefore, from the inequalities of Corollary 4.3 we have"
THEOREM 4.6. For t T

li n O (y (z), z)g*(ff"’z" -) d ds
ir

However, each term in the limit above is nonnegative, so by the monotone class
theorem we have

g,(z;,z, ) e o,

for all A t. Because the integrands are t-measurable,

g*f;%r).Z,r >____ g.fO,
for all ] and all r-< t.

By approximating the value z(t, x) of an arbitrary control z W by functions zir we
have finally, because f is continuous in the control variables, the following result.

THEOREM 4.7. For all z and t T

: og*f;(’ >---- g t a.s.

5. Optimal controls. In this section we show that J1 can attain the upper value by
playing, in reply to control z e W, the maximizing control )(z). This control, )(z), is
more reasonable to consider as a reply to z than, say, y*(z), because )3(z) depends at
any time only on the values of z up to and including t, and does not depend on any
information about future behavior of z.

Recall that y*(z) is the optimal control for J1 when J2 announces at the beginning
of the game that he is going to play control z e throughout the time interval [0, 1].

THEOREM 5.1.

inf P((z), z)= inf P(y*(z), z)= W-.
zW zW
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Proof. From Theorem 3.10 we have that W is a martingale under measure
and has a representation

In particular,

+ Io g*(dx _fo as).

ck W- + Io g*(dx _fo ds)

for any z W. Therefore,

(5.1)

g,(fgz),z fo) ds

P(f(z), z)= W- + Io Egz)’z(g*(f(z)’z _fo)) ds.

From Theorem 4.7 the integrand above is always nonnegative, so for all z W

P((z), z) >- W-.

By the definition of y*(z),

so from the definition of W,

P(y*(z), z)>-P((z), z),

inf P(y*(z), z) inf P((z), z) W-.

Remarks 5.2. It follows from property (ii) of Definition 2.1 and the compactness of
the control spaces Y and Z that, for each (t, x), f(t, x, (z), z)is a continuous function of
z Z. The selection theorem of [1] therefore implies the existence of a control W
such that

for all z W.
THEOREM 5.3.

g*f(t, x, (2), 2) <-- g*f(t, x, (z), z) a.e.

P(p(), 2)= W-.
Proof. Write

4,(x(1)) W- + fo g*(dx _fo ds)

W- + Io g*(dx _fg(z),z ds)

+ fo g,(f;(z),z f;(),2) ds + f g,(f;(), fo) ds.

Then taking expectations with respect to Xf(z),z we have

(5 2) P((z) z) > W- +E;(z),zA 1,
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where

From Theorem 4.7,

At fo g*(fg(’ _fo) ds.

(5.3) Afl > 0 a.s.

Suppose {zn} is a sequence in N such that P(3(zn), z,)$ W-. Then from (5.2)

(5.4) Eg(z,,),z.[A] -> O.

Because the set of densities is weakly compact there is a function h such that
p((z.), z.) converges to p(h) o, and p > 0 a.s. In particular, for any positive integer
N

N] E[o((z.) z.)(a N)]

converges to E[p (A n N)]. In view of (ft.3) and (5.4) this implies that

A nN=O a.s.

and hence that

A =0 a.s.

Recalling (5.2), this shows that

W P((), )

<_-P((z), z), for all z eAz,

so that the control 2 obtained by minimizing the Hamiltonian as in (5.2) is the optimal
strategy for the minimizing player to announce.
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ON THE EXISTENCE OF OBSERVABLE SINGLE-OUTPUT
SYSTEMS OF A SIMPLE TYPE*

MARTIN PHILIP BENDSOE

Abstract. It is shown that on every paracompact, smooth (real analytic) manifold M of finite dimension
there exists an observable control system with a smooth (analytic) vector field as the dynamics and a smooth
(analytic) real function as the output. The result is a generalization of a similar result for Euclidean space,
easily obtained from the observability rank condition for linear systems.

1. Introduction. In this paper we shall consider systems of the form

dx
=X(x),
dt

y =/(x),

on a paracompact smooth manifoldM of dimension n, where X is a smooth vector field
and f:M Ik a smooth function. Throughout the paper "smooth" stands for differen-
tiability of class C and "paracompactness" includes the Hausdorff axiom. Although
no control variables are present, we think of the system as a simple type of control
system. In that spirit f: M k is an output function with k outputs. As usual we say that
the system is observable if two different points in M, after some positive time, have
flowed, along the trajectories of X, to points with different output values. Using the
well-known rank condition for observability of linear systems on Euclidean space
[4, p. 61 ], it is easy to construct an observable single-output system of the form Y_; on
for each n (Lemma 1). The purpose of the present paper is to prove the following
nonlinear version of this result.

THEOREM 1. Let M denote a paracompact n-dimensional, smooth (analytic)
manifold. Then there exist a smooth (analytic) vector field X on M, and a smooth
(analytic) real valued function f:M , such that the system

dx
X: d- X(x ), y [(x

is observable.
The proof of the theorem in the smooth case is based on the following idea: If X is

the gradient field of -[ (with respect to a suitable Riemannian metric), where [ is a
proper Morse function, X can be used to push points in M towards the critical points of
[; it is then possible, using a theorem of Whitney, to construct functions defined locally
around the critical points, so that these functions when added to [ provide a function
for which the pair (X, [) has the desired property.

Theorem 1 is a sort of observability result analogous to the following theorem of N.
Levitt and H. J. Sussmann [2].

THEOREM 2. On every connected, paracompact, n-dimensional, smooth (analytic)
manifold M, there exists a completely controllable pair {X, Y} o]smooth (analytic) vector

fields.
Here "completely controllable" means that any two points in M can be connected

by a continuous curve that piecewise is an integral curve for one of the vector fields.

* Received by the editors April 2, 1980.

" Department of Mathematics, Technical University of Denmark, DK-2800 Lyngby, Denmark.
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2. Some definitions. In the following, M denotes a paracompact, smooth mani-
fold of dimension n. For a smooth vector field X on M we denote by {Xt} the
one-parameter family of local diffeomorphisms generated by X. For each point x M- Xt(x) is therefore the maximal integral curve for X through x. If {oi" Ug Eli I} is
a family of smooth functions defined on open sets Ug in M, we say that the family
separates two different points x, x’ M if there exists an index I, so that x, x’ Ui and
qg(x) qi(x’). If the family separates all pairs of different points in M we call it a
separating family of functions.

A system of the form E as defined in 1 is said to be observable, if {f Xtlt >- 0} is a
separating family of functions on M.

3. The linear ease.
LEMMA 1. For any dimension n >-1 there exists a real n n matrix A and a real

1 n matrix C, so that the system

dx
Ax, y Cx

dt

defined on Euclidean n-space E is observable (x E is considered a column matrix).
Proof. Let A {aii} be the real n n matrix given by

{10 fri=]-l,
ai else,

and let C (1, 0, , 0). By a simple computation it follows that CAr- for 1 -< p =< n
has the form (0, , 0, 1, 0,.. , 0) where the number 1 appears in the pth place. Thus
the rank of the matrix

C
CA

CA-
is n, and the lemma follows from the observability rank condition for linear systems
(see, e.g., [4]).

4. Proof of the general (smooth) case. Let f"M be a smooth Morse function
on M, so that"

(i) For every real a, the set M {x e MIf(x)<= a} is compact.
(ii) If c’, c" are critical points with c’ c", then f(c’) f(c").
It is proved in [3, Cor. 6.7] that there exists a Morse function for which (i) holds,

and this function is easily modified so that (ii) is also satisfied. The conditions imply that
the critical points can be arranged in a sequence Co, c, c:,. with f(Co)< f(c)<.. .
By the Morse lemma [3, Lemma 2.2] and (ii) we can for every c choose a coordinate
chart {x{,..., x} defined on a neighborhood U of c., such that

X’l (ci) x (c) O"

.__(Xjhi)2_jr_(Xj )2 in)2+ +’"+(x forxU,

U. is mapped diffeomorphically by {x,..., x} onto the ball of radius a; and
f(x) < f(x’) for x Ui, x’ Ui+. hi is the index of the critical point ci.
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Choose in an arbitrary fashion numbers flj such that 0 < fl. < a, and let V; denote
2the set of points in U. for which (x{)2+... + (x)2 < flj. By standard methods using a

partition of unity construct a Riemannian metric g on M so that

3kl, on V.,g Ox’ O

and let X -grad f, where the gradient is taken with respect to the chosen metric. X is
our choice of vector field.

It follows from condition (i) for f, that X(x) is defined for all x M and all times
0, and moreover that the limit lim X(x) exists for every x M and is a critical

point of fi We let, for j 0, 1,. , C {x Mlimt Xt(x) c}. If in . we work with
the coordinates {x{,..., x}, we have

Ai+l
and consequently,

X(x) (x e, x , x - e-Z),A AI+I Xn

so that C . is the set of points in for which x x 0.AI
Finally, for a point x C; ,

o X,(x): e-[(x,) +... +(x)Z]+[(c).

Thus it is clear that {/oX,]t0} is a family of real functions with the following
properties:

(a) For x C, y C, j, there exists a T 0 such that XT(X) V and XT(t) .,
and such that [OXT(X) [OXT(y).

(b) For x, y C there exists a T 0 such that x’= XT(X) and y’= XT(y) both lie in
C .. Then [(x’)=/(y’) if and only if [oX,(x’)=/oX,(y’) for all t 0, if and only if

X
2(x,l(X’))z +... + (x (x’))z (,l(y’)) +’" + (x(y’))z.

Thus {[oXt[t 0} separates many points in M and we only have to be concerned with
points in the sets C , j 0, 1,.. . We will now, on every ., construct functions

." . , where. in the coordinates {x, , x} is analogous to the following function
g defined on the open unit ball in ".

To construct g first define for each natural number p M the following sets in :
1 1

Ap=[ap;flp], ap 2p+1’ tip
2p

B= 2p’2p-1

= d(2i-1)"+ 2i i= 1 n-1
2n-1 2n-1

a= + (i-.+ (i- i= n.n- n-
Then let

A ]-, 0](_J ( Bp)(_J ( (1 /))(_J [1, c[.
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Now A is closed, and by a theorem of Whitney (see Br6cker [1, p. 24]), there exists
a smooth, nonnegative function " 1 [R, so that A is the zero set for . The could be
called a multi-ripple bump-function. See Fig. 1.

for n 3

FIG.I

In coordinates {Yl,""", Yn} on n and the usual norm Ilylla= yl +’" ’+ ya the
function g" Nn N is defined as

y,. (liy[I2)
g(Y)= o

ifllyl[aAip, somepN, somei=l,...,n.
elsewhere.

From the construction of . it follows that g is smooth.
As the sets V/inM are disjoint it is possible to add all the functions fi, J O, 1, ,

to the function f, and the resulting function gives us, in conjunction with X, an
observable system. The form of the f’s ensures that the family Xt[t >- O} separates at
least the same points as the family {f Xt[t >-0}. Points x, y in a set C/(’l Vi, for which

X(x)f+. +(x(x)) (,+l(y))+ .+(x;(Xhi+l n(y))2 can now be separated, since
the curves Xt(x) and Xt(y), _-> O, will pass through a set in V/where the function
f/can compare the coordinates of x and y because Xt(x) and Xt(y) have equal f-values
(and thus the same "distance" to ci).

5. The real analytic case. We now assume that M is a real analytic manifold. We
have already shown that there exists a pair (X, f) consisting of a smooth vector field X
and a smooth real function f for which the corresponding system of type Y., is observable.
We want to show that the the pair can be taken to be real analytic. We shall use the fact
that the set of real analytic vector fields on M is dense in the space F(TM) of C-vector
fields on M when F(TM) is given the fine C-topology (for a proof, see [2, 8]).
Similarly, the set of real analytic functions on M is dense in the space C(M, ) of real
C-functions on M, when C(M, [) is given the fine C-topology.

Now consider the property of Observability of systems of the form E. A pair (X, f)
in F(TM) C(M, ) gives an observable system, if for all x, y in M with x y the map
t-foXt(x)-foXt(y), >=0, is not identically zero. For analytic systems the condition
with nonnegative time is equivalent to a condition where all times N are allowed.
Using the fact that the flow of a vector field depends continuously on the vector field (in
the fine C-topology), one has that the set of pairs (X, f) in F(TM) C(M, ) for
which the corresponding system Z is observable is an open set in F(TM)
provided with the fine C-topology. This proves the real analytic case.

Acknowledgments. The author would like to thank Henrik Pedersen, Jens
Gravesen, Bodil Branner-J0rgensen and Vagn Lundsgaard Hansen for inspiring dis-
cussions.
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ANALYSIS OF THE ASYMPTOTIC BEHAVIOR OF OPTIMAL CONTROL
TRAJECTORIES:

THE IMPLICIT PROGRAMMING PROBLEM*

C. D. FEINSTEIN+ AND D. G. LUENBERGER:

Abstract, The asymptotic behavior of the optimal trajectories of the infinite horizon control problem
with discounting, is characterized by a static optimization problem. In the undiscounted case, the limit point of
the optimal dynamic trajectory is the steady-state that minimizes the kernel of the objective functional. The
corresponding static characterization of the limit point in the discounted case, called the implicit program-
ming problem, is derived. The implicit programming problem is a mathematical programming problem with
the special feature that part of the solution is contained in the definition of the problem. All results are
achieved in the context of a sufficient maximum principle, which is shown to be equivalent to the other
approaches taken in the literature to perform the dynamic analysis. The equivalence is based on convexity
conditions assumed in the current dynamic theory. The class of problems that satisfy such convexity
conditions is characterized in terms of a property of vector-valued mappings conceptually related to
monotonicity.

1. Introduction. The objective of this paper is to characterize the asymptotic
behavior of the solutions of the optimal control problem defined on an infinite horizon:

subject to

minimize | L(x, u, t) dt (1.1a)

c(t) =f(x(t), u(t), t),

x(0) x0,

(x(t), u(t)) X x U Nn x for each

(1.1b)

(1.1c)

(1.1d)

The variable x N is the state variable, and the variable u N" is the control
variable. The set U

_
N" may depend on x(t) and t, explicitly. In that case, we shall

write U U(x, t), where U(x, t) is a set-valued mapping from X x [0, oe) to 2e’, the set
of all subsets of R". L is a real-valued function and f is n-dimensional.

In this paper, we present a static characterization of the optimal steady-state
trajectories of a subclass of problem (1.1), the optimal control problem with discount-
ing. In this problem, a familiar model in mathematical economics, the kernel of the
objective functional is L(x, u, t)=e-tl(x, u) where p is the discount rate, and the
system is autonomous, f(x, u, t)= f(x, u).

It is known [26], [27] that the optimal trajectories of the discounted problem
converge to a steady-state, under certain conditions. What is interesting about this
property is that it follows from essentially static, geometric conditions about the data of
the problem. We exploit this fact and characterize the optimal steady-state trajectory by
a static optimization problem, the impl,cit programming problem. With this approach,
we are able to determine the asymptotic properties of the optimal dynamic trajectories
without having to solve the full dynamic problem itself.

It is often the case that precise knowledge of individual trajectories of a model is of
less importance than the information that the optimal dynamic trajectory converges,

Received by the editors February 8, 1980. This research was supported in part by the National Science
Foundation under grant NSF-ENG-76-18748.
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and converges to a particular point. Such limit points provide important information
about the construction of approximate optimal trajectories. Moreover, the static
characterization offers a convenient method for investigating the sensitivity of the
optimal trajectory to various modelling assumptions; in particular, the sensitivity of the
optimal steady-state to the discount rate is relatively easy to analyze using the implicit
programming problem.

In the next section, we recall two approaches to the dynamic analysis of problem
(1.1), given by the maximum principle, and the Hamiltonian dynamic system. In 3 we
present a third, equivalent characterization of the optimal dynamic trajectories that is
given by sufficient conditions for dynamic optimality. The equivalence of these three
approaches is a result of the basic convexity assumption invoked in the dynamic theory.
This equivalence is discussed in 4. The sufficient conditions provide a somewhat
different perspective on the problem, and suggest a decomposition of the analysis into
static and dynamic parts; the static aspect is interpreted as a supporting hyperplane
result. In 5 we give conditions under which the basic convexity assumption holds. In
the last section, based on the decomposition perspective, we formulate the implicit
programming problem and present a series of theorems that verify that the solutions to
the implicit programming problem are the optimal steady-states of the optimal control
problem with discounting.

2. Characterization of the optimal dynamic trajectory.
2.1. The maximum principle. The most familiar approach to the analysis of

optimal control problems is based upon the necessary conditions for dynamic optimality
that are expressed by the Pontryagin maximum principle [21 ]. The maximum principle
has been extended by Halkin [12] to problems defined on an infinite horizon. In the
process of that extension, Halkin proposed a relaxed concept of optimality, which is
able to distinguish between trajectories even if the objective functional diverges. This
extension of the maximum principle provides a set of necessary conditions that must be
satisfied by a weakly overtaking-optimal trajectory. We include the following
definitions for completeness, and then state the main result.

DEFINITION 2.1. A trajectory of problem (1.1) is a pair (x, u) such that:
(i) x is a continuous, piecewise continuously differentiable function from [0,

into X c

(ii) u is a piecewise continuous function from [0, oo) into U
_

(iii) (t)=f(x(t), u(t), t) for almost every tel0, 00); and
(iv) x(O) Xo.

DEFINITION 2.2. A trajectory (x*, u*) is said to be weakly overtaking optimal if for
any feasible trajectory (x, u) and any T [0, oe) and any e > 0 there exists a _-> T such
that

fo L(X *, u*, t)dt-e <= Io L(X, u, t)dr,

or

lim sup I0 [L(x, u, t)-L(x* * t)]dt >-,u, O.

1. Halkin defines the words "for almost every [0, )" to mean "for all [0, ) with the possible
exception of a set I such that I (3[a, b] is finite for every closed bounded interval [a, bill0, )" [12, p.
268n]. Similarly, piecewise continuity is qualified with respect to finite sets. Thus (i) implies that x is absolutely
continuous on [0, ). We shall employ Halkin’s terminology. (See [12] for further details; alternate
definitions are given in [17], [5], and [2].)
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Other relaxed concepts of optimality have been proposed for the infinite horizon
problem. In particular, weakly overtaking optimality is a modification of the concept of
overtaking optimality, which was employed by Gale [10] and may be expressed as

(2.2) liminft_, Io [L(x, u, t)-L(x*, u*, t)] dt >-_ O.

A review of some of these concepts may be found in [15]. Brock and Haurie [5] gave
conditions for the existence of overtaking- and weakly-overtaking optimal trajectories.
We shall not be directly concerned with existence theories in this paper.

TI-IEOREM 2.1. (Maximum principle). Let Ube a closed subset of ff". Let (f, L) be a
continuous function from Nn x U x [0, m) into x whose first derivatives with respect
to the first n arguments exist and are continuous over N x U x [0, ).

Ira trajectory (x*, u*) is weakly overtaking-optimalforproblem (1.1) then there exist
a nonnegative numberpo and a continuous, piecewise continuously differentiable ]’unction
p from [0, ) into R such that:

(i) II(p0, p(O))ll 1;
(ii)/(t) -O/O[H(, u*(t), t, po, p(t))]e=x.(t) ]’or almost every [0, );

(iii) H(x*(t), u*(t), t, po, p(t) >=H(x*(t), u, t, po, p(t))Vu U, Vt [0, m);
where the Hamiltonian, H, is defined as

(iv) H(x, u, t, Po, p(t)) -poL(x, u, t)+ (p(t), f(x, u, t)).

Proof. See Halkin [12]. 71
It is important to note that the maximum principle for the infinite horizon problem

does not contain a transversality condition describing the behavior of the costate
variable, p_(t), as approaches infinity. In particular the boundary condition
limt_ p(t) 0 is not generally satisfied.

It is also not proper to assume that po > 0 (hence taken as 1), in general. This is the
so-called normality assumption. Bliss [4] has given necessary and sufficient conditions
for normality in problems in the calculus of variations; Berkovitz [3] has given a
sufficient condition for normality in the control problem formulated on a finite horizon.
Conditions for normality on an infinite horizon are not known at present. However,
since the theory presented in this paper is essentially a sufficiency theory, our conditions
will be written for the normal case.

2.2. Convexity theory and the Hamiltonian dynamic system. Another approach
to the analysis of the optimal control problem has been studied by Rockafellar ([23],
[25]-[27]). The main theme of this approach is the replacement of differentiability
assumptions by convexity assumptions. The trajectories of the optimal control problem
are then characterized by the Hamiltonian dynamic system. In his development of the
application of convexity theory to the optimal control problem (1.1), Rockafellar [27]
considers the problem of Lagrange, for an infinite time horizon,

(2.3a) minimize fo L(t, x(t), it(t)) dt

(2.3b) subject to x(0) Xo.

The essential assumption that is made in the analysis of (2.3) is that L(t,., .) is a
lower semicontinuous convex function on ["x[" with values in (-, +c], not
identically +; i.e., a lower semicontinuous proper convex function [25, p. 24].
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The relationship between this problem and the optimal control problem (1.1) is
ettected by the formulation of the image function, L* (x, v, t), defined by

inf {L(x, u, t)" v f(x, u, t), u U(x, t)}
(2.4) L*(x,v,t)=

+oe if xX or v J:(x, u, t)Vu U(x, t).
The problem (2.3), in which the image L*(x, 2, t) replaces L(t, x, 2) is known as the
deparametrized problem, in which the control parameter u has been eliminated. The
effect of the control variable is felt as an infinite penalty, through the definition of
L*(x, v, t) (2.4). Young [29] discusses the idea of control as a parameter in calculus of
variations problems. Zachrisson [30] investigated the role of convexity theory in
deparametrized problems. More recently, Goodman [11] analyzed a deparametrized
formulation of the control problem.

The main results that can be achieved using this problem structure ([23], [25]) are
that the optimal state-costate trajectories are solutions of the Hamiltonian dynamic
system, defined by the subditterential equations,

(2.5a) 2(t) OpH*(t, x(t), p(t))

and

(2.5b) (t) -OxH*(t, x(t), p(t)),

with the Hamiltonian defined by the conjugacy formula

(2.6) H*(t,x,p)=sup{(v,p)-L*(t,x, v): vN"}.

The operator "0e" is the subdifferential operator. The subdifferential of a function
at a point is the set of all subgradients of the function at that particular point. If the
function happens to be differentiable at the point x, the subdifferential reduces to the
gradient of the function at x [24, Thm. 25.1]. For completeness, we include

DEFINITION 2.3. A vector s is said to be a subgradient of a convex function h at a
point x if

(2.7) h (z) _-> h (x) + (s, z x Vz.

The relationship of the state-costate trajectories that satisfy the Hamiltonian
dynamic system (2.5) and the state-control-costate trajectories that satisfy the neces-
sary conditions of the maximum principle (Thm. 1.1) was discussed in [23, Example 12].
It was shown that if a state-costate trajectory is a solution to the Hamiltonian dynamic
system, where and f also satisfy the smoothness assumptions of the maximum
principle, then there exists a control trajectory corresponding to the state-costate
trajectory, such that all the conditions of the maximum principle are satisfied for the
normal case (p0 1). Further, in terms of the data of the control problem, the
Hamiltonian H* is equal to the optimal value Hamiltonian,

(2.8) H*(x, p, t) sup {(p, f(x, u, t))- L(x, u, t)}.

However, if the image function is indeed a lower semicontinuous proper convex
function, there is yet another possible characterization of the optimal trajectories of the
control problem. This third characterization is equivalent, in this case, to both the
maximum principle and the Hamiltonian dynamic system, but is of a somewhat different
nature, since it follows from sufficient conditions for dynamic optimality. It is discussed
below.
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3. A sufficient maximum principle and the support property. The next theorem is
an extension of a result established by Peterson [20. The sufficient maximum principle
provides a context for all our subsequent developments. As we shall show, the more
familiar characterizations of the optimal trajectories of problem (1.1) (given by the
maximum principle or the Hamiltonian dynamic system), are actually equivalent to this
sufficiency theorem, under the particular convexity assumptions that are generally
invoked in the analysis of the optimal control problem.

THEOREM 3.1. (Sufficient maximum principle). Let (x*, u*) be a tra/ectory
(Defiiition 1.1) of problem (1.1). Let p* be a continuous, piecewise continuously
differentiable function from 0, c) into n. De,he the Hamiltonian, H(x, u, t, 19)=
-L(x, u, t)+ p, f(x, u, t)>. Suppose that:

(i) H(x*(t), u*(t), t, p*(t))+(p*(t), x*(t))>=H(x, u, t, p*(t))+(p*(t), x)C(x, u)
X x U, for almost every [0, m);

(ii) limt_ (p*(t), x*(t)) exists, and there holds

-< lim (p*(t), x*(t))-< lim inf (p*(t), x(t)) < +c,

]:or any feasible state trajectory.
Then (x*, u*) is overtaking-optimal for the optimal control problem (1.1).
Proof. Since (x*, u*) is a trajectory, *(t) =/(x*(t), u*(t), t) holds for almost every

s [0, ). Let (x, u) be any other trajectory of problem (1.1). Then assumption (i)
implies that, for any T < +,

T

o
(-L(x*(t), u*(t), t)+ d/dt[(p*(t), x*(t))]) dt

TP

(-L(x(t), u(t), t)+d/dt[(p*(t),x(t))]) dt.
Jo

Then

Hence,

T

[L (x(t), u(t), t)-L(x*(t), u*(t), t)] dt >= (p*(T), x(T)-x*(T)).

T

limT_inf Io [L(x, u, t)-L(x*, u*, t)] dt > limr_inf (p*(T), x(T)-x*(T))

=> 0, by (ii). 71

As Peterson [20] observed, no differentiability or continuity assumptions are
invoked on L or f, directly, in Theorem 3.1. Moreover, condition (ii) of Definition 2.1
may be replaced by the simple inclusion, u*: [0, c) -> U, since the continuity properties
of u* are irrelevant.

The assumption (i) of Theorem 3.1 occurs frequently in economic analysis, and is
called the support property.

DEFINITION 3.1. A trajectory (x*(t), u*(t)) is said to be supported if there exists a
continuous, piecewise continuously differentiable function p*" [0, c)--> R such that

L(x*(t), u*(t), t) + d/dt[(p*(t), x*(t))] => -L(x, u, t) + (p*(t), f(x, u, t)) + (p*(t), x),
(3.1) V(x, u) 6 X U, for almost every s [0, o).
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The support property was defined by Gale [10] (he referred to a supported
trajectory as "competitive"). More recently, Haurie [14] generalized the support
property to suggest an approach to nonconvex problems of the form (1.1). Following
Cass and Shell [7], the support functional

(3.2) H(x, u, t, p* (t))+ (p*(t), x)= -L(x, u, t)+(p*(t), f(x, u, t))+ (/0*(t), x),

may be interpreted as the profit rate given by the state control pair (x, u) at the "price"
p*, at time t. The sufficient maximum principle indicates the optimality of a "greedy"
solution, one maximizing the profit rate at each instant and minimizing the asymptotic
worth of the state variable, given by the inner product of the state and the supporting
function, (p*(t), x*(t)).

It is evident that the concept of optimality provided by the sufficiency theorem is
completely dependent upon the asymptotic behavior of the inner product (p*(T),
x(T)-x*(T)). This suggests a decomposition of the analysis of the infinite horizon
problem into separate components. One part of the analysis would determine condi-
tions under which a trajectory is supported, and the other aspect would investigate the
asymptotic properties of the inner product. We shall find this decomposition perspec-
tive useful in characterizing the optimal steady-states of the dynamic problem.

We shall now determine the source of the supporting function p*. We show that the
supporting function is the costate trajectory determined by the maximum principle, if a
particular convexity assumption is satisfied. The convexity assumption we invoke is
actually equivalent to the convexity assumption on the image function L*. Moreover,
under that convexity assumption, the maximum principle, the Hamiltonian dynamic
system, and the support property are equivalent characterizations of the optimal
dynamic trajectory.

4. The support theorem: equivalent characterizations ot optimality. We relate the
necessary conditions to the sufficient conditions through a convexity assumption. To
motivate the assumption, we introduce some standard terminology. Suppose that the
set of admissible controls, given that the system is in state x at time t, is described by the
set U(x, t). Then the velocity set, F(x, t), is composed of all possible cost kernels and
state velocities, as u ranges over the allowable set U(x, t):

(4.1) F(x, t) {(- L(x, u, t), f(x, u, t)): u U(x, t)}.

In his formulation of the optimal control problem, Filippov [9], in studying the
system 2(t)=f(x, u, t), where u U(x, t), defined the set

(4.2) R (x, t)= {f(x, u, t): u U(x, t)}

and analyzed the contingent equation k(t)R(x, t) (which, by Filippov’s lemma, is
equivalent to the original dynamic system). Filippov made the important convexity
assumption: R(x, t) is convex for every pair (x, t). This assumption leads to several
important existence results ([9], [28], [17]).

Baum [2] made assumptions about the set

(4.3) O(x, t)={(z, z):z>=L(x, u, t), z =[(x, u, t), u U(x, t)},

a set that is related to the velocity set F(x, t). Baum required that Q(x, t) be convex and
closed for each pair (x, t) in order to achieve existence results for the infinite horizon
problem.

For each state-time pair (x, t), F(x, t) is a collection of points in E" determined
by all allowable controls, u U(x, t). If, at time t, (x*(t), u*(t)) is on the optimal
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trajectory, then (-L(x*(t), u*(t), t), f(x*(t), u*(t), t)) is the optimal "velocity" vector
of the joint cost-state dynamic system. Hence, any other velocity vector in F(x*(t), t)
would be suboptimal. This essentially static property admits of a characterization in
terms of supporting hyperplanes to convex sets, the convex set being Q(x*(t), t) and the
hyperplane defined by the normal vector (-1, p*(t)). Hence, Baum’s convexity
assumption expresses the maximum principle as a supporting hyperplane property of
the costate variable, p* (t).

We will impose a stronger convexity assumption, extending Baum’s assumption.
Assumption 4.1. The set

(4.4) z(t) {(x, v, ,)" x e x, v =f(x, u, t), ,>-_L(x, u, t), u U(x,

is convex and closed for each e [0, c).
An immediate consequence of Assumption 4.1 is that Baum’s convexity assump-

tion follows. That is, the set

D(x*(t), t) {(x*(t), v, y)" , >-_L(x*(t), u, t), v f(x*(t), u, t), u U(x*(t), t)}

{(x*(t), v, )" (v, ,) O(x*(t), t)}

is also convex and closed, since it is the intersection of two closed, convex sets"

(x*(t), t) (t) {(x*(t), v, ,). (v, ,) " x }.

The main result that follows from this convexity assumption is that every trajectory
that satisfies the conditions of the maximum principle, or is a solution of the Hamil-
tonian dynamic system, is actually supported. Just as the convexity of the set O(x, t)
permits the maximum principle to be characterized by a supporting hyperplane, the
convexity of the set fl(t) permits the support property (Definition 3.1) to be charac-
terized by a supporting hyperplane defined by the costate variable p*(t). We now state
and prove the support theorem.

THEOREM 4.1 (Support theorem). LetXbe a subsetof ’. Let U(x, t) be a mapping
defined on X x [0, ) into 2’. Let (f, L) be a continuous function from the set

D {(x, u, t)" x X, [0, oo), u U(x, t)},

into nx , whose first derivatives with respect to the first n arguments exist and are
continuous over the set D.

Let (x*, u*) be a trajectory (Definition 2.1) and suppose further that there exists a
continuous, piecewise continuously differentiable function p* from [0, oo) into such that
the triple (x*, u*, p*) satisfies the conditions of the maximum principle (Theorem 2.1) for
the normal case. Suppose, in addition, that x*(t) X (i.e., an interior point) for almost
every [0, c), and that the set

fl(t) {(x, v, )" x X, v f(x, u, t), 3/>-L(x, u, t), u U(x, t)}

is convex and closed tt
Then the trajectory (x*, u*) is supported by p*.
Proof. Since fl(t) is a closed, convex set, it follows that

fl(x*(t), t)={(x*(t), v, y)" v =f(x*(t), u, t), y>-L(x*(t), u, t), u U(x*(t), t)}

is closed and convex for each
the set

w(x*(t), t) {(v, 3/)" (x*(t), v, 3/) e l)(x*(t), t)}.
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Let H(x, u, t, p*(t)) -L(x, u, t) +(p*(t), f(x, u, t)) and define the hyperplane in Rnx R,

7r(x*(t), u*(t), t, p*(t))

{(rt, y)" ((p*(t), 1), (r/, 3’)) H(x*(t), u*(t), t, p*(t)), (rl, 3’) n }.

By the maximum principle (Thm. 2.1 (iii), the maximization of the Hamiltonian), (r/*(t),
y*(t)) (f(x*(t), u*(t), t), L(x*(t), u*(t), t)) is a boundary point of the convex set
to(x*(t), t) and rr(x*(t), u*(t), t, p*(t)) is a supporting hyperplane of w(x*(t), t) at
(r/*(t), 3"* (t)).

Then, the point (x*(t), rl*(t), 3"*(t)) is a boundary point of the convex set lq(t) (since
all e-spheres centered at (x*(t), rl*(t), 3,*(t))contain points of the form (x*(t), rt*(t), 3"),
3" < 3"*(t), and hence, not in f(t)). By the support theorem for convex sets [19, Thm. 2,
p. 133] (note that for finite dimensional space, the requirement that the supported set
contain an interior point may be eliminated) there exists a closed hyperplane containing
the point (x*(t), ,l*(t), 3,*(t)) such that lq(t) is on one side of the hyperplane. Let the
normal to the hyperplane be given by the functional (- r(t), p*(t), 1): n R .
Hence, the hyperplane

rI(x*(t), u*(t), t, p*(t))

{(sc, r/, 3’)" ((-r(t), p*(t), -1), (:, r/, 3’))

(- r(t), x*(t)) + H(x*(t), u*(t), t, p*(t)), (, rl, 3") }

contains (x*(t), r/*(t), 3"*(t)) and supports the convex set lq(t). Therefore, the functional
((- r(t), p*(t), 1), (’, r/, 3"))is maximized over the set (, r/, 3") f(t) atthe point (x*(t),
rl*(t), 3"*(t)). Equivalently, we consider the maximization of the functional

-L(x, u, t)+(p*(t), f(x, u, t))+(-r(t), x),

subject to the constraints x X, u U(x, t). The maximum is attained at (x*(t), u*(t)).
Clearly, the maximization of the Hamiltonian (Thm. 2.1 (iii)) is a necessary condition
for this maximization. Another necessary condition follows from the differentiability
assumptions on the function (f, L) and the interior point assumption, x*(t) X. Thus
the gradient, with respect to x, of the functional vanishes at (x*(t), u*(t)). We have

O/O[-L(j, u*(t), t) +(p*(t), f(, u*(t), t))]a=x.(t-r(t)= O.

By the costate differential equation (Thm. 2.1 (ii)), we conclude that r(t) *(t),
for almost every [0, ). Therefore,

d
*(t)) > -L(x, u,-L(x*(t),u*(t),t)+-(p*(t),x t)+(p*(t),f(x,u,t))+(*(t),x),

V(x, u), x X, u U(x, t),

for almost every 6 [0, ).
(A similar result was given in [14].) 71

We will now show that the convexity assumption on the set D,(t) is equivalent to
assuming that the image function is a lower semi-continuous convex function. This
follows from the fact that lq(t) is the epigraph of the image function.

LEMMA 4.1. The set D,(t) {(x, v, 3"):x 6X, v =f(x, u, t), 3">=L(x, u, t), u
U(x, t)} is convex and closed if and only if the ]unction

inf{L(x, u, t)" v ](x, u, t), u U(x, t)}
(4.5) L*(x, v, t)=

+oe ifxX or v C: f(x, u, t) Vug(x,t),
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is convex and lower semi-continuous (hence, with effective domain the convex set

dom L*(t) {(x, v)" x X, u U(x, t)v f(x, u, t)}).

Proof. The epigraph of L*(x, v, t), for fixed e [0, co), is the set

epi L*(t) {(x, v, y)" 3’ >= L*(x, v, t), (x, v) dom L*(t)}

={(x, v, y)’y _->inf {L(x, u, t)" v =f(x, u, t), u U(x, t)}}

{(x, v, 3’)" y >=L(x, u, t), v f(x, u, t), u U(x, t)}

n(t).

By definition, a function is convex if its epigraph is convex. The equivalence between
lower semi-continuity of a function and closedness of the epigraph of the function is
given by Rockafellar [24, Thm. 7.1.].

Lemma 4.1 implies the conclusion that every trajectory generated by the Hamil-
tonian dynamic system is supported. An indirect proof of this claim follows from
Theorem 4.1 and the equivalence between the Hamiltonian dynamic system and the
maximum principle, as noted in 2. Directly, we observe that the Hamiltonian dynamic
system and the Euler-Lagrange conditions for the image function L*, the subdifferen-
tial equations (/0*(t), p*(t)) OL*(x*(t), Yc*(t), t), for almost every t, are equivalent. The
Euler-Lagrange conditions are themselves equivalent to the support property if L* is
convex. (The equivalence between the Hamiltonian dynamic system and the Euler-
Lagrange conditions is based on the conjugacy properties of L* and H*, which we state
explicitly in 6 (see Lemma 6.1).)

Therefore, if Assumption 4.1 holds, we may characterize the optimal trajectories
by the support property. The importance of this convexity assumption may be under-
stood by observing the prominent place it occupies in the literature; the dynamic theory
of Rockafellar ([23], [25]-[27]), the existence theory of Brock and Haurie [5], and the
turnpike theory of Haurie 15] all are based on this essential assumption. It is significant
to note that the difference between Assumption 4.1 and Baum’s assumption, the
convexity and closedness of Q(x, t) for each (x, t), is that the latter is equivalent to
assuming that L*(x, v, t) is convex as a function of v only. The joint variation in (x, v) is
unspecified under Baum’s assumption. Conditions under which Assumption 4.1 holds
are presented in the immediately following section.

5. Convexity assumptions and the M-property. This section presents conditions
under which the set l(t) (4.4) is closed and convex; or equivalently, (Lemma 4.1) that
the image function L*(x, v, t) (4.5) is convex and lower semi-continuous. To proceed,
we require the following assumptions"

Assumption 5.1. The set X
___
R is convex.

Assumption 5.2. The mapping U :X [0, )--> 2" satisfies the convexity pro-
perty: if ui6U(xi, t), xX, i=l, 2, then, for each t[0,), ,ul+
(1--A) U2 U(AXl + (1-,)x2, t),V, [0, 1].

Observe that Assumption 5.2 is satisfied if U(x, t)= U(t), for all x X, with
U(t) a convex set for each t[0, oe). Assumption 5.2 also holds if U(x,t)=
{u u ’, g(x, u, t) -< 0}, where g Nn N, N NL is a convex mapping (jointly in
(x, u)) for each e [0,

Assumption 5.3. The non-empty set A(t) {(x, v): x X, v f(x, u, t), u U(x, t)}
is convex and closed, for each
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Assumption 5.3 is stronger than Filippov’s convexity assumption. Clearly, A(t)
convex implies that R (x, t)= {f(x, u, t): u U(x, t)} is convex for each (x, t)
Xx[0, ).

This assumption may be interpreted as a condition on the inverse mapping,
f-l(v; x, t), that assigns to each v in N" the set of points w in N’ such that v f(x, oo, t). If
v e R (x, t), then there exists at least one control, u, in U(x, t) such that v f(x, u, t).
That is, for v R(x, t) the intersection {f-l(v; x, t)(-I U(x, t)} . Assumption 5.3
requires that for all I [0, 1], for all vie R (xi, t), 1, 2, the intersection of the sets
(I (xl, vl, t) + (1 1)(x2, v., t)) and U(Ix + (1 I)x2, t) is not empty.

Observe that the set A(t) is the effective domain of the function L*(x, v, t), defined
by (4.5), for each e [0, oe). One might conjecture that since the domain is assumed to
be convex, the convexity of L*(x, v, t) would follow from the convexity of the function
L(x, u, t), for each e [0, oe). This is not the case. In fact, more than convexity of
L(x, u, t) is required to assert the convexity of the function L*(x, v, t) or, equivalently,
the convexity of the set I)(t). The technical problem is the presence of the equality
constraint in the definition of f(t) and the minimization problem that defines L*(x, v, t).
Indeed if f(t) were defined by the inequality v >-f(x, u, t) instead of the equality,
convexity would follow from the assumption that (f, L) is a convex mapping for each
e [0, oe). The actual definition of fl(t) necessitates a further assumption.

Functions defined by equality-constrained minimization operations have been
studied by Rockafellar [24]; he called them images, hence our use of the term to
describe the function L*. For a linear transformation A from Nn to Nm, the image of the
convex function h under A is defined by (Ah)(y)= inf {h(x): Ax y}. The image (Ah)
is easily shown to be convex [24, Thm. 5.7]. For given (x, t), the function L*(x, v, t) is
then the image of L(x, ., t) U(x, t) under f(x, ., t) U(x, t)

For nonlinear mappings A, no general theorems relating to the convexity of the
image (Ah) are known. We propose a condition to be satisfied by the function f that will
aid in the characterization of images. The condition is called the M-property, since it is a
property conceptually related to the monotonicity of mappings. As shown in Lemma
5.1, below, the M-property enables equality constraints to be treated as inequality
constraints for certain nonlinear programming problems.

DEFINITION 5.1 A mapping f:D
_ - is said to satisfy the M-property on D

if, for any v in the range of f and for any x 6D such that f(x)>=v, there exists
y D, y _-< x, such that f(y) v.

The M-property is concerned with positive cones. Let v belong to the range of f;
i.e., v f(D). At each element y D that is in the level set {y: y D, f(y) v} erect a
positive cone. The M-property is satisfied if all x D such that f(x) >-_ v are contained in
the union of all positive cones with vertices in the level set.

A simple example of a mapping that satisfies the M-property is given by

f:2...), f(X1, X2)=X12+X22, D={(Xl, X2):xi>=O,i=l,2}.

The level sets are quarter circles in the positive quadrant of the x- x2 plane, centered
about (0, 0). The point y (0, 0) vai:dates the M-property for v 0. It is easy to see that
the property holds for any v > 0.

The first result that can be proven using the M-property is an equivalence
relationship between equality- and inequality-constrained nonlinear programming
problems.

LEMMA 5.1 Let D
_

Ns be nondecreasing on D. That is, if xl, X2 D, Xl X2,

then l(xl) --< l(x2). Let f D c_ satisfy the M-property on D. Suppose that the set
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{x’x D, f(x)= 0} . Then the following problems have equal optimal objective
values"

or

min (x), and min (x),

s.t. f(x) => 0, s.t. f(x) O,

x D, x D,

min {l(x): f(x) -> O, x D} min {l(x)" f(x) O, x D}.

Proof. Since f" D [n satisfies the M-property, for all x D such that f(x)>= O,
there exists y D, y -< x, f(y) 0. Since is nondecreasing on D, l(y) -< l(x).

Using Lemma 5.1., we may now prove that the image L*(x, v, t) is convex and
lower semicontinuous in (x, v) for each

PROPOSITION 5.1. Let Assumptions 5.1, 5.2 and 5.3 hold for X, U, and f. Let
D {(x, u, t)" x X, [0, o), u U(x, t)}

Suppose further that"
(i) L" D is convex and continuous with respect to (x, u) and non-decreasing

with respect to u, for each [0, );
(ii) f’D Nn is a continuous concave mapping with respect to (x, u) for each

[0, o); and
(iii) for each (x, t) X x [0, m) the function f(x, ., t)" U(x, t) R satisfies the M-

property on U(x, t).
Then L*(x, v, t) is convex and lower semicontinuous in (x, v) for each [0, ).
Proof. Fix [0, ). Let (xi, vi) h(t). That is, there exist ui U(xi, t) such that

vi f(xg, ug, t), 1, 2. By definition,

L*(, (x1, vl)+ (1-/)(x2, v2), t)

=inf {L(hxl + (1-h)x2, u, t)" hvl + (1-h)v

f(hxx + (1 h)x:, u, t), u U(tXI -[" (1 A )x2, t)}.

By Assumption 5.3, the set

{u" u U(hx + (1-h)xe, t),//-)1 +(1-h)v2=f(hx + (1-h)xa, u, t)}

By Assumption 5.1, hx + (1 h)x2 X.
Since the functions

L(hx + (1-h)xa,., t)" U(iXl -[-(1-/)x2, t)R,

and

f(hxl + (1-h)x,., t)" U(hXl + (1-h)xe, t)-,
satisfy the assumptions of Lemma 5.1, and the feasible set is not empty, the equality
constraints may be replaced by inequalities. Hence

L*(A (Xx, Vl)-F (1-A)(X2, v2), t)

inf{L(hxx + (1-h)x2, u, t)" hv + (1-h)v2

<-f(hxl + (1-h)x2, u, t), u U(hx +(1-A)x2, t)}.
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Let U-AoI+(1-A)o2, with wiEU(xi, t), i=1,2. By Assumption 5.2, uE

U(AxI + (1 A )x2, t). However, restricting u to be of this form increases the value of the
infimum. Moreover, by convexity of L and concavity of f, it follows that

L*(A (Xx, /)1) -+- (1 --/.)(X2, /)2), t)

-<_hinf {L(xl, wl, t)" vl <- f(xl, Wl, t), 001 U(xl, t)}

+ (l-h)inf {L(x2, c02, t)" v2<-_f(x2, w2, t), w2 U(x2, t)}.

By Lemma 5.1, we can replace the inequalities by equality constraints since the sets
{w vi f(Xg, w, t), o U(xg, t)} are not empty, 1, 2. Hence,

L*(A (Xl, vl)+ (1-h)(x2,/;2), t)<--hL*(xl, l)l, t)+(1-h)L*(x2, v2, t).

The lower semicontinuity of L* follows from Assumption 5.3 and the continuity of
(/, L). 71

Thus, Proposition 5.1 provides a set of conditions that are sufficient for the
conclusion that the set (t) is convex and closed for each [0, c), or equivalently, that
the image function is convex and lower semicontinuous. That L* is a proper convex
function follows if L is never +

6. The static characterizations of the asymptotic behavior of the optimal
trajectories of the discounted optimal control problem: the implicit programming
problem.

6.1 The optimal control problem with discounting. We now apply the theory to a
subclass of problems (1.1) that is of interest in mathematical economics, the so-called
problem with discounting. Here a discount rate p is introduced and the kernel of the
objective functional becomes L(x, u, t)=e-Otl(x, u). The dynamic system will be
autonomous, f(x, u, t)=f(x, u). The basic control problem (1.1) then becomes the
discounted problem, with discount rate p"

(6.1a) minimize f e-t l(x, u) dt

(6.1b) subject to A (t) f(x, u),

(6.1 c) x (0) x0,

(6.1d) (x(t), u(t)) X U(x(t))
_
n ,,,, for each E [0, c).

We seek a characterization of the optimal steady-state trajectories of the dis-
counted optimal control problem, pairs (x*, u*) =- (x, u), for all t. We have seen that if
the basic convexity property, given by Assumption 4.1, holds for the data of the
problem, we may characterize the optimal trajectories of the problem by any one of
three approaches. We shall describe the optimal steady-state trajectories in terms of the
support property and formulate a static optimization problem, based on that descrip-
tion, that has as its solution the optimal steady-state. Then, we shall show that the
dynamic theory that has been developed to analyze problem (6.1) may be interpreted as
a means of establishing the boundary condition contained in Theorem 3.1, the sufficient
conditions for dynamic optimality.

6.2 Static characterization of the optimal steady-state for the undiscounted
problem. There is a complete body of literature analyzing problem (6.1) when p 0.
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Some of the more recent references are Rockafellar [26], Haurie [15] and Brock and
Haurie [5]; the classic reference is Ramsey [22]. It is known that, under sufficiently strict
convexity conditions (including the convexity of the image L*) the optimal state-costate
trajectory converges to the saddlepoint (x, p0) of the optimal value Hamiltonian [26,
Thm. 1.2]. This saddlepoint may be characterized in terms of a static optimization
problem, as noted by Brock and Haurie [5]. This result is given by the next theorem.

The theorem is motivated by the intuitively appealing idea that if the optimal
trajectory converges toward a steady-state, or if a steady-state is an optimal trajectory
for the dynamic problem, then that steady-state should minimize the kernel of the
objective functional, l(x, u). To estabish this result, as well as the other results of this
section, we require the convexity assumption on lq(t) (Assumption 4.1) or equivalently
(Lemma 4.1).

Assumption 6.1. The image function, defined by

(6.2)
inf {l(x, u)" v f(x, u), u U(x)}

L*(x,v)=
+ ifxgX or v f(x, u) Vu U(x),

is a lower semicontinuous proper convex function. (Recall that Proposition 5.1 provides
a set of conditions under which Assumption 6.1 holds.)

THEOREM 6.1. Suppose that Assumption 6.1 holds. Define the optimal value
Hamiltonian

H*(x,p)=sup{(p, v)-L*(x, v)" v

Let (x, pO) be a saddlepoint of H*. Assume H*(x, pO) is finite. Then (x, u) is a
solution to the mathematical programming problem

(6.4a) minimize

(6.4b) subject to

l(x,u)

f(x, u)= o,
x x, u U(x)

where u= inf {l(x, u)’ 0 =f(x, u), u U(x)}.
Proof. Apply the proof of Theorem 6.2, below, with p 0
Theorem 6.1 provides a static characterization of the optimal steady state tra-

jectory of the undiscounted optimal control problem. We relate the static problem (6.4)
to the dynamic theory through the support property (Definition 3.1). For a steady-state
trajectory, (x*(t), u*(t,), p*(t))= (x o, u o, pO), the support property becomes

(6.5)
l(x, u) <= l(x, u)-(p, l(x, u)),

V(x, u)D={(x, u)’x X, u U(x)}.

It is clear that a supported steady-state trajectory is necessarily a solution of the
static problem (6.4). This observation suggests a similar characterization for the optimal
steady-state trajectories of the discounted optimal control problem.

6.3 The implicit programming problem. The static characterization of the optimal
steady-state trajectories of the discounted problem will be derived from the support
property. The support property for the discounted problem is, for the trajectory
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(x* u*) and supporting function p*(t) e ,t ,
q (t)(see 6.4), the inequality

-e l(x*,t),t ,t))+-[(e "’q (t),x

-""’ *(t), f(x, u))+(e -"’(4*(t)-oq*(t)), x)(6.6a) > -e ttx, u)+(e ’q

V(x, u) D {(x, u)’x X, u U(x)}, for almost every [0, oo).

For a steady-state trajectory, (x*,u*, q*)-=(x , u, q) with [(x, u) 0, the
support property becomes the inequality

(6.6b) l(x o o),u <=l(x,u)- ,f(x,u)-p(x-x ), V(x,u)D.

A necessary condition for (x u to be supported is that (x u is a solution to the
well-defined nonlinear programming problem

(6.7a) minimize l(x, u)

o)(6.7b) subject to f(x, u)-p(x -x O,

(6.7c) x X, u U(x).
0

Since x is a fixed vector, the constraint (6.7b) is specified precisely and problem
(6.7) is well defined. We now wish to consider the problem

(6.8a) minimize l(x, u)

(6.8b) subject to f(x, u)-p(x-x*)-- O,

(6.8c) x X, u U(x)

where x* is not fixed in advance. Indeed, x*, as it appears in the constraint (6.8b),
indicates the value of the x-component of the solution to the problem (6.8). In other
words, the constraint is defined implicitly by the solution to the problem itself.

We call problem (6.8) an implicit programming problem, and we claim that it is a
well-defined mathematical programming problem. Furthermore, we claim that under
certain conditions, to be described below, the solution to the implicit programming
problem is an optimal steady-state trajectory for the optimal control problem with
discounting.

The most natural way to interpret the implicit programming problem is that it
actually defines a mapping from " to "x ’". To highlight this interpretation, let us
replace x* in the constraint (6.8b) with a parameter c e ". As c varies over ", a family
of nonlinear programming problems is created. Moreover, for any c, the problem

(6.9a) minimize l(x, u)

(6.9b) subject to f(x, u)-o(x -c)= O,

(6.9c) x X, u U(x)

defines a mapping that takes c g" into the solution of problem (6.9), (x*(c), u*(c))
D.

The implicit programming problem (6.8) may then be written"

(6.10a) minimize l(x*(c), u*(c))

(6.10b) subject to x*(c) c,

(6.10c) c X,
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where the minimization is taken over the fixed-points of the mapping c --> x*(c). The fact
that this mapping is defined implicitly by the mathematical programming problem (6.9)
suggests the terminology "implicit programming problem." One would expect the
minimization defined by (6.10) to be over a discrete set (although there is a possibility of
degeneracy in the data of the problem, in which case the fixed-points of the mapping
form a continuum). Indeed, the discrete nature of the "feasible" set for (6.10) indicates
that what is of primary importance in the analysis of the implicit programming problem
is the set of local solutions; i.e., all the fixed-point of the implicit mapping defined by
(6.9). We will designate such points as feasible points for the implicit programming
problem (6.8).

It is clear that every feasible point of the implicit programming problem (i.e., a
fixed-point of the implicit mapping) is a steady-state of the dynamic system 2 f(x, u),
since the term p(x -c) in the constraint (6.9b) vanishes identically at the solution x*(c)
whenever x*(c) c. Moreover, the solution to the implicit programming problem will
not be the same as the solution of the undiscounted static problem (6.4); in general, the
(globally) optimal value of the implicit programming problem will be higher than that of
the undiscounted problem. This follows from the fact that only a subset of the
steady-states correspond to fixed-points of the implicit mapping defined by (6.9), while
the entire null space of ]" is feasible for (6.4). Thus, the optimal steady-state for the
discounted problem is inferior compared with that for the undiscounted problem. This
behavior is a direct result of the discounting of the objective; since later performance is
valued less than earlier performance, the optimal trajectory exploits the dynamic
possibilities in the structure of the problem at the beginning of the period to converge to
what appears to be a suboptimal steady-state at the end. In fact, even if the initial
condition were specified as the (global) solution to (6.4), the optimal trajectory would
not remain at that point, but instead converge to a local solution of the implicit
programming problem.

6.4 Determination of stationary points of the Hamiltonian dynamic system. We
will now verify the claim that every local solution to the implicit programming problem
is an optimal steady-state trajectory for the optimal control problem with discounting.
To perform the analysis, we formulate the Hamiltonian dynamic system for the
discounted problem, and express the steady-state trajectories in terms of the
subdifferential equations of the dynamic system. We first show that the implicit
programming problem characterizes the steady-states of the Hamiltonian dynamic
system.

The Hamiltonian dynamic system is formulated subject ot the basic assumption
that the image function L* is a lower semicontinuous proper convex function (Assump-
tion 6.1). The Hamiltonian is defined by"

(6.11) H*(t, x, p) sup {(p, v)- e-tL*(x, v)" v R}.

It is convenient to introduce the change of costate variables, p(t)= e-tq(t), which
defines the current-value Hamiltonian, H*(x, q), such that H*(t, x, p) e-tH*(x, q),
where

H*(x, q) sup {(q, f(x, u))- l(x, u): u U(x)}
(6.12)

sup {(q, v)-L*(x, v)"

The optimal state-costate trajectory of problem (6.1) is a solution to the Hamil-
tonian dynamic system, which due to the change of variables, becomes the autonomous
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system

(6.13) (- dt(t) + pq(t), 2(t)) OH*(x(t), q(t)),

the so-called modified Hamiltonian dynamic system. The steady-state trajectories of
the modified Hamiltonian dynamic system are pairs (x, qO) such that

(6.14) (pqO O) OH*(x qO)
We begin by proving the counterpart to Theorem 6.1, which indicates that every

stationary point of the modified Hamiltonian dynamic system determines a feasible
point of the implicit programming problem. The proof requires the following lemma,
which relates the Hamiltonian dynamic system to the Euler-Lagrange Equations.

LEMMA 6.1 (Conjugate duality (partial conjugates)). Let L(x, v)’R x Rn-->
(- o, +] be a lower semicontinuous proper convex function. Define

H(x,p)=sup{(p, v)-L(x, v)"

Then H(x,p)’nxn[-oo, +oo] is concave in x and convex in p, and the following
conditions on (x, p) g" x ff" and (x *, v *) n x are equivalent"

(i) -x* OxH(x, p),
(ii) x* GL(x, v *), p OoL(x, v*).

Proof. These results are all given by Rockafellar [24, see Thms. 33.1 and 37.5].

THEOREM 6.2. Suppose that Assumption 6.1 holds. Let (x, q)Xx be a
stationary point of the modified Hamiltonian dynamic system.

Then (x, u) is a solution to the mathematical programming problem (6.9), with
o

C=X

minimize

subject to

l(x,u)

f(x, u (x x) o,
xX, uU(x),

where u=min,-l{l(x, u)" O=f(x, u), u U(x)}.
Proof. The stationary point condition (6.14), is equivalent to the subdifferential

condition on L* (Lemma 6.1), (- pqO, qO) OL.(x o, 0). By definition of a subgradient of
a convex function (Definition 2.2), it follows that

L*(x+,v)>=L*(x, O)+(q,v-p), V(sc, v)E " x .
Thus, for v p:, we have

L*(x + , p) >=L*(x, 0) l(x, u), where
o o ou =min-1 {l(x u)" 0 =f(x u), u U(x)}.

By definition of L*(x + , p), letting : x -x,
l(x, u)_-< inf {l(x, u): p(x-x) =f(x, u), u U(x), x }

=min {l(x, u)" p(x-x) -f(x, u), u U(x), x a_X}.
(x,u)
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We are far more interested in a converse result, which would indicate how the
implicit programming problem may be used as an analytic tool in conjunction with
the established dynamic theory. Our objective is to pose sufficient conditions on the
solution of the implicit programming problem to ensure that an optimal steady-state has
been determined. We first show that every local solution of the implicit programming
problem (i.e., a fixed-point of the implicit mapping x*(c)) determines the state
component of a stationary point of the modified Hamiltonian dynamic system.

PROPOSITION 6.1. Let (x*, u*) be a solution to the mathematical programming
problem (6.9) with c x*, hence feasible for (6.8). Suppose that Assumption 6.1 holds.
Suppose further that the point (x*, O) is the interior of the effective domain of L*. Then
there exists a stationary point ofthe modified Hamiltonian dynamic system at (x*, q*), for
some q* .

Proof. Since (x*, u*) is a Solution to the mathematical programming problem (6.9)
with c x* we have

L*(x*, 0) inf {/(x*, u)" 0 f(x*, u), u U(x*), x* X} l(x*, u*).

By assumption, L*(x, v) is a proper convex function, hence, if (x *, 0) is in the interior of
the effective domain of L*, then the subdifferential of L* at (x*, 0) is not empty [24,
Thm. 23.4]. Hence, for some (r, q*) N" x N,

L*(+x*,v)>=L*(x*,O)+(q*,v)+(,) V(,v).
Now let v p. We have

L*(sC + x*, o) >-_L*(x *, O) + (oq* + (, c)

However, since (x*, u*) is the solution to problem (6.9), we also have

l(x*, u*) L*(x*, O)

=min {l(x, u)’p(x -x*)=f(x, u), u U(x), x sX}
(x, u)

<=L*(x, p(x-x*)) Vx X.

Letting : x -x*, this implies L*( + x*, p)-L*(x*, O) >= O, V . Hence, it follows
that pq*+(=O, which implies (-pq*,q*)eOL*(x*, 0). By Lemma 6.1, we conclude
that the subditterential condition holds’

(oq*, O) OH*(x*, q*). l-I

We will now characterize the costate component of the stationary point of the
modified Hamiltonian dynamic system in terms of the Lagrange multiplier of the
implicit programming problem. Recall the following results from the theory of
nonlinear programming.

We consider the nonlinear programming problem with equality constraints"

(6.15a) minimize (x)

(6.15b) subject to f(x) 0,

(6.15c) x e D
_

DEFINITION 6.1. Let f" Ns - [" be continuously differentiable. A point x satisfy-
ing the constraints f(x) 0 is said to be a regularpoint of the constraints if the gradient
vectors Vxfl(x), V f (x) are linearly independent.
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Definition 6.1 is equivalent to the fact that the n s Jacobian matrix [Vxf(X)] is full
rank at x.

The idea of a regular point is essential for characterizing the solution of problem
(6.15), as indicated in the next theorem.

THEOREM 6.3. (First-order necessary conditions for a minimum; Lagrange
multipliers). Let (l, f) be C functions. Letx be a solution to (6.15), thatis a regularpoint
of the constraints. Suppose further that x Do, an interior point of the feasible set. Then
there existsA such that Vfl(x)- (A , Vxf(X)) O.

Proof. See [18, Chpt. 10].
We shall define the Lagrangian of the implicit programming problem as follows: let

(6.16) Lp(x, u, A; c)= l(x, f(x,

+ ifxX or uU(x),

where c is a fixed vector. This is the Lagrangian of a member of the class of
problems (6.9).

With this definition of the Lagrangian, we may express the optimal value Hamil-
tonian as

(6.17) H*(x,q)={sp{-L(x’u’q;c)’uU(x)}+O{q’x-c}’- if xX.

We now relate the saddlepoints of the Lagrangian to the saddlepoints of the
(perturbed) optimal value Hamiltonian,

(6.18) Ho*(x, q; c)= H*(x, q)-p(q, x-c).

LFMMA 6.2. If Lo (x, u, q x), the Lagrangian (6.16) with c x, possesses a
saddlepoint (x o, u o, qO), with x X and u U(x), then (x, qO) is a saddlepoint of
Ho* (x, q;x) where u furnishes the supremum in the definition of H*(x q)

Further, ifH*(x, q) is a concave-convexfunction, then (x, qO) is a stationary point of
the modified Hamiltonian dynamic system.

Proof. The saddlepoint condition on Lo is equivalent to the inequalities

Lo (x, u, qO., x o) <_ _L (x o, u o, qO., x o) <= _L (x o, u o, q’, x o)
By definition, for x X,

H*o (x, q’, x)=sup {-Lo(x, u, q’, x) u U(x)}

l(x, u, q).

>= -Lo (x, u, q’, x) Vq.

Further, -Lo(x, u, qO., x o) =< _Lo(x o, u o, qO., x) implies that

Ho(x qO., xO)=sup{_Lo(x, u, qO., x)" u U(x)}

Hence,

Thus,

<--Lo (x o o o,u ,q ;x fx.

Ho* (x, qO; x o) <_ _Lo(x o, u o, qO, x) =< H*o (x, q’, x) V(x,q).

H*o (x, qO. x o) _Lo(x o u o qO. x o)
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Therefore u furnishes the supremum in the definition of Ho* (x o, qo ;x o), and (x, q o) is
a saddlepoint of Ho*.

If H*(x, q) is a concave-convex function, it follows that Ho* (x, q; x) is also
concave-convex. Hence, the saddlepoint condition on Ho* (x, q; x) is equivalent to the
subgradient condition

(0, 0) o/40* (x qO o);x or (oq O)OH*(x qO).
The search for stationary points of the modified Hamiltonian dynamic system

becomes, by Lemma 6.2, a search for saddlepoints of the Lagrangian Lo (x, u, q; c), with
the special property that the state-component of the saddlepoint, x , is equal to the
parameter c that defines the Lagrangian. This bears out the observation of Cass and
Shell that the optimal steady-state is "something like a saddlepoint for the modified
current value Hamiltonian H*(x, q)-p(q, x)" [7, p. 54]. The implicit programming
formulation suggests consideration of the perturbed Hamiltonian Ho* (x, q; c); the
saddlepoint behavior of this function is clearly a restatement of the support property.
The main result of Lemma 6.2 is that every stationary point of the modified Hamil-
tonian dynamic system determines a stationary trajectory that is supported. Moreover,
a necessary condition for such a trajectory to exist is that (x, u) is a solution to problem
(6.9), with c x, hence (x, u) is feasible for the implicit programming problem.

The next result provides sufficient conditions under which a feasible point of the
implicit programming problem completely characterizes the stationary point of the
modified Hamiltonian dynamic system. The result is a corollary to Proposition 6.1 and
Lemma 6.2.

COROLLARY 6.1. Let (x*, u*, A *) be a solution to the mathematical programming
problem (6.9) with c --x*. Assume that f and are C functions. Suppose (x*, u*) is a
regular point of the constraints f(x, u)-p(x-x*)= O, and x* EX, u* E [U(x*)].
Suppose further thatAssumption 6.1 holds and that the point (x *, O) is in the interior of the
effective domain of L*. Then (x*, )t *) is a stationary point of the modified Hamiltonian
dynamic system.

Proof. The assumptions that L* is a proper convex function and (x*, 0) [dom
L*] imply, as in the proof of Proposition 6.1, that for some q* " there holds

L*(+x*, v)>-L*(x *, 0)+<q*, v-p), V(,

By definition of L*, letting x- x*, this is equivalent to

l(x*, u*)<=inf {l(x, u)’v -f(x, u), u U(x)}-(q*, v-to(x-x*)), V(x, v)

_--<inf {l(x, u)-(q*, f(x, u)-p(x -x*)), u U(x)}, Vx.

Now let x x*. The infimum is then attained at u u* [U(x*)]. Since u* is an
interior point, and (x*, u*) is a regular point of the constraints f(x, u)- O(x -x*) O,
the necessary conditions hold,

Vu[l(x*, u)-<q*, (x*, u))]u=u, o,

and imply that q* A*, by Theorem 6.3. It follows that

l(x*, u*)<-l(x, u)-(A*,f(x, u)-p(x-x*)) Vx X, u U(x).

Then the Langrangian Lo(x, u, q; x*) possesses a saddlepoint at (x*, u*, A*). Lemma
6.1 indicates that the optimal value Hamiltonian, H*(x, q), is a concave-convex
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function, given the assumptions on L*. Hence, by Lemma 6.2, (x*, h*) is a stationary
point of the modified Hamiltonian dynamic system. 71

Thus, we have established conditions under which a local solution to the implicit
programming problem, with Lagrange multiplier, completely determines a stationary
point of the modified Hamiltonian dynamic system. To assert the dynamic optimality of
a local solution to the implicit programming problem, we must apply the sufficient
maximum principle. This requires an investigation of the relationship of the solutions of
the implicit programming problem to the dynamic theory.

To this point, our analysis has presented new results of a purely static nature. What
we seek to demonstrate below is the extent to which the static approach can substitute
for the dynamic analysis, for the purpose of characterizing the complete dynamic
trajectory. The novel aspects of these subsequent results are contained in their
relationship to the formulation of the implicit programming problem itself, and to the
decomposition perspective suggested by the sufficient maximum principle. However,
this portion of the theory is derived from the results of the current dynamic theory; we
are, in this last section, indicating how implicit programming complements the dynamic
analysis, rather than presenting any new results of a dynamic nature.

6.5 Application of the dynamic theory. The most complete dynamic analysis of
the discounted problem is due to Rockafellar [27]. The theory developed rests on the
following curvature assumption.

Assumption 6.2 (curvature assumption). We assume that for certain values a > 0
and/ > 0 the Hamiltonian H* is locally a-concave and/3-convex near the stationary
point of the modified Hamiltonian dynamic system, (x, qO), or in other words, that
there exists a convex neighborhood S x T of (x, qO) in [ x such that H*(x, q) is
(finite and) a-concave in x S for each q T and/-convex in q T for each x S.
Moreover, the discount rate p > 0 is small enough so that p< 4a/3.

The notion of a-convexity is a measure of strict convexity.
DEFINITION 6.2. A finite function h on a convex set C is said to be a-convex,

where a , if for all x C, x’ C and h [0, 1] it is true that

(6.19a) h((1-h)x +Ax’)<-(1-A)h(x)+Ah(x’)-1/2A(1-A)llx-x’ll.
a-concavity is defined by replacing the inequality above with

(6.19b) h((1-h)x +Ax’)>-(-A)h(x)+Ah(x’)+1/2A(1-A)llx-x’ll.
The optimality of a steady state trajectory is based on the following convergence

lemma. The convergence properties of the optimal dynamic trajectories are established
subject to the curvature assumption (see [27]). It is this convergence property that
indicates the important role that the optimal steady-state trajectories play in the
dynamic theory.

LEMMA 6.3. Suppose x:[0, c)X
_
n is a continuous, piecewise continuously

differentiable function such that the obfective functional converges, where L* satisfies
Assumption 6.1

-ot L*(x, it) dt < +.e

Let (x, qO) be a stationary point of the modified Hamiltonian dynamic system such that
Assumption 6.2 holds. Suppose further that

lim inf e-t(q, x(t)) > -o.
tc
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Then, if Assumptions 6.1 and 6.2 hold, limt_. e-t(x(t)-x) O.
Proof. See [27, Propositions 1 and 2]. [-I

We may now apply the sufficient maximum principle to claim that a local solution
to the implicit programming problem is an optimal steady-state trajectory.

THEOrEM 6.4. Let (x*, u*, *) be a local solution to the implicit programming
problem. Assume thatf and are C functions. Suppose (x*, u*) is a regular point of the
constraints f(x, u)-p(x-x*)=O, and x*X, u*[U(x*)]. Suppose that Assump-
tions 6.1 and 6.2 hold, the latter in a neighborhood of (x*, *). Then the stationary
trafectory (x*, u*) is optimal in the class of trafectories with initial condition x(O)= x*
such that e -t x(t) remains bounded as o.

Proof. It follows, from Corollary 6.1, that (x*, u*) is a stationary trajectory that is
supported by *. (The interior point condition on (x*, 0) follows from the curvature
assumption, (see [27, Proposition 1]).) Lemma 6.3 indicates that the boundary
condition

lim e-(/ *, (x(t)-x*))>-O,
t--

is satisfied for all state trajectories x such that e-tx(t) remains bounded as oe, that
also provide finite cost sums. Since the support property and the boundary condition are
satisfied, the optimality of the stationary trajectory follows from Theorem 3.1.

Theorem 6.4 indicates conditions for a local solution of the implicit programming
problem to be an optimal stationary trajectory. Moreover, the proof of the theorem is
based on the decomposition perspective that is suggested by the sufficient maximum
principle. The steady-state that is characterized by the implicit programming problem is
a supported trajectory, because of the convexity assumption on L* (Assumption 6.1).
The optimality results from the boundary condition describing the asymptotic behavior
of other trajectories. The boundary condition is established by the dynamic theory, as
indicated by Lemma 6.3. In fact, the curvature assumption is actually a strengthening of
the basic convexity assumption. By Lemma 6.1, the convexity of L* implies that the
Hamiltonian is concave-convex; Assumption 6.2 strengthens that property sufficiently
to allow the boundary condition to be established.

If we view the theory from this perspective, there is another point to be mentioned.
The curvature assumption is sufficiently powerful that we are able to conclude that it is
actually the limit of the inner product that satisfies the nonnegativity condition required
in the sufficiency theorem. Yet the relaxed concepts of optimality (e.g., weakly overtak-
ing) require weaker asymptotic conditions. This suggests that one direction in which to
proceed would be to weaken the curvature assumption and aim the dynamic theory
towards establishing the boundary condition of Theorem 3.1.

There are two other kinds of theorems that can be proven about the solutions to the
implicit programming problem. The first is a uniqueness theorem that indicates
sufficient conditions for (at least) the state-component of the implicit programming
problem to be unique. Corollary 6.1 indicates that every solution of the implicit
programming problem determines a stationary point of the modified Hamiltonian
dynamic system. Hence, conditions that are sufficient for the stationary point to be
unique also imply that the solution to the implicit programming problem is unique (if
the control that defines the optimal value Hamiltonian is unique). It is straightforward to
establish that if the curvature assumption holds globally, then the stationary point is
unique. (This result follows from an argument similar to that of [27, Proposition 5].) It is
not true, however, that the stationary point is unique if the curvature assumption
happens to hold at a particular point (locally). Further, even if the Hamiltonian H* is
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globally strictly concave-convex, there may be multiple stationary points if the inequal-
ity p2< 4cq3 is violated (see [16, Example 1]).

The other kind of theorem indicates how the implicit programming problem can be
used to analyze the asymptotic behavior of other optimal trajectories, with initial
conditions sufficiently close to the steady-state. This is essentially a stability question,
particularly when it is viewed in the context of the Hamiltonian dynamic system. The
dynamic theory has established that, if Assumption 6.2 holds, the stationary point of the
Hamiltonian dynamic system behaves like a saddlepoint of a differential equation. That
is, there exist, locally, stable and unstable manifolds, which intersect only at the
stationary point, that are comprised of the trajectories that converge to the stationary
point as approaches plus or minus infinity, respectively [27, Thms. 1 and 1’]. Then, for
any initial condition on the manifold, the optimal trajectory remains in the manifold and
converges to the stationary point [27, Thm. 2]. It is this result that indicates the
important role played by the optimal steady-state trajectories; they are limit points of
other optimal trajectories. Moreover, if Assumption 6.2 holds globally, then the
solution of the implicit programming problem is unique, the stationary point of the
modified Hamiltonian dynamic system is unique, and all optimal trajectories converge
to this stationary point. In any event, if the curvature assumption holds in a neighbor-
hood of a local solution to the implicit programming problem, the dynamic theory
indicates that the solution is the limit point of other optimal trajectories, as well as an
optimal steady-state trajectory.

Since the curvature assumption is a static property of the Hamiltonian, additional
conditions may be imposed on the solution of the implicit programming problem that
are sufficient to conclude that the curvature assumption holds. One way of establishing
the curvature assumption would be to investigate the Hessian matrices of the Hamil-
tonian. This is the approach taken in the next theorem. We add smoothness conditions
to the functions and f, and a regularity condition on the mapping U. We also add two
special assumptions, the local duality assumption [18, Ch. 12], that guarantees that the
Lagrangian is locally convex at the solution of the implicit programming problem, and, a
local controllability assumption that takes the form of a rank condition of the u-
Jacobian of the function f. This latter assumption implies that the dimension of the
control space is at least as great as the dimension of the state space. This condition is met
in the calculus of variations, where control is identified with the derivative of the arc; in
general control problems, it amounts to a restriction. However, in economic models,
such a condition is generally satisfied. The main result of the theorem is that the
Hamiltonian is strictly concave-convex in the neighborhood of a local solution to the
implicit programming problem.

THEOREM 6.5. Let (x*, u*, , *) be a solution to the implicit programming problem
(6.8), such that (x*, u*) is a regular point of the constraints f(x, u)-p(x -x*) O, and
x*X, u* [U(x*)]. Let Assumption 6.1 hold and suppose further that"

(i) the functions f and possess continuous second derivatives with respect to all
arguments;

(ii) the mapping U"X 2 is lower semi-continuous;
(iii) the Hessian of the Lagrangian

v *" (x,u(l(x, u)-(;t* (x, u)))x,, Lo (x, u, , x*) V

evaluated at (x*, u*) is positive-definite on all of Nn x; and
(iv) the matrix [V uf(x, u)](x..u.)is an n x m matrix of rank n (hence rn _-> n).
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Then the concave-convex optimal value Hamiltonian H*(x, q) is strictly concave-
convex in an open convex neighborhood, S x T, of the stationary point (x*, *) of the
modified Hamiltonian dynamic system.

In addition, if H*(x, *) is a-concave ]:or x $ and if H*(x*, q) is -convex for
q T, such that pz < 4a, then there exists an open neighborhood S+ c S, x* S+, such
that ]:or any initial condition x(O) S+, the optimal state-control-costate trajectory con-
verges to (x *, u *, *).

Outline ofproof. Defining u*(x, q) as the minimizer in the definition of the optimal
value Hamiltonian (6.12), the first-order necessary conditions for the implicit pro-
gramming problem contain a system of m equations in (n + m + n) variables that defines
u*(x, q) implicitly. The local duality assumption (iii) indicates that the Jacobian of this
system is nonsingular at (x*, u*, *), so that the implicit function theorem applies to
u*(x, q) in a neighborhood of the solution (x*, *). Calculating the Hessians of the
optimal value Hamiltonian, H*(x, q) (q, f(x, u*(x, q)))- l(x, u*(x, q)), it is easy to see
that they are definite. The lower semi-continuity assumption on the mapping U is
required to assert that the implicit function u*(x, q) actually belongs to the set U(x) for
x in a neighborhood S of x*. The assumption on the relative sizes of the state and
control spaces is required to express the Hessian of the Hamiltonian, with respect to q,
as an inner product of full-rank matrices, hence definite. The last statement of the
theorem is precisely Theorem 2, [27]. For further details, see [8]. [3

6.6; Summary. We have shown that, under the basic convexity assumption
describing the image function L* (Assumption 6.1):

(i) every stationary point of the modified Hamiltonian dynamic system is a
feasible point of the implicit programming problem (Theorem 6.2);

(ii) conversely, every feasible point of the implicit programming problem deter-
mines a stationary point of the modified Hamiltonian dynamic system (Proposition 6.1);

(iii) every stationary point of the modified Hamiltonian dynamic system deter-
mines a stationary trajectory that is supported (Lemma 6.2);

(iv) if the solution to the implicit programming problem is a regular point, then the
stationary point of the Hamiltonian dynamic system is determined by the Lagrange
multiplier (Corollary 6.1);

and, complementing the dynamic theory,

(v) if the curvature assumption holds in a neighborhood of the solution of the
implicit programming problem, then the solution of the implicit programming problem
is an optimal steady-state trajectory in the class of dynamic trajectories such that
e-tx(t) is bounded as oe (Theorem 6.4);

(vi) the solution to the implicit programming problem is the limit point of other
optimal trajectories, under additional (local) assumptions designed to establish the
curvature assumption (Theorem 6.5).

The implicit programming problem also remedies the lack of a transversality
condition in the maximum principle for the infinite horizon problem. The Lagrange
multiplier of the implicit programming problem determines the boundary condition at
infinity of the costate trajectory, and the familiar two-point boundary-value problem
determines the optimal trajectory.

7. Conclusions. We have formulated a static optimization problem, the implicit
programming problem, that characterizes the optimal steady-states of the optimal
control problem with discounting; all results hold for the undiscounted case as well. This
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characterization does not require the solution of the full dynamic problem to determine
the asymptotic behavior of the optimal dynamic trajectories. The formulation of the
problem is based on an application of sufficient conditions for dynamic optimality,
which have been shown to be equivalent to the more familiar approaches found in the
literature. The sufficient conditions suggest a decomposition of the analysis of optimal
control problems defined on an infinite horizon. The implicit programming problem
responds to one aspect of that decomposition, the support property. The current
dynamic theory may be interpreted as an approach to the other aspect of this
decomposition, the boundary condition. This perspective suggests a possible direction
in which to proceed, that of investigating ways in which to weaken the assumptions of
the current dynamic theory.
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OBSERVER DESIGN FOR LINEAR CONTRACTIVE CONTROL SYSTEMS
ON HILBERT SPACES*

TERUO HAMATSUKA, ABDUL-AZIZ MO’OMEN: AND HAJIME AKASHI’t

Abstract. This paper is concerned with constructing observers for infinite dimensional linear systems
characterized by semigroups on Hilbert spaces. Two types of observers (identity-type and general-type) are
considered. Sufficient conditions are given for both types to exist for infinite dimensional systems. The basic
tools of our approach make use of the properties of invariant and reducing subspaces of Hilbert spaces and the
canonical decomposition of contraction semigroups.

1. Introduction. This paper presents an approach for the design of observers for
infinite dimensional linear systems characterized by semigroups on Hilbert spaces. In
the finite dimensional case, observers approximately reconstruct missing state-variable
information necessary for control [6], [7]. For systems with infinite dimensional state
spaces, observers have been considered for some classes of systems, as in [9]. However,
the results obtained either involve approximations reducing the problem to the finite
dimensional case, or are restricted in application, since they need many assumptions.
Gressang and Lamont [4], followed Luenberger [7] and Gopinath 1-3] in extending the
theory of observers to linear systems whose state space is an abstract Banach space. But
they made five assumptions which are equivalent to assuming that all unstable systems
behavior is restricted to a finite dimensional subspace. The treatment allows one to
extend the pole placement property of Luenberger observers to infinite dimensional
systems only in a limited sense. However, their assumptions permit one to avoid a
crucial problem facing all attempts to generalize results to the infinite dimensional case,
that the spectrum of an operator on an infinite dimensional space consists, generally, of
something more than eigenvalues and that the number of the spectrum of the operator
which lies in the half plane Re s >-e, e > 0, may not even be countable.

Some basic notions about observers are defined in 2 interpreting the essential
feature of the Luenberger observer, that is, the norm of the error in the estimate of the
states approaches zero as time increases; for this reason, the observer is also referred to
here as an asymptotic state estimator. The design of the identity observer is presented in
3 and the design of the general-type observer is given in 4. The technique is based on

some rather simple properties of invariant and reducing subspaces of Hilbert spaces,
and on a canonical decomposition of contraction semigroups due to B. Sz-Nagy
and C. Foias 1-8] and its applications to the strong stabilizability problem studied by
N. Levan et al. [5]. In order to highlight the new technique, a simple example is given at
the end of 4.

2. The definition of an observer. Consider the linear system governed by the
equations

d
(la) d-X(t) Ax(t) + Bu(t), x(0) @(A),

(lb) y(t) Cx(t),

* Received by the editors January 29, 1980, and in revised form October 16, 1980.
Department of Precision Mechanics, Faculty of Engineering, Kyoto University, Kyoto 606, Japan.
Department of Mechanical Engineering, Faculty of Engineering, Ain-Shams University, Abbasia,

Cairo, Egypt; on leave at Department of Precision Mechanics, Faculty of Engineering, Kyoto University,
Kyoto 606, Japan.
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where x, u and y belong to Hilbert spaces (the state space), 0?/(the control space) and
(the observation space), respectively. The operator A is closed with dense domain

@(A) in , and it is always taken to be the infinitesimal generator of a Co contraction
semigroup, denoted by T(t), >=0, over . B: q/ and C: are bounded linear
operators. The solution (la) can be represented by the integral equation

(2) x(t) T(t)x(O) + Jo T(t- s)Bu(s) ds, > O,

if u(s) is sufficiently smooth in [0, oe), (for instance continuously differentiable) and it is
always so assumed. From the available outputs of system (1) we derive a related system,

d
(3) d--z(t)=Fz(t)+Gy(t)+Hu(t), z(O)6@(F),

where z belongs to a Hilbert space N, F is an infinitesimal generator of a Co-semigroup
S(t), G: 2 and H: 07/ N are bounded operators. For P L(, N) (the set of linear
bounded operators from to N), we say that (3) is an asymptotic state estimator of Px(t)
if and only if

lim [z(t)-Px(t)] 0

and P maps @(A) into @(F), where x(t) is the solution of (1). Moreover, we can state
that (3) is an observer of system (1) if the following hold:

i) Equation (3) is an asymptotic state estimator of Px(t).
ii) PA FP GC.
iii) H PB.
iv) There exist M L(, ) and N 6 L(N, ) such that MC +NP I.

If P I and N , then (3) is called an identity observer. The observer error e(t) is defined
by

e(t)= z(t)-Px(t).

Then the asymptotic estimator requires that

lim e(t) O.

The purpose of an observer is to provide an approximation to the state of the
original system. This approximation is given by

(t) My(t) + Nz(t).

By a simple calculation, the error in the approximation is found to be

2(t)-x(t) Ne(t).

Thus,

II(t)-x(t)ll<-IINIIIle(t)ll-,O as

since N is a bounded operator. It is easy to show that e(t) satisfies the homogeneous
abstract differential equation

d
(4) -e(t) Fe(t), e(O) @(F),

from the requirement of the asymptotic state estimator, (4) is asymptotically stable.
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3. Identity observer. Recall that an observer is an identity observer if the operator
P relating the state of the observer to the state of the original system is the identity
operator. The operator equation, PA FP GC, is then reduced to F A GC. The
problem of designing the identity observer can be reduced to one of determining a
bounded linear operator G such that u(t)=-Cx(t) is a stabilizing control in

d
--x(t)=Ax(t)+Gu(t), x(O)e@(A).
dt

We need the following definitions to prove that the stabilizing operator G exists.
By a system (A,B), we mean (la). A state x in is called (approximately)

controllable if for any e > 0, there is a u e o such that the solution of (1 a) with x (0) 0
satisfies

IIx(t)- xll < for some > 0,

where is the control set which is continuously differentiable. Then, the set of all
controllable states of (A,B) denoted by gc(A, B), is said to be the (approximately)
controllable subspace, and

Tc A B) J T Ball
to

where denotes closure. The orthogonal complement of We (A, B) on W, denoted by
W (A, B), is then,

W (A, B) Ker [B*r(t)*],
t0

where the operator with superscript * is the adjoint operator [1].
DEFINITION 1. Let Y( be a Hilbert space, and V be a bounded operator in . We

say that a subspace reduces V if

V and V*.

DEFINITION 2. A semigroup T(t), >-_ O, on W is called completely nonunitary (cnu)
if for each nonzero x in there is some t>0 such that either IIT(t  ll llxll or
[IT(t)*xl[

The following decomposition theorem of contraction semigroups is due to Sz-Nagy
and Foias [8].

TrOlrM 1. [Sz-Nagy and Foias]. Let T(t), -> O, be a Co-contraction semigroup
with infinitesimal generator A in a Hilbert space T. Then T can be decomposed into an
orthogonal sum

= u(A)@:cnu(A),

(uniquely) where g.(A) and cnu(A) are reducing subspaces for T(t), such that T(t),
>_>= O, admits the unique decomposition

T(t) T.(t) @ Tcnu(t), =>0,

where the restriction T.(t)= T(t)/g.(A) is unitary and the restriction Zcnu(t)
T(t)/cnu(A) is cnu. .(A) is the maximal reducing subspace such that the semigroup is
unitary, and

gu(A) {x g; IIT(t)xll IIx[I- [IT(t)*xll, >- 0}.

It is obvious from this theorem that the subspaces @(A)f"l W.(A) and @(A*)
W,. (A) are dense in Wu(A) (see [5]). Let s(A) and s(A*) be the sets of strongly stable
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states of the system such that

s(A) {x ; T(t)x --, O, t--, },

//,(A*) {x ; r(t)*x-->O,t-->},

respectively. It is evident that s(A) and s(A*) are closed invariant subspaces of T(t)
and T(t)*, respectively. It follows from Theorem 1 that s(A)fqs(A*)Cs(A)c
cnu(A) and s(A)fqs(A*)cs(A*)ccnu(A). The following theorem is due to
Levan and Rigby [5].

THEOREM 2. [Levan and Rigby]. If the conditions
i) cnu(a)--" s(a)= s(A*),

and
ii) (A) is controllable for the system (A, B) or (A*, B),

hold, then the system is stabilizable by the feedback -B*.
If we apply Theorem 2 to the system

d
d--x(t)=A*x(t)-C*y(t), x(0) e @(A*),

then the solution of the design problem of the observer is obtained as follows"
THEOREM 3. An identity observer can be constructed]or the system (la) and (lb) if

the following conditions hold"
i) cnu(a) [ts(a)= J/Is(a*),

ii) ,(A) is controllable for the system (A, C*) or (A*, C*).
The stabilizing operator G is equal to C*.

4. General-type observer. The following theorem is the main result of this paper.
THEOREM 4. Suppose that there exists a closed subspace ofT such that

i) reduces T(t), >= 0;
ii) - + Range C* ;

iii) Ker (C/+/-)* C.
Let be a quotient space such that =T/. Let (t) and (t)* be the induced
semigroups on g of T(t) and T(t)*, respectively. Then the observer design problem ]:or
system (1) can be solved if the following conditions hold"

iv) cnu(A) As(2 As(/*),
v) () is controllable ]:or the system (, (C-)) or (ft., (C-)*),

where and* are the infinitesimal generators of ’(t) and (t)*, respectively.
Remark. The norm on is defined in the usual way as

I[11- inf. Ilxll, ,
is a Hilbert space with inner product

(2, 2’)= (x, x’),

where x and x’ are the elements of the cosets Y and , respectively, which realize the
norm defined above.

Before proceeding to the proof of Theorem 4 we need the following notations and
lemmas.

Let _L, and let P be an.orthogonal projection on. Let/5 be an operator from
to Y’ such that/ Px. Then P is one-to-one with the same range as P and a bounded

inverse/5-. exists. Let O be a canonical projection from to W’. Since reduces
T(t), i.e., T(t) and T(t)* , there exist operators iV(t) and 5b(t)* on W" such
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that QT(t)= ’(t)Q, QT(t)*= (t)*Q, and P=ISQ; that is, the following diagram
commutes.

(5)

T(t) P

’(t)
’(t)*

It is easy to prove that ’(t) is a contraction semigroup.
Let us decompose the state space into subspace and its orthogonal comple-

ment -, i.e., +/-. Then, the operator C" --) can be represented in matrix
form by

(6) C=[C1 C2],

where Ca C/ and C2 C/+/-. Let t2" --) be an extension of C2 to such that
2 C2X2 for x Xl + x2, Xl E i, x2 E )_1_. It is obvious that there exists an operator
(2" --) such that 2 (2Q, i.e., the diagram

(7)

commutes, since c Ker C2. G in (3) can be regarded as an operator from to such
that Range G +/- . Let ( QG.

LEMMA 1. Let F=/(/- ((2)fi--1, and G C. Then condition ii) in 2 (i.e.,
FP PA -GC) holds, P maps @(A) into @ (F), and F generates a Co-semigroup, say,
S(t), i[ Ker C2" = C.

Proof. From the fact that/5,/5-1, ( and ’2 are bounded and is an infinitesimal
generator of a C0-semigroup 7(t), it is obvious that F generates a Co-semigroup. Note
that the commutative diagram (5) implies QAx fi,Qx for x @(A). Thus Px @(F)
for x @(A), since Px =/5, @() means fi E @(F) by the definition of F, and
x @(A) means @(A). Since Ker C* C, is GC-invariant. Therefore,

FP PA/5-1P PO’aP-1P pxO fiOG2O
POA POGC2 PA PGC PA GC,

since P =/SQ, ( QG,O OA, and PG G. This completes the proof. V1
LEMMA 2. Suppose that x(t) and z(t) are solutions of (la) and (3) with G C,

F 15( (C2)-1, and H PB. Let ;(t) Qx(t) and Y(t) fi-lz (t). Then ;(t).and
Y,(t) satisfy the following abstract differential equations, if Ker C,2" C"

d
(8) -(t) AY(t) + Bu(t),

(9)
a
(t) fro(t) + (t) +u(t),

dt
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where

(10)

(11)

and

() : OB.

Proof. Equation (8) is obtained easily by operating with O on (la). Note that

P-’G P-’PG P-’OG ( (see (5))

and

Thus, for (t),

#-IH=-’PB =-’OB =.

dz(t) =/3-1(fz (t)+ Gy(t)+ Hu(t))
dt

=/F(t)+ (y (t)+ u(t).
The condition Ker C* DC implies that is OC-invariant. Therefore,

dy OOCx OC2x OOO2x d&. d
for x x + x2, x, , x2 e +/- (see (7)). This completes the proof.

The observer design problem of general-type is then reduced to the problem of
identity-type. We summarize the above results as follows"

System equation

d-d-(t) A(t) + Ju(t)
dt

(t)=Ca(t).

Observer equation

d
y(t) Y.(t)+ df(t)+ Ju(t).

dt

Conditions which must be satisfied

(b) F is an infinitesimal generator of a stable semigroup.
We are ready now to prove Theorem 4.

Proof of Theorem 4. Noting Lemmas 1 and 2, it is enough to prove that
limt_.[z(t)-Px(t)]=O and M.C+NP=I for some M(,) and N(,).
Since O/-=fi-a, (2)*=(C2"). Therefore, applying Theorem 3 to the reduced
system (8), (9) and (10), we have Y.(t)-Y(t)-O, as t-oo with G=C*2. This implies
_-’z(t)-Ox(t)-O, i.e., z(t)-Ox(t)-O. Thus we obtain limt_.[z(t)-Px(t)]=O.
Let us introduce the space 0@N, and operators M@N and C@P such that M@
N’@N g; y@z-My + Nz, and C@P’g; x-Cx(Px. The condition
MC +NP I can then be rewritten as

(M@N)(C@P) I,

CP MN
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and the adjoint condition will be

(C*@P*)(M*@N*) I,
(13)

C*P* M*N*

According to the theorem presented by Douglas [2], a necessary and sufficient
condition for the existence of the operator M*+N* such that the operator equation
(13) holds is that

(14) = Range (C*P*).

Equation (14) implies (ii). This completes the proof. 71
Remark. If dim < co, then the condition (ii) in Theorem 4 is equivalent to

(ii’) Ker C 0,

since Range C is closed.
COROLLARY. Under the conditions of Theorem 4, the observer equation will be as

follows.
d

(15) d- z(t) Fz(t) + (C/+/-)*y(t) + PBu(t),

where

F P(A -(C/ *(C/+/-))P-1.

Proof. This is obvious from Lemmas 1 and 2. [3

In the following we give an illustrative example.
Example. Let us consider L2(0, 2rr) and the heat equation

0 02
--x(t, ) _-:-.x(t, ), 0 2, > O,
at

subject to the boundary conditions x(0)= x(2), x’(0)= x’(2). Let the output of the
system be given by

y Cx, Cx (x, c), c .
(A), the domain of A, is

(A) {x e ; x e C(0, 2), x, x’ e , and x(0) x(2), x’(0) x’(2)},

where A 0/02. Then A is self-adjoint and generates a contraction semigroup T(t)
such that

in$e
T(t)x e-t(x,. ), () .

First, let us consider the identity observer. Note that

(a) {o},

.u(A) span {,, n 1, +2,...} (A) (A*),

and

{ (A*, C*) {(A, C*) {x e; (T(t)x, c)=0, t->O}.
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Thus the identity observer is constructable if (T(t)40, c):0, t=>0. The observer
equation is given by

0 02
--z(t, )= z(t, )-(z, c)c()+c()y(t)
9t -Next, we will consider the general-type observer. Let {b0}, then Range C* +

if and only if (c, 0) 0, since Range C*= {c()}. Note that

Qx=Y= (x,)+,
n0

=span {, n 1, 2,...},

Px E (x, )., P-z E (z, .) +,
nO nO

_2

nO

.)=0, c.u *.
This implies that the observer error approaches zero as time increases, without any
feedback, it follows that F=02/O2, since S(t)z fi(t)fi-z =E0 (z, )e-"’.
Thus the observer equation is

0 0
-z(t, ) z(t,), zy,

and the estimate of the state of the original system is

(t) (c, 60)-y(t)60+ E {1-(c, )}(z, 6,),.
n0

5. Conclusion. Since the pioneering work of Luenberger, who proposed the
so-called observer of asymptotic state estimator, there has been a heavy emphasis on
the use of this device for generating missing state information. This paper has con-
sidered the problem of the design of the identity type and general type observers for
linear systems whose state space is a Hilbert space. Sufficient conditions are given for
the existence of both types. As shown, the approach in this paper is based on the
properties of invariant and reducing subspaces of Hilbert spaces and on a canonical
decomposition of contraction semigroups due to B. Sz-Nagy and C. Foias [8]. Unlike
techniques used before, neither approximations reducing the problem to the finite
dimensional case, nor assumptions removing difficulties arising from the special
characteristics of the spectrum of operators on infinite dimensional spaces are required.
Indeed, the only requirement which must be imposed,, is the existence of a reducing
subspace . Using the quotient space /, the general type observer was reduced to
the identity observer. We believe that our approach can be applied to several design
problems of contractive systems.
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GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS*

DIRK AEYELS

Abstract. A dynamical system consists of a smooth vectorfield defined on a differentiable manifold, and
a smooth mapping from the manifold to the real numbers. The vectorfield represents the dynamics of a
physical system. The mapping stands for a measuring device by which experimental information on the
dynamics is made available. The information itself is modeled as a sampled version of the image of the state
trajectory under the smooth mapping. In this paper the observability of this set-up is discussed from the
viewpoint of genericity. First the observability property is expressed in terms of transversality conditions.
Then the theory of transversal intersection is called upon to yield the desired results. It is shown that almost
any measuring device will combine with a given physical system to form an observable dynamical system, if
(Zn + 1) samples are taken and not fewer, where n is’the dimension of the manifold. Dually, it is shown that
almost any physical system will combine with a given measuring device to form an observable dynamical
system, if (2n + samples are taken and not fewer. The analysis leads to the corollary that for nonlinear systems
observability is a generic property, a fact well known for linear systems.

The relation of the theory to the study of turbulence and to control theory is explained.

1. Introduction. Consider a physical system with dynamics modeled by a smooth
vectorfield defined on its state space, viz., a finite dimensional second countable smooth
manifold with no boundary. An investigation of the qualitative behavior of the flow of
smooth vectorfields has been carried out over the last two decades. In general, from a
practical standpoint, the phase portrait cannot be observed directly. Instead, by means
of a measuring device--modeled as a smooth function from the configuration space to
the realsmexperimental information on the dynamical process can be made available.
This information is modeled as the image of the state trajectory under the output
function, mentioned above. In this manner a mapping has been defined which assigns an
output trajectory to each state trajectory. If this mapping is bijective, it makes sense to
undertake a study of the state dynamics of the system, starting from experimental
evidence. In control theory, a system is a pair consisting of a smooth vectorfield and a
smooth output function. A system is observable if the mapping mentioned above is
one-to-one.

This paper is concerned with the question whether observability is a natural
assumption. Two types of problems will be considered, which in some sense are dual to
each other. In the first problem an almost arbitrarily chosen smooth vectorfield is given.
The question is whether the choice of a measuring device is "critical" in order to be able
to investigate the flow from the output, i.e., in order to achieve observability. In the
second problem an almost arbitrarily chosen measuring device is available. The
question here is whether the vectorfields that can be investigated with this apparatus,
i.e., the vectorfields pairing with the measuring device to form an observable system,
constitute "big" subset of the set of all smooth vectorfields. For both problems,
observability turns out to be a generic property if one is allowed to sample the output
trajectories (2n + 1) times and not fewer.

The notion of observability stands central in control theory. It is a necessary
assumption in the reconstruction problem, i.e., the problem of recovering the state
trajectory corresponding to. the sampled output trajectory. Observability is also of
interest in the study of turbulence and chaos, as pointed out by an anonymous referee
who communicated the following problem. Assume that a dynamical system has a

global attractor. Here, instead of finding the state trajectory corresponding to the

* Received by the editors May 20, 1980, and in revised form January 9, 1981.
Department of System Dynamics, State University of Gent, Gent, Belgium.
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observed output trajectory, one is asked to recover a homeomorphic picture of the
global attractor or some characteristic properties of the attractor. We will return to this
in the final section.

Within the context of linear, algebraic and analytic systems, some aspects of
observability as a generic property have been treated in the literature [1], [2], [3]. Here
we will be concerned with the general class of smooth nonlinear systems. As opposed to
the more algebraic orientation in the above-mentioned references, the results in this
paper are obtained as an application of parametric transversality theory.

The organization of the paper is as follows. In the second section the technical
definition of observability is given and formulated as a transversality property. In 3,
the two problems mentioned above are considered. The answer to the first question is a
rather immediate consequence of a parametric transversality theorem. To obtain the
answer to the second question, more work is needed. As usual, verifying the trans-
versality of the evaluation mapping, defined later, is responsible for the main part of the
proof. This is harder for the second problem, where transversality has to be achieved by
manipulating the vectorfields.

All this manipulation is "filtered" through the fixed output mapping. In fact, one
has to show that this filtering process does not affect the transversality of the evaluation
mapping. This accounts for the greater length of the proof of the result of the second
problem as compared with the first problem, where this type of difficulty does not arise.
In 4 it is shown, by means of a counterexample, that in general at least 2n + 1 samples
are necessary in order to achieve observability. In 5 the paper is concluded with a few
additional remarks on turbulence and control theory.

2. Mathematical preliminaries. The observability property. Let X be a Ck

differentiable paracompact manifold with k sufficiently high. Let : r(x), r => 1, the
space of all C vectorfields defined on X. Let h s cr(X, R), r _-> 1, the space of all C
functions mapping into R. Both r(X) and %9r (X, R) are endowed with the Whitney C
topology. The function h is called the output mapping. The results derived in this paper
can be easily extended to output functions mapping into more general spaces. The
proofs remain virtually unaltered. The classical set theoretic definition of observability
goes as follows.

DEFINITION A. The pair (, h) is observable over a time interval [0, T], T a
positive number, if and only if for each pair (x, y) X X\A(X X) there exists a time

[0, T] such that h o4t(x) h 4t(y). Here A(X X) is the diagonal of X X. It is
remarked that in this definition, to each pair of points (x, y) there might correspond a
different time instant t.

Transversality theory is not particularly well-adapted for a discussion of Definition
A, because of the infinite dimensionality of the output trajectory space. Also, consi-
derations from engineering practice suggest the placement of a sampling device into the
system description. Let P be a sample program, i.e., a finite set of points ti [0, T], with
T given a priori; see also [1].

DEFINITION B. A system (sc, h) is observable with respect to P, or shortly,
observable, if and only if for each (x, y) X X\A(X X), there exists a ti P such that

Although stronger in general, Definition B is equivalent to Definition A for linear
systems, when considering sample programs with at least n points. For easy reference
recall the following density theorem [4] basic to this paper. Let A, X, Y be C
manifolds; cgr(X, Y) is the set of C mappings from X to Y and p :A --> cg(X, Y) is a
map which is called a C representation if and only if the ealuation map evo :A X --> Y
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with evo(a, x)= p(a)(x) is a C map from A X to Y. In the following, we write
instead of p(a) (i.e., pa:X- Y is a C map).

DENSITY THEOREM. Let W be a submanifold of Y. Define edw c 4 by edw
{a M: padW} (d is the symbol ]:or transversality),

Assume that:
(1) X has finite dimension n and W has finite codimension q in Y.
(2) M and X are second countable.
(3) r > max (0, n -q).
(4) evo W (this will be called transversality of the evaluation mapping).

Then 5dw is residual (and hence dense) in .
As for the connection of observability with transversality theory, it is remarked

that observability is equivalent to injectiveness of a particular mapping. Notice also that
f: X - Y is injective if and only if (f f)" X X Y Y does not intersect A(y y)
when restricted to XX\A(XX). Under the right differentiability conditions
and when dim (X X)<codim A(y y) this is equivalent to (ff)A(y y),
x X x X\+/-(X x X).

Given an observation interval [0, T], by a sample program P we mean a set with at
least (2n + 1) different points ti, 0 <-ti <-_ T with n dim X. From now on, P will be
assumed to have exactly 2n + 1 points. Oiven P, define the evaluation mapping

ev: h(sg x s4) x (X x X) - 2n+1X 2n+1,
with sq Wr(X) x qg(X, ) and

ev (, h, , h, x, y)=

Here (X), h e (X, N), x e X, y X. 4 :X x N X denotes the ttow correspond-
ing to

It is clear that the natural bijection ’-ZX(sxs) induces a C-manifold
structure on &(s x s). When X is compact, ev is class C [4]. Compactness of X will
always be understood in the following. In the concluding remarks, the noncompact case
will be treated. In the following section our main concern is showing that the evaluation
mappingwith appropriate restrictions on s4is transversal to A(2n+1X 2n+1). This
will provide an answer to the problems mentioned in the introduction.

3. ObservabiiRy is generic. In this section two results on observability as a generic
property are proved. In the first result, an almost arbitrarily chosen smooth vectorfield
is given. It is shown that almost all smooth output functions pair with the vectorfield to
form an observable system if (2n + 1) samples are taken. For a motivation, one is
referred to the introduction. Before announcing the theorem, we state two lemmas
whose proofs are direct consequences of transversality theory.

LEMMA 1. The subset 4 c r(x), r >= 1 of vectorfields with a finite number of
equilibrium points and a finite number ofclosed orbits with period <- T, constitutes an open
and dense set ofr(X).

LEMMA 2. Let 4 have a finite number of equilibrium points xi. The subset
C (r(x R), r _--> 1 offunctions h with h(xi) h (x.), j, constitutes an open and dense

set of gr(X, ).
THEOREM 1. Given a vectorfield al and a positive real number T, then the set of

functions h, belonging to gr(X, ) such that (, h) is P-observable, is open and dense in
((r (X, ). This is true for almost any sample program P of (2n + 1) points ti, 0 <- ti <= T.
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Proofi For the proof of the density part, we will consider output functions
belonging to . If density can be shown with respect to then it is also shown with
respect to r(x, ).

Let bt(x) denote the flow corresponding to :, and let {ti: 1,. , 2n + 1} denote
(2n + 1) different sample instants chosen from the interval [0, T]. Consider the evalua-
tion mapping

ev: A( X "d) x (X x X).--) 2n+I x 2n+l

ev (h, h, x, y)=
h (t2n+l(X h lt +I(Y)

This mapping is class cr. A pair (so, h) is observable if and only if ev (h, h,X x
X\A(X x X)) 71A(2n/1 x R2n+1) @, which is equivalent to ev dx,yA(2+1 x I2n+i)
on X x X\A(X x X), since codim &(R2n+1 x R2"+a) 2n + 1 > 2n dim (X x X). The
application of 2n + 1 samples (or more) is fundamental to this equivalence. Notice that
in order to apply the transversality density theorem, the finiteness of the codimension of
W in Y is required (for notation, see 2). It is by considering P-observality that the a
priori infinite dimensional space of output curves defined on [0, T] is replaced by a
finite dimensional sample space. Conditions (1), (2) and (3) in the density theorem of
2 are satisfied. In order to satisfy condition (4), we have to show that if
ev (h*, h*, x*, y*)=: (w,.w)A(2+lxN2+l), then range (D ev (h*, h*, x*, y*))
contains a complement of Tw.wA(N2+1 xN2n+1) in TwN2+1 x TwN2/. D denotes the
derivative, and T denotes the tangent space. When we show, by picking appropriate
functions g , that

d
(ev (h* + Ag, h* + Ag, X* y*)),

dh =0

can span rw 2n+l X {0} or {0} x rw 2n+l, the proof will be finished. Now

d
(ev (h* + hg, h* + hg, x* y*))

dh x=o

.gtt2/+,(X*)J’ Igtt2 "+I(Y*

Therefore if x* is not an equilibrium point, then it is possible to pick a g N such that

!
equals any vector a TwN+1 N+1, a priori given, and we are done. Problems could
arise if both x* and y* were equilibrium points. This cannot occur by assumption, since
then ev (h , h*, x* y*) (N2+ x N2+1) Whenx* and y* are both on closed orbits with
the same period (or x* is an equilibrium and y* is on a closed orbit) a periodic sample
program (with period equal to the period of the closed orbits involved) is an obstruction
to the proof of the transversality of the evaluation mapping. But this phenomenon
cannot occur, due to the phrase "almost any sample program P" in the statement of the
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theorem. Indeed, by this phrase we mean to exclude the above-mentioned periodic
sample programs.

The openness part of the theorem is an immediate consequence of the openness-
of-transversality theorem [4].

Remarks. 1. The theorem is valid for c s and thus for vectorfields belonging to
an open and dense subset of ’(X).

2. Theorem 1 implies that the set of P-observable (or observable) pairs (:, h) is
open and dense in ’(X) x (X, N). This is a well-known result for linear systems. It is
remarked that for linear systems the genericity of observability can be shown in a direct
way by considering the algebraic characterization of observability in terms of the
Kalman matrix.

We now proceed to prove a theorem dual to Theorem 1. Here an almost arbitrarily
chosen smooth output function is given. It is shown that almost all smooth vectorfields
pair with the output function to form an observable system if 2n + 1 samples are taken.
Although the statement of this theorem is dual to the previous theorem, the proof is
not. Indeed, showing that the appropriate evaluation mapping is .transversal is some-
what involved. For the intuitive reason behind this, and also for a motivation of the
problem one is again referred to the introduction. Before stating the theorem, we state
two lemmas whose proofs follow directly from transversality theory.

LEMMA 3. The set of junctions @ c (X, ), r >-1, with a finite number of
nondegenerate critical points xi, and with h(xi) h(x, constitutes an open and
dense set of (X, ).

LEMMA 4. Given h @, consider the set of vectorfields g T(X) which is the
intersection of the sets 1, c2 and g3 defined, respectively, by the following.

1) No two equilibrium points belong to the same level surface of h.
2) No two equilibrium points coincide with critical points o] h.
3) No integral curve contains two (or more) critical points of h.

The set is an open and dense set of gU (X).
THEOIEM 2. Given a function h @ and a positive real number T, then the set of

vectorfields belonging to T(X) such that (, h) is P-observable is open and dense in
(X). This is true for almost any sample program of 2n + 1 points t, 0 <= t <-_ T.

Proof. For the proof of the density part of Theorem 2, we will consider vectorfields
belonging to g. If density can be shown with respect to then it is also shown with
respect to (X).

Consider the evaluation mapping

ev A(g g) X X+ []2n+1 x [2n+1,

ev (, :, x, y)=
h ,.. (x)J h

with h @, bt(x) the flow corresponding with sc, and all ti different. The only difficulty in
applying the transversality density theorem, is in proving the transversality of the
evaluation mapping. The other conditions are satisfied. We have to show that, given

(w, w) := ev (:*, :*, x*, y*) A([2n+1 X [2n+1),

range (D ev (:*, :*, x*, y*)) contains a complement of

Tw,wA(2n+l x [2n+l) in Tw 2n+l )< rw2n+l.
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We evaluate the derivative with the partial derivative rule [4]. With rt N, r , 4’* the
flow of (*+ Ar, we obtain

(1)

ev (s* + A r/, :* + A7, x *, y*)

Recall that x* y*, since transversality of the evaluation mapping has to be verified on
X x X\A(X x X). We consider three cases.

Case 1 Neither x* nor y* is an equilibrium point of :*.
For each {1, 2,. ., (2n + 1)}, at least one of Dh[,,(x.i or Dhl,,(.)is not equal to

zero. Otherwise h is critical in b,, (x*) and b,i(y*), 1, , 2n + 1, and since h 9, this
implies that h(4)t,(x*)) # h (&,; (y *)), 1, 2,.. , 2n + 1, and thus

ev (:*, :*, x*,

Without loss of generality, we assume

(2) Dhl,,.} : 0, 1, 2,. , 2n + 1. (2)

We show that for any vector c T. 2,+ , we can find a C vectorfield rh, in such that

ev (* + Ar/, * + A r/, x*, y*) c x {0}.
dA x=0

The vectorfield r/ will first be defined on the range of the integral curve from x* to
&,,,+, (x*) and then extended to the whole manifold by a partition of unity argument. We
denote by c the kth component of the vector c. We now show how to define r/ such
that the first component of

d
ev (* + n, * + An, x* y*)

dA ,=0

equals (c , 0).
Choose rt such that rt(&_+,,(x*))=g(s)D&., O<=s<=t. The function

g’[O, t]-+ [ is such that ’ g(s)ds 1, and has the property that its first r derivatives
evaluated at 0 and tl, are equal to zero. Taking into account (1), and taking rt 0 on the
range of the integral curve from y* to &,, (y*), one finds that the first component of the
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derivative of the evaluation map equals (Dh]6,,(x,)" 2, 0), which is equal to (c1, 0) for a
good choice of 2. The proof will be finished by induction. Let the vectorfield r/ be
defined on the range of the integral curve connecting x* to

The vectorfield r/ has also been defined simultaneously on the range of the
integral curve connecting y* to &tk_l(Y*), where, because of (2), it has been taken equal
to zero. We show how to define r/ such that the kth component of

d
dh

equals (Ck, 0).
Therefore, consider

ev (g* + a r/, g* + a r/, x*, y*)

Dhl6,(x* D& o. (x*)) ds

DhlG,x*) + (DO", "rl(ch--,+ (x*)) ds

Dh 16, (x*)( + v).

Here fi has been chosen already The vector can be chosen arbitrarily outside
ker (Dh ]6,(x,) as indicated above Therefore transversality of the evaluation mapping
has been shown in Case 1.

Case 2 One of x* or y*, say x*, is an equilibrium point of *.
In this case

d
(ev (:* + An, c* + An, x* y*))

dh ==o

Dh(x*)’n(x*)’t

Dh (x *) "q (x *) t2,,

Dhl6,,(y,) D6 "__n(4)}!- +,, (y*)) ds

Dhl4,,:n ,(y*" D& "n(&s (y*)) ds

Since :, r/ can be defined in x* such that the left column has an arbitrary
component with arbitrary value (the other values of the components are forced). Since

3, Dh[6,y, O for at most one particular {1, 2n + 1}, say for m. Assume
Dh ]6n(y* =0. By constructing r/ on the range of the integral curve y* to &,:,,/l (Y*), as
in Case 1, and taking Dh(x*). r/(x*)t, appropriately, it is shown that the evaluation
mapping is transversal.

Case 3 Both x* and y* are equilibrium points of
Since c cl, this case need not be considered because

hocbt(x*) h(x*) h(y*)= ho&,(y*), 1,..., 2n + 1.

Hence ev (*, *, x*, y*) A(N2"+I x "+1).
For the openness part we need only refer to the openness-of-transversality

theorem [4]. El
Remark. The theorem is valid for h @ and thus for functions belonging to an

open and dense subset of r(x, N).

4. Counlerexample. In this section we provide a counterexample to speculations
that 2n or fewer samples might suffice to achieve observability generically. The
counterexample will be constructed on S .
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Given two arbitrary sample instants 0 and tl (without loss of generality, 0 is taken
as the first sample instant) we will construct a vectorfield on $1 with flow bt(x) and an
output mapping h from S to R such that the mapping from S to R2 defined by
x (h(x), h btl(x))(*) is not injective and such that small perturbations in the flow and
the output mapping do not destroy the noninjectiveness. Notice first that there exists a
smooth mapping from S to [2 which twists the circle into a figure eight. The idea of the
counterexample is to find a vectorfield and an output mapping which does something
similar, i.e., such that the mapping (*) maps S into a figure with transversal self-
intersections.

Define a vectorfield on S (with coordinate 0 denoting the angle), by 7r/tl. The
output is defined on S considered as the closed interval [0, 1] with 0 and 1 identified. It
is given by the following function, C-smoothed at the discontinuities

h=l, 0<t<1/4,
h =2, 1/4</<83-,
h =o,

43-<t<1,

The mapping (*) with b and h as defined is not injective, since it maps S into a figure
with transversal crossings. The crossings are stable and thus noninjectiveness is

preserved under perturbations of the vectorfield, the output mapping, and the sample
times. Therefore Theorems 1 and 2 are no longer valid for sample programs consisting
of 2n samples.

5. Concluding remarks.
1. In the previous theorems we have been confined to compact manifolds. The

results can be extended to noncompact manifolds if "open and dense" is replaced by
"residual", i.e., a countable intersection of open and dense sets, with respect to the
Whitney topology. The procedure by which the extension is carried out is standard. For
more details one is referred to [5].

2. This remark is related to the definition of observability. As defined in 2
observability or P-observability is expressed in set theoretic terms. It is natural, when
considering ditterentiable systems, to require not just one-to-one-ness of the relevant
mapping in the definition of observability, but also some differentiability condition on
this functional relationship. As far as P-observability is concerned, we propose to call a
system (,h) P-observable over [0, T] if and only if the mapping x
(’h cbt(x), h cbt,,+(x)) embeds X into [2n+1.

This definition also takes into account remarks put forward by Kalman and Sontag
[6], to the effect that the inverse relation (from output curve to initial condition) should
be differentiable.

Theorems 1 and 2 remain true with this stronger notion of observability. Indeed,
transversality theory again provides the right framework. A proof amounts to produc-
ing the right evaluation mapping (with a codomain involving jet spaces) and then going
through steps similar to those in this paper.

3. We have shown that given 2n + 1 time instants li with 0 < Ii < 12 < < 12n+l,
the mapping (h bl, , h b/2.+) generically embedsX into 2n+1. Notice that a state
trajectory &t(p), t>=O, starting in pX at time zero is mapped into

(h4,t+l(p),’’" ,h&t+12.+l(P)), t>0. Therefore the w-limit set associated with p is
homeomorphic with the limit set of the curve (h t+l(p),’", h o&t+l.+l(p))..

Assume that the state dynamics has a global attractor; then by studying the limit set
of (h cbt+l(p), , h 4,t+12.+(P)), which is available from experiment, one obtains
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information on the global attractor. F. Takens, in a forthcoming paper, constructs
algorithms based on experimental evidence which provide estimates of the dimension
and the topological entropy of the attractor. This gives, in principle, a strategy for
testing the Ruelle-Takens picture [7], where the onset of turbulence is caused by the
presence of strange attractors.

4. Given h 6 @, and also a parametrized set of vectorfields of , i.e., a smooth path
defined on [0, 1] (or a higher dimensional interval) into g, a similar argument to that in
Theorem 2 implies that for an open and dense set of paths, the vectorfield correspond-
ing with an arbitrary but a priori given point in [0, 1] and the function h are an
observable pair. Translated to a control context, this means that for a given output
function and a control system, any constant control almost always distinguishes pairs of
points on the manifold. Thus, in a sense, the question whether couples of points are
distinguishable or not with respect to an observed dynamical system has no bearing
upon the controls available in the dynamics of the system.
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A CHARACTERIZATION OF
WELL-POSED OPTIMAL CONTROL SYSTEMS*

T. ZOLEZZIt

Abstract. A constrained optimal regulator problem is considered. Continuous dependence of the
optimal control on the desired trajectory (Hadamard well-posedness) or convergence toward the optimal
control of any minimizing sequence (Tykhonov well-posedness) are proved when the dynamics are affine

(linear plus constant). Dense well-posedness is obtained in the non-affine case. A necessary and sufficient
condition for well-posedness for all desired trajectories is shown to be the affine structure of the plant.

Introduction. We consider well-posedness properties of quadratic optimal control
problems described by ordinary differential systems. We wish to minimize the quadratic
performance

T

(1) fo [(u-u*)’O(u-u*)+(x-x*)’P(x-x*)]dt+[x(T)-y*]’E[x(T)-y*]

on the trajectories (v, u, x) of the ordinary differential system

:(t) g(t, x(t), u(t)), a.e. in (0, T),
()

x(0) v,

subject to constraints of the general form

(3) (v,u,x)K.

Here (v, u) is the control and x is the state.
The precise assumptions about the matrices Q, P, E, the function g and the set K

will be listed in the next section.
We assume that the Cauchy problem (2) uniquely defines the state variable x on

the whole time interval [0, T] for every v R and u Le Le(0, T) of the appropriate
dimension. To each desired trajectory

z* (y*, u*,x*)R’L2Le

there corresponds a (nonlinear) constrained optimal regulator problem (1), (2), (3).
From a theoretical as well as practical standpoint it is useful to know in advance which
functions g define well behaved optimization problems (1), (2), (3) for as wide a class
of desired trajectories as possible.

We consider two properties of well-posedness of the optimal control problem (1),
(2), (3). The first one is Tykhonov well-posedness [1]. We require existence and
uniqueness of the optimal control (5, iT) and strong convergence in R @)L2 of any
minimizing sequence to (, tT). Therefore Tykhonov well-posedness implies unique
solvability together with convergence of the numerical methods of minimization for
the optimal control problems (1), (2), (3).

The optimal control problem described above will be said to be well-posed in the
sense of Hadamard (see [2, remark 1, p. 164]) provided unique solvability holds along
with continuous dependence of the optimal control on the desired trajectory between
the strong topologies involved. It is easily seen that Hadamard well-posedness implies

* Received by the editors May 16, 1980, and in revised form July 28, 1980. Tlais work was supported
in part by Laboratorio per la Matematica Applicata del C.N.R. Genova.

+ Istituto Matematico, via L. B. Alberti, 4-16132, Genova, Italy.
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continuous dependence on z* of the optimal control, the optimal state and the value
under mild regularity conditions on g.

The practical meaning of such a well-posedness is clear" suitably small changes of
the desired trajectory result in arbitrarily small deviations of the corresponding optimal
control, state and value. In particular, an a priori knowledge of Hadamard well-
posedness is useful in connection with numerical methods of solution of the optimal
control problems, which require approximations of the data. We refer to [12] for a
characterization of continuous dependence on the coefficients in the plant of optimal
controls of linear regulator problems. A further motivation for the study of this type
of well-posedness is given by optimal control problems with desired trajectories either
depending on parameters or only approximately known.

From a more general point of view (see [3]) the mathematical structure of an
optimization problem can be revealed by finding its variational stability properties
under data perturbations.

There exist some relationships between Tykhonov and Hadamard well-posedness,
in particular the former implies the latter for some problems of best approximation [2,
theorem, p. 164].

Let us remark that if K is a closed convex set and g is an affine function, that is

(4) g(t, x, u)=A(t)x +t3(t)u +C(t)

with appropriate matrices A(t), B(t), C(t), then the corresponding affine regulator
problem (1), (2), (3) can be naturally viewed as a convex best approximation problem
in a Hilbert space, whenever the matrices P, Q, E in (1) are positive (semi) definite in
a suitable way. This geometrical interpretation automatically gives Tykhonov well-
posedness for all desired trajectories in this affine case as a consequence of the classical
Riesz projection theorem.

This paper is devoted to a study of well-posedness of (1), (2), (3) mainly in the
nonlinear case. The existence of optimal controls may not hold in general, as is well
known; hence well-posedness may fail also.

In 1 of this paper the well-posedness of the affine regulator problem with convex
constraints is considered, both in Tykhonov and Hadamard sense.

In 2 it is shown that well-posedness obtains for a dense set of desired trajectories
under mild regularity assumptions about the nonlinear function g. These results are
direct outcomes of [4] or [5]. Unfortunately, except in particular cases, nothing seems
to be known about the explicit structure of this dense set of trajectories, except its
existence and topological properties. We refer to [4], [5], [6], [7], [8], [9], [10], [11] for
information on generic properties of existence of solutions and well-posedness for
optimization problems (with some applications to optimal control theory).

In 3 the main result is given as follows. Tykhonov or Hadamard well-posedness
of problem (1), (2) without constraints for all desired trajectories is equivalent to (4),
under some (possibly superfluous) regularity assumptions on g. Therefore, under such
assumptions, the class of control systems (2) such that every quadratic optimal control
problem (1) is Tykhonov or Hadamard well-posed, is that of affine control systems.
This gives a variational characterization that seems to be of interest and capable of
extensions to other control systems.

In the last section of the paper explicit conditions about the function g are given
which yield the (previously required) continuous dependence of the state on the control.

A preliminary version of these results was presented at the 9th IFIP Conference
on Optimization Techniques held in Warsaw (September, 1979).
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Notation, statement of the problem and assumptions. Given a positive number T
we shall denote briefly by Lv the usual Lebesgue space of (classes of) p-summable
(essentially bounded when p ) functions defined on [0, T], with values in a real
euclidean space whose dimension will be clear from the context. Moreover we denote
by --> the strong convergence, by--- the weak one, by <.,. either the inner product in
any Hilbert space or the pairing between the space and its dual, by HI @H2 the direct
sum of the Hilbert spaces H1 and H2 equipped with the scalar product

<(X1, X2), (Yl, Y2)>--<X1, Yl>I +<X2, Y2>2
where (., .) is the scalar product in H, by DI(u) the Gateaux derivative of the
real-valued function I evaluated at u. A prime denotes transpose. A mapping f
between real vector spaces is called afline whenever

f(au + (1 a)v) af(u) + (1 a)f(v)

for every real a and all u, v.
We are given a positive number T, a function

g’[0, T]XRmXRtR m,
two symmetric matrices P, O with entries belonging to L, of respective dimensions
m x rn, k x k, a constant symmetric m x m matrix E, two nonempty subsets

K c R @L2(L2, K* c L2@)L2.
The problem we shall consider is the following. Given the desired trajectory

z* (y*, u*,x*)Rm@L2@L2

we wish to minimize the performance
T

(1) I(v, u)= Jo [(u u*)’O(u u*)+(x -x*)’e(x -x*)] ,tt +[x(r)- y*]’E[x()- y*]

on the trajectories (v, u, x) of the control system

2(t) g(t, x(t), u(t)), a.e. in (0, T),
(2)

x(0) v,

subject to one of the following constraints

(3) (v,u,x)g,

(3*) (u,x)K*.

We remark that constrained affine regulator problems arise if g(t,.,. is an affine
function for every e [0, T]. This obtains if and only if for every [0, T] there exist
matrices A(t), B(t), C(t) of the appropriate dimensions such that for every x R and
ueR

(4) g(t, x, u) A(t)x +B(t)u + C(t).

The pair (v, u) R"L2 will be referred to as a control, and any absolutely
continuous solution x of (2) as a state (corresponding to (v, u)). The control (v, u) is
called admissible if there exists a state x corresponding to (v, u) such that (v, u, x)
satisfies (3) or (3*). Given z*, the corresponding optimal control problem will be
referred to briefly as problem (1), (2), (3) or (3"), and as problem (1), (2) whenever it is
unconstrained.
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For any problem (1), (2), (3) or (3*) considered in the following, we will assume
that some admissible control exists.

The following definitions will be used throughout the paper. Given a nonempty
subset D R L2L2, any of the problems (1), (2), (3) or (3*) will be called"

Tykhonov well-posed in D (see [1]) if and only if for every z* e D there exists an
unique optimal control (7, t) e R @L2, and for every minimizing sequence of admiss-
ible controls (vn, un)e R )L2, that is

I(vn, un)- inf {I(v, u)" (u, v) admissible}

we have

v. f in R ", u t in L2.

Hadamard well-posed in D iff for every z*e D there exists an unique optimal
control (f, t), and the mapping

z*(,a)

is continuous in D between the strong topologies o R" (R)L2L and of R L.
When D is the whole space, we shall say briefly that the problem is well-posed for
every desired trajectory.

The ollowing assumptions will be used in the next sections.

(5) For every toe [0, T], v e R ", u e L2 there exists a unique absolutely continuous
function x, defined in the whole interval [0, T] such that X(to) v, 2 g(t, x, u)
a.e. in (0, T). Such a unique solution will be denoted by

x Z(to, v, u).

(6) Given v, v in R’, u, u in L2 then z(0, v, u) z(0, v, u) uniformly in
[0, T].

Explicit assumptions about g such that (6) holds will be briefly considered in the last
section.

(7) There exists a positive constant a such that for every vector c of the appropriate
dimension and a.e. e (0, T)

c’O(t)c >- ale] 2, c’P(t)c >- O, c’Ec >= O.

(8) There exists a closed set L [0, T] of Lebesgue measure 0 such that for every
u e R k the function g(.,., u) is continuous at every (t, x) e [0, T]xR"if t L. The
following stronger form of (7) will be needed.

(9) There exists a positive constant a such that for every vector c of the appropriate
dimension and a.e. e (0, T)

c’Q(t)c >= alcl2, c’P(t)c alcl 2 c’Ec > alcl
Results. Hadamard well-posedness by definition entails the continuous depen-

dence of the optimal control on the desired trajectory. If global existence, uniqueness
and continuous dependence of the state on the control is assumed, then the optimal
state and the value are continuous too. We state this (obvious) stronger form of
well-posedness formally as

PROPOSITION 1. If problems (1), (2), (3) or (3*) are Hadamard well-posed on a
given set D and assumptions (5), (6) hold, then the optimal state and the value are
continuous functions on D of the desired trajectory when continuity is with respect to the
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topology on D induced by the strong RmL2L2 topology, the topology of uniform
convergence on the space of states, and the usual topology on R.

1. The atline case. The simplest instance of the above optimal control problem is
the constrained affine regulator problem. In such a case we have the following theorem.

THEOREM 1. Let v R be fixed. Assume (7) and let g be an affine function of the
form (4) with A, C L andB L2. LetK* be closed and convex. Then ]:or every desired
trajectory the problem (1), (2), (3*) is both Tykhonov and Hadamard well-posed.

Proof. Given any desired trajectory, the existence and uniqueness of the corres-
ponding optimal control a is well known (and easily proved by standard means).
Consider the nonempty projection of the set K*

Ko {u 6 L2 (u, z(0, v, u)) K*}.

Since v is fixed, we denote simply by I(u), u Ko, the performance (1), and we write
briefly

I(u)=(u-u*, O(u-u*))+(x-x*,P(x-x*))+[x(T)-y*]’E[x(T)-y*], u 6L2,
where x z (0, v, u). Now define

so that

(Lu)(t)=F(t) Io F-l(s)B(s)u(s) ds,

x=Lu+y,

where F is the fundamental matrix of 2 =A(t)x, principal at 0. Therefore L is a
bounded linear operator between L2 spaces.

From [13, Cor. 1, p. 212] Tykhonov well-posedness obtains if for every u 6 Ko
(10) I(u) >- I(t) + al[u l[2.
It is easy to see that, denoting by the optimal state,

.r(u)-(a) (u a, O(u

+(x-x,P(x-))

+ Ix(T) (T)]’E[x(T) g(T)]

+ 2(t- u*, Q(u-t))+2(P(Y-x*),x-)

+ 2[X(T) y*]’E[x (T) (T)],

moreover for every u and w in L2

(11) (DI(u), w)=2(u-u*, Qw)+2(P(x-x*),Lw)+2[x(r)-y*]’E(Lw)(T),

but we have the variational inequality

(DI(O), u ) >= O, u Ko,
giving (10).

Let us show Hadamard well-posedness. Consider any sequence of desired trajec-
tories

(y* * * : 2 L2,,u,,x,)(y,Uo,X) inR L
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Denote by I, the corresponding performance index (1) and by t2, the corresponding
optimal control. Then, from the form of (1), for each fixed u Ko, I, (u) Io(u). By (7),

allu.* G[I < 1, (iT,) < In (u) < constant

for every fixed u Ko. Thus some w L2 exists such that for a subsequence

iT. w in L2, w Ko, since Ko is closed and convex.

Since I,(f,)<=I,(u) for every n and uKo, letting n-+ and by weak sequential
lower semicontinuity we see that w is the unique optimal control for Io, and for the
original sequence

tTn tT0.

Remembering (11) it is easily checked that

Since

(DI, (t20), tTo- t2,) -> alia0- 112.

we get

DI. to) - DIo(o)

Remark. With the terminology of [13], Hadamard well-posedness has been
obtained from equiwell-posedness of (Ko, I,).

When the initial state v is controlled, too, a well-posed problem is obtained under
positive definiteness of E as shown in the following theorem.

THEOREM 2. Assume g an affine function of the form (4) with A, C L and
B L, let K be closed and convex, and assume (7). Suppose E is a positive definite
matrix. Then for every desired trajectory the corresponding problem (1), (2), (3) is both
Tykhonov and Hadamard well-posed.

Proof. Given any desired trajectory, let (v, u,) be a minimizing sequence for the
corresponding optimal control problem, with corresponding states x,. The uniformly
positive definiteness of O gives boundedness of u, in L2. Moreover (notations as in the
proof of Theorem 1)

T T

(12) v, F-I(T)x,(T) | F-(s)B(s)u,(s) ds | F-(s)C(s) ds.
Jo Jo

Since E is positive definite, x,(T) is bounded, therefore (12) implies boundedness of
v,. Then there exist t2 L2 and 5 R such that for a subsequence

u.-- t7 in L2, Vn --> .
By standard estimates, we see that a continuous $ exists such that for a subsequence
x,$ uniformly in [0, T], moreover z(0, 3, tT). A routine argument shows
optimality of (G ti). By positive definiteness of E, Q and nonsingularity of F(T) it is
easy to check the strict convexity of L Therefore existence and uniqueness of the
optimal control (G t2) with state is guaranteed. Moreover for any minimizing
sequence (v,, u,) the above conclusions show for the original sequences u,---u in L2,
v, G x a uniformly in [0, T], I(v,, u,) I(G a).
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Therefore
T T

(xn x*)’P(xn x*) dt fo ( x*)’P( x*) dt;

[xn (T)- y*]’E[xn(T)- y*]- IX(T)- y*]’E[2 (T)- y*].
This implies

T T

Io (Un U*)’O(un u*) dt- fo (ft u*)tO(a u*) dt,

and finally by (7), u, t7 in L, thus showing Tykhonov well-posedness. The Hadamard
well-posedness is proved in a similar way.

Remarks. (1) An indirect proof of Theorem 2 (based on results of [13]) can be
given analogous to that of Theorem 1. (2) By remembering Proposition 1, we see that
under the assumptions of Theorem 1 or 2, continuity of the optimal state and of the
value obtains with respect to the desired trajectory, so giving a stronger form of
Hadamard well-posedness. (3) The assumption of positive definiteness of E cannot be
dispensed with in Theorem 2, as we see by taking A P E O, B Q 1.

2. Dense well-posedness. In this section we consider the optimal regulator prob-
lem (1), (2), (3) or (3*) without the assumption that g is affine.

THEOREM 3. Fix v R and assume (5), (6), (7). Let K* be a closed set. Then for
every y* R and x* L2 there exists a dense subset G c L2 such that for every u* G
the corresponding problem (1), (2), (3*) is Tykhonov well-posed. Moreover u*, u* G
and u* u* in L2 imply that the optimal controls in in L2, the optimal states- uniformly and the values V V.

Proof. Given u L2, write briefly

x(u)=z(O,v,u).

For any y* R ", x* L2 consider
T

f(u)= Io (x(u)-x*)’P(x(u)-x*) dt +(x(u)(r)- y*)’E(x(u)(T)- y*).

By (6) and (7) we see that f is bounded from below by zero and is lower semicontinuous
with respect to the strong convergence in L2 (since [ is continuous). Define

K0={u L2", (u,x(u))K*}.
Then Ko is closed. The inner product

T

(13) (ul, u2) Jo uQu2 dt

induces on L2 a Hilbert space structure equivalent to the usual one, with corresponding
norm [[. [[. Then

I(v, u)--W(u)/llu-u*ll, u 6Ko,

and the conclusions follow from [4, Prop. 4, the remarks there and Thm. 3]. [3
With stronger assumptions about P and E we get dense Hadamard well-posedness

as shown in the following theorem.
THEOREM 4. Assume thatK is a closed set with bounded projection on R ". Let (5),

(6) and (9) hold. Then there exists a dense subsetD ofR (L2L2 such that the problem
(1), (2), (3) is both Tykhonov and Hadamard well-posed in D.
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(14)

Proof. Given Zl, Z2E Rm@L2@L2, zi--(yi, Lli, Xi) we define
T

(zl, z2) (ulu2+XlPXz) dt+yIEy2.

The Hilbert space structure induced by the inner product (14) on Rm@L2@L2 is
equivalent to the usual one by the uniform positive definiteness of O, P and E. Consider
now the corresponding Hilbert space norm I]’ and define

W={(y,u,x)ER’@Lg@L2: uL2, x=z(O,v,u)

for some v R ", y x (T), (v, u, x) 6 K}.

If (yn, un, xn)6W with yn=x(T)-y, uu and x=z(0, v,,u)x, then v, is
bounded; therefore v, v for some v E R and some subsequence. By (6) x z(0, v, u)
and y x(T), thus showing closedness of W. Furthermore for any desired trajectory
z*, the pair (f, iT) is an optimal control for the corresponding problem (1), (2), (3) if
and only if there exists some ;6R such that (writing g=z(0, f,)),=
(37, iT, g) W and I1- z*ll--< I[z z’l[ for every z W. Then the conclusion follows
by [4, Proposition 4 and Theorem 3]. 71

Remarks. 1) No positive definiteness assumption about E is needed to get the
conclusions in Theorem 2 or 4 if the constraints force the final state x(T) to be fixed.

2) By Proposition 1, the optimal state and value are continuous functions in D of
the desired trajectory under the assumptions of Theorem 4.

3) If v, --> v in R and un---> u in L2 imply z (t0, vn, u,) --> z (to, v, u) uniformly in
[0, T] for every to {0, T}, then the assumption of bounded projection of K on R
can be omitted in Theorem 4 by the following modification in the proof. Given
(y,, u, x) E W, with y --> y, u --> u and x, --> x, then by (5)

x. z(O, v., u.)= z(T, y., u.)

since y, xn (T). Then by continuous dependence at T we get x z (T, y, u). Therefore
x z(O, z(T, y, u)(0), u), y x(T) and

v. x. (0) v x (0)

thus showing closedness of W.

3. A variational characterization of atline control systems. In this section we study
well-posedness of problem (1), (2) for every desired trajectory. We consider only
problems without constraints, that is K R @L2(R)L2. We shall work within the
Hilbert space

(15) H=R"L2L2.
The following lemma is easily proved.

LEMMA 1. Assume (5), (6), (9). Then the innerproduct (14) defines on Ha Hilbert
space structure equivalent to the natural one. For every z* H, (, ) is an optimal control
for the corresponding problem (1), (2) if and only if (g(T),8, g), where =
z(O, , ), minimizes the distance of z* from
(16) G {(x(T), u, x) H: u L2, x z(O, v, u) for some v R "}

in the sense of the norm induced by (14) on H.
LEMMA 2. Assume (5), (6), (9). Then G defined by (16) is convex ifforevery desired

trafectory the problem (1), (2) is Tykhonov or Hadamard well-posed.
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Proof. Let us denote by H the Hilbert space (15) equipped by the inner product
(14). Suppose that Hadamard well-posedness obtains. Then G is a Chebyshev set (see
[14, p. 235] for the definition) by Lemma 1. Given a convergent sequence z * z o* in
H, denote by (0n, in) the corresponding optimal control. Then by Hadamard well-
posedness tn - fro in R and tn - to in L2, giving z(0, , tn)- z(0, go, to) in L2 and
z (0, fin, tn)(T) z (0, 5o, o)(T) by (6). Then the convexity of G follows from [14,
corollary, p. 237]. Assume now Tykhonov well-posedness. Then G is a Chebyshev set.

Given z*H with corresponding optimal control (, t) let (yn, un, xn) G such
that

(17) ]](y, u,, x)-z*ll--, inf {llz*-zll, z

Then xn z (0, vn, un) for some vn e R and yn xn (T). The Tykhonov well-posedness
yields

vn 5 in R

and x z(0, 0, a) uniformly in [0, T], so that yn z (0, , a)(T). The convexity of G
is now given by [14, Cor. 3, p. 238].

The following lemma is quite elementary and its proof is therefore omitted.
LEMMA 3. LetX and Y be real vector spaces, and f: X Ya mapping such that its

graph is convex. Then f is anne.
LEMMA 4. Suppose that assumption (5) holds. Then the following are equivalent

properties"

z(O, .,. is anne (between R @L and L2);
there exists some to e [0, T] such that z (to, "," is anne;
Z(to, "," is anne for every toe [0, r].

Pro@ Let z(0,., .) be ane. Given any toe[0, T],
L2, b e R, consider

z Z(to, Vl, u), z Z(to, v, u),

z Z(to, bv + (1- b)v, bu + (1- b)u), i zi(O)

Let us show that

(18) z=bz+(1-b)z.

By uniqueness in the large (assumption (5))

bzx +(1-b)z bz(0, 1, u)+(1-b)z(O, , u)

z(0, bl + (1-b), bUl + (1 b)u),

moreover

z3(to) by1 + (1- b)v2 bZl(to)+(1-b)z2(to);

consequently (18) fotlows.
The proof is completed by exchanging the roles of 0 and to. 71
LEMMA 5. Assume (5), (6) and (9). Then Tykhonov or Hadamard well-posedness

ofproblem (1), (2) ]’or every desired trajectory implies thatfor every to [0, T] the mapping

Z(to, ", R’ L2-L2

is affine.



WELL-POSED OPTIMAL CONTROL SYSTEMS 613

Proof. By (5) the graph of z(T,.,. is the same as the set G given by (16). But G
is convex by Lemma 2. By Lemmas 3 and 4, z (to, ’, ") is affine for every to [0, T]. 71

THEOREM 5. Assume (5), (6), (8) and (9). If problem (1), (2) is Tykhonov or
Hadamard well-posed for every desired trajectory, then there exist matrix-valued ]’unc-
tions A, B, C, continuous in [0, T]\L, such that ]’or every : L, x R and u R k

(4) g(t, x, u) A(t)x + B(t)u + C(t).

Proofi Fix any to [0, T]\L. Given v, w R", p, q R k, b R let us consider x
Z(to, v,p), Xz=Z(to, w,q), x3=z(to, bv+(1-b)w, bp+(1-b)q). By Lemma 5, for
every [0, T] we get

(19) bft g(s, xl(s),p)ds+(1-b) f g(s, x2(s),q)ds=ft g(s, x3(s),bp+(1-b)q)ds.

Dividing (19) by t- to and then letting to, by (8) we obtain

bg(to, v,p)+(1-b)g(to, w,q)=g(to, bv+(1-b)w, bp+(1-b)q).

This shows that g(t,., is affine for every t L, thus proving (4). Continuity of A, B, C
in [0, T]\L is implied by (4) and (8).

Summarizing, we state the main result of this paper as follows from Theorems 2
and 5.

THEOREM 6. Suppose that assumptions (5), (6), (8) and (9) hold. Moreover let
g(’,x, 0)L for every x R’, and g(., O, u)-g(., O, 0)L2 for every u R. Then a
necessary and sufficient condition such that g(t, is aJfine for almost every [0, T]
is that the optimal control problem (1), (2) is Tykhonov orHadamard well-posedfor every
desired trajectory.

Remark. If v is fixed in (2), so that the control is effected through u alone, then
well-posedness does not imply that g is affine, as we see by taking g(t, x, u) sin x.

Let us compare Theorems 4 and 6 under the assumption of continuous dependence
at every to [0, T] of the state on the control (see Remark 3 of 2). Roughly speaking,
for many nonlinear control systems (2), given any desired trajectory we can modify it
by an arbitrary small amount (in the L2 sense) to obtain a well-posed problem. But
suppose that no changes of the desired trajectories are allowed. Then if well-posedness
is required on the whole space, the nonaffine control systems (2) are necessarily ruled
out.

Let us now consider a simple semilinear control system. Here the affine character
of the dynamics can be shown without assumption (8) as a byproduct of well-posedness.
We take no control of the initial state.

THEOREM 7. Let v R" be fixed, E O,

g(t, x, u)=A(t)x +B(t, u),

where AL and B is a Carathodory function on [0, T]xR . Assume (5) and P, Q
uniformly positive definite as in (9). Then Tykhonov or Hadamard well-posedness ]or
every desired trajectory of the problem (1), (2) implies thatfor almost every and all u R

B(t,u)=b(t)u+c(t)

for some b L2 and c L1.
Proof. Assumption (5) and the summability of A imply that for every control

U G L2 we have

tB(t,u(t))L.
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Then [15, Thm. 191] there exist p eL1, q >0= such that for I.e. and every u

(20) ]B(t, u) <-p(t)+qlu 2.
Write x(u) z(O, v, u) and consider the set G {(u, x(u))" u L}. By [15, Thm. 19.1]
we see that (6) holds (with v fixed).

Using [14, Cor. 3 and corollary, p. 237] we get the convexity of G.
The proof of this is similar to the corresponding proof of Theorem 5. By Lemma

3 this implies affinity of u --> x(u). Denote by F the fundamental matrix of 2 A(t)x,
principal at 0. Then the mapping

-> Io F-(s)B(s’ u(s)) dsU

that assigns to every u L2 the function t-->F-l(s)B(s, u(s)) ds, O<=t <- T, turns out
to be affine. Therefore for every u, v R , q R and [0, T]

fo F-I(s)B(s’ qu +(1-q)v)ds =q fo F-I(s)B(s’ u)ds+(1-q)fo F-I(s)B(s’ v)ds.

By taking derivatives we see that given q, u, v there exists a set of full measure in (0, T)
such that for every in this set

B(t, qu +(1-q)v)=qB(t, u)+(1-q)B(t, v).

By considering a countable dense set in R x R we get that B(t,.) is affine for I.e.

(0, T). The properties of b, c the follow from (20). 71
Remark. If E is positive definite then an analogous statement holds in the

semilinear case considered in Theorem 7 for problem (1), (2).

4. Continuous dependence of the state on the control. In this section we introduce
some explicit conditions about the function g such that assumption (6) is satisfied.

PROPOSITION 2. Assume (5) and the following conditions"

(21) g is a Carathdodory function, that is, g(t,., .) is continuous ]or every and
g(., x, u) is Lebesgue measurable for every x and u;

(22) ]or every A > O and nonnegative p e L2 there exists q e L such that if
and lul <- p(s) then

Ig(s, x, u)l <- q(s) I.e. in (0, T);

(23) for every nonnegative p L2 there exists B > 0 and r L such that if Ixl >-B
and lul <- p(s) then

x’g(s,x, u)<=r(s)(1 + x]2).
Then property (6) is true.

Proof. Given v -> v in R", u, --> u in L2, a nonnegative p L2 exists such that, for
some subsequence,

(24) lu,(s)l<=p(s), u(s)--> u(s), I.e. in (0, T).

(See [16, Lemma 3.9].) Corresponding to p we consider the constant B given by (23).
Write x, z(0, v,, u,) and assume that some n and s* e (0, T) exist such that Ix(s*)[ >
B. Consider then

In ={s [0, T]" [x,(s)l>B}
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and for any [0, T]

En=[O,t]7) In; Fn [0, t]\/.

Then for every [0, T], using (24), (23) and (22),

-(Ix(t -Ivl + x(sg(s, x(s, u(s ds

T- fO l(S)lXn(S)l2 ds + fo [r(s)+Bq(s)] ds.

By Gronwall’s lemma we get equiboundedness of xn. This implies equicontinuity of x,
by (22).

Thus the Ascoli-Arzelh theorem yields the existence of a further subsequence of
x and a continuous function y such that x, y uniformly in [0, T]. By (21) and (24)

g(s, x,(s), u,(s))- g(s, y(s), u(s)) a.e.

Since this convergence is dominated by (22), we get xn y z(0, v, u) uniformly (for
the original sequence).

Remarks. (1) Assumption (22) is satisfied if the Nemytskij operator defined by
the Caratheodory function g,

(u, x)--, g(., x(. ), u(. ))

is strongly continuous from LZ(L2 into L ([15, Theorem 19.1]). By using the
continuous dependence results of [17, Thm. 3.1], we see that, assuming (5), (6) holds
whenever the following is true. For every nonnegative p 6 L2 and A > 0 there exists
q6L such that for a.e. s(O,T), if [u[<-p(s), [xl<=a, ]yl_-<a then Ig(s,x,u)-
g(s, y, u)l <- q(s)lx Yl; moreover

g(.,x,u(.)),

for every x R and u L2. This last condition in fact implies continuity between L2

and L of every Nemytskij operator u g(.,x, u(.)) [15, Thm. 19.1]. (3) Given a
Tykhonov unstable optimization problem, by suitable modifications (regularizations) of
the cost functional we obtain in some cases a well-posed problem (see [18, especially
Chapter 7]).

Acknowledgment. We wish to thank the referees for many suggestions in writing
style that improved the presentation of this paper.
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EXISTENCE OF VALUE AND RANDOMIZED STRATEGIES IN
ZERO-SUM DISCRETE-TIME STOCHASTIC DYNAMIC GAMES*

P. R. KUMARt AND T. H. SHIAUt

Abstract. Two players with conflicting objectives are simultaneously controlling a discrete-time stochas-
tic system. The goal of this paper is to analyze such zero-sum, discrete-time, stochastic systems when the
two players are allowed to use randomized strategies.

Previous results have been restricted to systems with finite or compact state spaces. Such restrictions
are usually untenable from the point of view of applications, since many applications frequently use either
the integers or R as a state space. Our results are proved for complete, separable, metric spaces which are
very useful for applications.

All previously known results emerge as special cases of our results. In addition, a variety of conjectures
and open problems are resolved regarding the existence of a value function, its properties such as Borel
measurability or continuity, and the existence for either or both players of optimal or e-optimal stationary
strategies.

1. Introduction. The goal of this paper is to analyze zero-sum discrete-time
stochastic games where the two players are allowed to use randomized strategies (i.e.,
two players with conflicting objectives simultaneously controlling a stochastic system).

Starting with Shapley [1], many researchers, e.g., Everett [2], Maitra and
Parthasarathy [3], [4] have treated such systems. However, all these treatments suffer
from the fact that they restrict the state space to be either finite or compact. Many
useful models of dynamic games however use a state space which is often the integers
or R"--both of which fail to satisfy these restrictions. Even in some special cases which
do satisfy these restrictions, earlier results are not applicable if the value function is
not continuous. (We give such an example in 7.) Also nonstationary (i.e., time-
varying) systems, when made stationary by adjoining an additional state variable to
count time, possess noncompact state spaces. The restriction of the state space to be
either finite or compact is therefore untenable from the point of view of applications.

We provide in this paper a general theory of zero-sum discrete-time stochastic
games which overcomes these restrictions. We consider two alternative models for such
problemsma Borel model and a continuous model, both of which have complete,
separable, metric state spaces and therefore include both integer state spaces and
Euclidean state spaces. These two models are very useful in applications.

Our results include previously known results and also solve a number of open
problems. The models and our results are stated in the next section.

2. Problem statement. We consider a system evolving in a state space X accord-.
ing to"

(1) xk+ /(Xk) Uk, ldk, Wk ).

Player I (the maximizer) controlling u wishes to maximize the expected cost

kc(2) E Ol (Xk, Ilk, Vk, Xk+ l)

At each time k, player I is allowed to choose uk from some set Uxk c U. Player II (the
minimizer) controlling v wishes to minimize (2) by choosing, at each instant k,vk from

Vxk c V. {w} is a random disturbance.
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We assume that X, U, and V are complete, separable, metric spaces, a (0, 1] is
called the discount factor. By P(A) we shall denote the set of all Borel probability
measures on the complete, separable, metric space A. Instead of working with the state
equation (1), we prefer to deal with the transition kernel, q(BIx, u, v)= Probability
({w" f(x, u, v, w)B}[x, u, v), which we assume to be well defined for every Borel set
BoX.

Since even elementary games need not possess a value, we need to impose
additional conditions to make the problem meaningful. We impose two alternative sets
of conditionsmthe Borel model and the continuous model. These two models are very
useful from the point of view of applications.

Borel model.
(i) q is a Borel measurable stochastic kernel, i.e., q(B[.) is Borel measurable in

the second argument for every fixed Borel subset B c X.
(ii) U and V are finite for each x X, and

F1- {(x, u)" x eX and u U}cXx U,

F2--{(x, v)" xX and v V}cXx V,
(3)

QI {(x, T)" xX and TP(U)}cXxP(U),

Oz={(x,R): x eX and R P(V)}cXxP(V)

are all Borel subsets of the corresponding spaces.
Continuous model.

(i) U --- U, V V for all x X where U and V are compact. (Note. This
will be generalized in 3 to allow U and V to depend on x as in the
Borel model, but to preserve clarity of exposition, we prefer to state

(4) the simpler version first.)
(ii) c is continuous on X x U x V x X.
(iii) q" X x U x V P(X) is weakly continuous, i.e., continuous with

respect to the weak topology on P(X).

In both models we assume

O<=c(x, u, v, y)<=O<c

(even this will be relaxed in 3, Remark 1).
Players I and II are allowed to use randomized strategies. We define a randomized

strategy for player I to be a sequence F ={F, F1, F2, F3, ...} where each Fk=
Fk(du[xo, Uo, xl, Ul, x2, u:,..., x) is a Borel measurable stochastic kernel on Uxk.
Player I chooses u according to this probability distribution F which utilizes the past
history (x0, Uo, X, u,x2, u2,..., xk) known to him in a Borel measurable way. A
randomized strategy F {F, F, F:, ..} is said to be Markovian if each F depends
only on x, i.e., F (dulxk). A Markovian strategy is said to be stationary if all the F’s
are identical. The different types of randomized strategies for player II are defined
similarly. For player i, the sets of randomized, Markovian and stationary strategies are
denoted by Di, Mi and Si respectively.

The cases 0 < a < 1 and a 1 will be called the discounted and positive cases
respectively and will be identified by the letters D and P. Similarly, B and C will denote
the Borel model and the continuous model. A combination of letters such as BD will
refer to the discounted cost case of the Borel model. When no letters are used, a result
holds for all models and cases.
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For every initial state Xo and randomized strategy pair (F, G)E D1 x D2 adopted
by the two players, the cost incurred is

kCJ(xo; F, G):= EF.t7 a (Xk, Uk, Vk, Xk+)IXo
0

where EF.O denotes the expectation under the probability measure induced on the
future evolution of the system by (F, G) and the random disturbance. It is allowed to
be +, as are all functions throughout this paper.

Our main results are the following:

(i) For every Xo E X,

(5) inf sup J(xo; F, G) sup inf J(x0; F, G)=: J*(xo).
GD2 FED. FD (D2

J*(. is called the value function (Theorem 2).

(6)

(ii) (B) J*(. is a Borel measurable function.

(CD) J*(. is a bounded continuous function.

(CP) J*(. is a lower-semicontinuous function (Lemma 3).

(iii) (D) J*(. is the unique solution of

(7)

J*(x) RP(V,,)min P<u)max Iv, Iv,, Ix[aJ*(y)+c(x, u, v, y)]q(dylx, u, v)T(du)R(dv)

max min It Iv Ix [aJ*(y)+c(x’y’v’y)]q(dyix’u’v)R(dv)T(du)T.P(Ux) RP(Vx)

for every x X (Theorem 1).

(P) J*(.) satisfies

(8) J*(x)= min sup Ivltx[J*(y)+c(x,u,v,y)]q(dylx, u,v)T(du)R(dv)
RP(Vx) TP(Ux)

for every x X. Furthermore, if any nonnegative function J(. satisfies

(9) J(x) >= inf sup Iv Iv Ix [J(y)+c(x’ u’ v’ y)]q(dylx’ u, v)T(du)R(dv)
RP(Vx) T.P(Ux)

for every x E X, then J(x) >_- J* (x) for every x X (Theorem 1).
(iv) If G* {Go, Go, Go," "}E $2 is such that Go(dvlx) attains the outer minimum

in (7) or (8) then J(xo, F, G*) <=J*(xo) for all F D and all x0 X. There always exists
such a G*. In words, player II has a stationary strategy G* which is optimal irrespective
of the initial state (Theorem 2).

(v) (D) If F*={Fo, Fo, Fo,’" .}S is such that Fo(dulx) attains the outer
maximum in (7), then J(xo; F*, G)>=J*(xo) for all G D2 and all xoEX. There always
exists such an F*. In words, player I has a stationary strategy F* which is optimal
irrespective of the initial state (Theorem 3).
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(P) (a) For any probability measure A on X and every e > 0, there exists Fx, $1
such that

x eX" inf Y(x;F,,, G)>=Y*(x)-e
GD2

’ 1
>__--

E

if J*(x) <,
if J*(x)

(b) In particular, for every finite S c X, there exists an Fs, $1 such that

inf J(x;Fs, G) >
GD2 1

E

if J*(x)< and x s S,

if J*(x)= and x s S.

(c) If X is compact and J*(. is continuous, then for every e > 0, player I has an
e-optimal stationary strategy; i.e., there exists F, $1 such that (Theorem 3)

inf J(x F, G) => J* (x) e for all x s X.
GD2

Some comments about our results are in order.
(i) For the case where X is not necessarily compact (or finite) all the above

mentioned results are new. In particular we call attention to our result (6) that J*(.)
is Borel measurable. This result is striking since it is even stronger than the previous
con]ectures. In [5, Open Problem 2, p. 253] it is conjectured that J*(.) would be
universally measurable. Our result goes beyond this conjecture and proves that J*(.
is Borel measurable.

(ii) In the continuous model with undiscounted cost (CP), even when X is
compact, our results are considerably stronger than earlier results [4]. In [4] an
additional assumption regarding the equicontinuity of the family of value functions of
the corresponding discounted games is made. A statement is also made [4, Remark
3.2] that the authors are unaware if the results hold when such an assumption is not
made. Besides being a restrictive assumption which is not a priori verifiable, this
assumption also results in a continuous value function. As evidenced by an example in
7, there do exist simple games where J*(. is not continuous. We therefore eliminate

this assumption. Our result stated in (6) is that J*(. is always lower-semicontinuous.

3. The truncated games. We start with a well-known result which we repeat here
for convenience.

LEMMA 1. Let K U V --> R be continuous with U and V compact. Then

min max Ivlt:K(u,v)T(du)R(dv)= max min It:IvK(U,V)R(dv)T(du).RP(V) TP(U) TP(U) RP(V)

Throughout this paper, by measurable we shall mean Borel measurable.
LEMMA 2.
(i) (B) Let jn :X [0, M] be measurable. Then

(10)

]"+(x):= max min Iuxlx[CeY"(y)+c(x, u, v, y)]q(dylx, u, v)T(du)
TP(Ux) Vx

:: min max I Ix[aJ’(y)+c(x,u,v,y)]q(dy[x,u,v)R(dv)R P Vx Ux Vx

well defined, measurable, nonnegative and bounded by aM + O.
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(C) Let J" X - [0, M] be continuous. Then Jn+l( defined by (10) is well defined,
continuous, nonnegative and bounded by aM + O.

(ii) There exist measurable stochastic kernels T (dul x) andR (dvl x) which achieve
the outer maximum and outer minimum respectively in (1 O) for each x X.

Proof. Let K(x, u, v):=x[aJ"(y)+c(x, u, v, y)]q(dylx, u, v).
(B) K(.) is measurable [6, Prop. 7.29] and K(x, u, v)<=aM+O. For fixed x, Ux

and Vx are finite; hence, from von Neumann [7], the two expressions in (10) are equal
and therefore j,/l(. is well defined, nonnegative and bounded by aM + 0. To show
it is measurable, let l(x, T, v)=crK(x,u, v)T(du). Then since can be rewritten
as l(x, T, v)= crI(x, T, u, v)cp(dulx, T, v) where /(x, T, u, v)= K(x, u, v) and
re(. Ix, T, v)--- T are both measurable, it follows from [6, Prop. 7.29] that is measur-
able. To show that the map (x, T)-- minvvx l(x, T, v) is measurable, let D=
{(x, T, v)" x e X, T P(U), v Vx}. Then D X x P(U) x V is a Borel set since by
assumption (3), F2 is a Borel set. The (x, T)-section of D, D(.r)= {v e V: (x, T, v) e D}
is just V which is finite. From [8, Cor. 1] it follows that the map m" (x, T)-
minv vx l(x, T, v) is measurable. For fixed x and v V, l(x,., v) is linear on P(U).
Since Ux is finite, the set of all probability measures on Ux, i.e., P(U) is a standard
simplex in a finite dimensional space. Since a linear mapping defined on a subset of a
finite dimensional space is continuous, it follows that l(x,., v) is continuous on P(U).
m (x, )" T minov l(x, T, v) is the minimum of a finite number of such functions
and therefore m (x, is continuous on P(Ux). A repeated application of [8, Cor. 1] to
-m then shows that J/(x)= maxTp(cr)m(x, T) is also measurable and that there
exists a T"(dulx) maximizing (10) which is a Borel measurable stochastic kernel. A
similar proof holds for R, (dv lx).

(C) From Lemma 1, the two expressions in (10) are equal and therefore j,+x(..)
is well defined, nonnegative and bounded by aM + 0. Define K and as in the proof
of case (B), immediately above. From [6, Prop. 7.30], is continuous since it can be
rewritten as in the proof of case (B) and K, r are continuous. By a repeated application,
J"+(.) is also continuous. The existence of Borel-measurable stochastic kernels
T"(du[x) and R"(dvlx) follows as in the proof of case (B).

We now define J(x) 0 for all x X. j0(. satisfies the condition of Lemma 2 and
by induction it follows that J" (.) inductively defined by (10) also satisfies the condition
of Lemma 2. Moreover, since ja(x) >=J(x) 0 for all x X, it follows by induction and
(10) that Jn+a(x) >=J"(x) for all x X and all n. Define

(11) J*(x) lim Jn (x) for every x X.

From Lemma 2, it easily follows that

(BP)
(2)

(cp)

J*(. is a Borel measurable function.

J*(. is a lower semicontinuous function (since it is the
increasing limit of continuous functions).

(13)

LEMMA 3.

(CD)

(BD)

J*(" is a nonnegative continuous function bounded by 0/(1-a).

J*(. is a nonnegative Borel measurable function
bounded by O(1 a ).
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Proof.
(CD) Let K,(x):=x[aY"(y)+c(x, u, v, y)]q(dylx, u, v). Since

Kn(x, u, v)-K,_a(x, u, v)= Jxa[J"(y)-J"-a(y)]q(dy[x, u, v)

we obtain

Hence

K(x, u, v)T(du) < I K=_(x, u,

max min | Kn (x, u, v) T(du)
TP(Ux) Vx

=< max min f K,-l(x, u,
TP(Ux) v Vx "lUx

It follows that J"+l(x)-J" (x) <- al[J J"-al[ for every x e X, and hence [IJn+a -<-
llJ"-J"-ll for all n. Therefore, IIJ"+"-J-II__< (o n+p-l-+-. .-F oln)llJ a-/Ollco

Hence J"(.) converges uniformly to J*(.). Let n =0, p-
+oo we have o/(a-), proving the lemma.

(BD) The proof is similar.
Remark 1. The condition (6) defining the Borel and the continuous models can

be replaced by the weaker condition IlJll__-< 0 < oo. All the results of this paper will
continue to hold under this weaker condition.

We now wish to deal with the generalization of the continuous model (5) to allow
U and V to depend on x. To ensure the equality of the two expressions in (10) we
need the continuity of J"(. ). Before stating the most general version, we consider the
following one-dimensional situation.

LEMMA 4. (C) Let

Ux={u" al(x)<=u<=bl(x)}c UcR,

Vx={v" a2(x)<=v<=bz(x)} VcR,

where ai and bi are continuous functions on X satisfying ai(x) <= bi(x) for all x X and
1, 2. LetX be locally compact. Then the results ofLemma 2 hold.
Proof. Given Xo X, by the local compactness of X, there exists an open neighbor-

hood N(xo) of x0 with N(xo) compact. Let

Ai min (ai(x)" x N(xo)}, Bi max {bi(x)" x N(xo)}.

Define U(xo) =: [A 1, B1] and V(xo) [A2, B2]; then Ux U(xo) and V c V(xo) for all
x N(xo). Define ql"X U V F1 V by

[(x,u,v),
ql(x, u, v)= (x, al(x), v)

I
(X, bl(X),V)

if al(x)<= u <-bl(x),

if u < al(x),

if u > bl(x).

i.e., (x, u) 1-’l,
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Also define (02:F1 V -D := {(x, u, v)’ u Ux, v Vx, x X} by

u, v), if a2(x)=< v -< b2(x),

02(x, u, v)= (x, u, a2(x)) if v < a2(x),

(x, u, b2(x)) if v > b2(x).

Let q =02 ql. Then since ql and 02 are continuous, it follows that q also is
continuous. Furthermore, q (x, u, v) (x, u’(x, u), v) for v Vx and (x, u, v)
(x, u, v’(x, v)) for u Ux. Define K(x, u, v)= K(q(x, u, v)) where K is defined as in
the proof of Lemma 2. For fixed x N(xo), let T* P(Ux), R* P(Vx) be the saddle
point of the static "game on the unit square" K(x, u, v) on Ux Vx. For v V and
u U(xo), Ig2(x, u, v)=K(q(x, u, v))=K(x, u’, v) where u’= u’(x, u) Ux. Hence

Iv(,,o, Ig2(x, u, v)R*(dv)= Ivx (x, u, v)R*(dv)= IvxK(x, u’, v)R*(dv)

and, therefore,

Hence

max Iv (x’ u’ v)R*(dv) max lv K(X’ U" v)R*(dv) jn+l(x)"
U(xo) (xo) u’e U,,

min max f Ig2(x, u, v)R(dv)<-J"+l(x).
RP(V(xo)) U(xo) .IV(xo)

Similarly, we can prove

min f Ig2(x, u, v)r(du)>--jn+l(x).max
TP(U(xo)) V(xo) JU(xo)

Therefore

min max K(x, u, v)R (dr) min max K(x, u, v)R (dr)
RP(V(xo)) uU(xo) (xo) RP(Vx) uUx

=: J/(x)
for every x N(xo). However,/ does not feature state-constrained control sets, and
therefore the proof of Lemma 2 shows that J/l(x) is continuous at Xo. Since Xo was
arbitrary this proves the lemma.

Remark 2. Condition (i) of the continuous model can be generalized to"
(i’) For each x e X, U and V are compact subsets of U and V such that:
(a) There exists a q"X x U x V-D {(x, u, v)" x X, u U, v Vx } such that q

is continuous, q(x, u, v) (x, u’(x, u), v) for vVx and q(x,u,v)=
(x, u, v’(x, v)) for u e U,.

(b) For every Xo X there exists an open neighborhood of x0 such that U {X’ x e
N(xo)} and U{V "x N(xo)} are compact.

The proof is the same as Lemma 4.

4. The value function. We now show that J*(. is a lower bound for the lower
value of the game.

LEMMA 5. For every xoX, supvtl infao2J(Xo; F, G)>-J*(xo).
Proof. Let F,+I M1 be defined by

F,+I ={T, T-1, T2, T1, TO TO TO, .}
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where T’(du]x) is defined as in Lemma 2. Then

E... a (x, u, v, x+)lxo
k=0

--]EF,+I,G

__
Ol (XN, Uk, Uk, Xk*I)IXo +EF +1 G[c(X, U, V, Xn.l)lXo]

k 0

E.+,, (x, u, v, X+l)lxo
k 0

+a F.+. EF.+,. C(X, U, V, y)q(dy[x, u, v,)T(dulx)

Xl, Xl,

eEa+,. a (Xk, Uk, Vk, Xk+I)IXo + aEF.+,,o[J(x)]Xo]
k=0

kcEF+I.G (Xk, gk, Vk, Xk.I)Xo
k=O

+-E..I.[J(x) + c(x_x, u_, v.-x, x)lxo]

, (x, u, v, x+
k=O

+ a EF.+,. EF.+,.o [aJ(y) + c(x-l, u_, V-l, y)]
lXn n--1

q(dyX,-l, U-l, V,-l)T(du,-lX,-l)
G-(dv-lXo, Vo, x, v,..., x,_)l

-k=O

o
a EF.+.a[J+

J"+(xo).

Hence J(xo; F,+I, G) J"+(Xo) for any G D2. Hence infD J(xo; F+I, G)
J"+(Xo) and therefore, supFM infolD2 J(xo; F, G) jn+l(xo) for arbitrary n, proving
that supF infoD J(xo; F, G) sup J+(Xo) J*(xo).

We now provide the following characterization of J*(. ). This characterization is
exceedingly useful in many applications.

THEOREM 1.
(D) J*(" is the unique solution of (7).
(P) J*(. satisfies (8). If any nonnegative J(. satisfies (9) then J*(x) J(x) for

every x X.
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Proof. We first show that J*(. satisfies (8). Since J"(y)-<J*(y) for every y X,
from (10) we obtain

j"+(x)<_ inf sup Iv Ix [aJ*(y)+c(x’ u, v, y)]q(dylx, u, v)R(dv).
RP(Vx) Ux

Since this is true for every n, we obtain

J*(x) <= inf sup I Ix [aJ*(y)+ c(x, u, v, y)]q(dylx, u, v)R (dr).
RP(Vx) uUx Vx

To prove the reverse inequality consider R"(. Ix) P(V,), which achieves the outer
minimum in (10). Then

(14) J*(x) >=J"+l(x) max , u, u, v)e"(dvlx).
Ux .I%, .Ix

Since Vx is compact, P(Vx) is compact [12, II.6.4] for fixed x, and hence the sequence
{R "(. Ix)} c p(V,) has a subsequence {R "k (. Ix)} which converges to/ e P(Vx). Fix x,
relabel the sequence {R"k( Ix)} as {R k} and define

By (14)

Hence

and

(15)

Lk(x, u, v):= Ix[aJ"(y)+c(x, u, v, y)]q(dylx, u, v).

J*(x)-> maX,ux Iv Lk(x’ u, v)R(dv) for all k.

J*(x)>-- fv Lk(x’ u, v)Rk(dv) for all k and u Ux,

(16)

by the monotone convergence theorem.
Denote

L(x, u, v):- Ix[aJ*(y)+c(x, u, v, y)]q(dy[x, u, v)<-_ +c.

We now proceed to show that

(17) sup f Lk(x, u, v)Rk(dv)>= f L(x, u, v)l(dv).
k JVx dVx

J*(X)=>SUPk Ivx L(x’ u, v)Rk(dv) for all u U.

Clearly, 0 _-< L (x, u, v) <_- L2(x, u, v) <_-.. <_- + m, and

lim Lk(x, u, v)-- lim Ix [aJ"(Y) + c(x, u, v, y)]q(dylx, u, v)
k oo k

Ix [aJ*(y)+ c(x, u, v, y)]q(dylx, u, v),
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By the monotone convergence theorem again, (16) implies

Iv L(x, u, v)l(dv)= lim Iv Lk(x’ u’ v)t(dvlx)"
koo

Hence given e > 0, there exists N so large that

L(x, u, v)l (dr) e

(18) f LZV(x, u, v)l(dv)>=
av

if L(x, u, v )R (dr) < o,

if L(x, u, v )R (dr)

Now fix N and u Ux, LN (x, u, is bounded and continuous on Vx and g k - i as
k -. From [6, Prop. 7.21] we obtain

Lr(x, u, v)R(dvlx)- Iv, LN(X’ u, v)l (dvlx) as k- oo.

Hence there exists a K such that for all k _-> K

(19) f__ LU(x, u, v)Rk(dv)-> f__ LN(x, u, v)l(dv)-e.
Vx

We now consider two cases.
Case 1. Suppose N->_K. Replacing k by N in (19), we obtain

IvxLN(x, U, v)RN(d))>= fvx LN(x’ U, v)l(dv)-e.

This together with (18) implies that

L(x,u,v)R(dv)-2e

u,
1

v)RN(dv) >

e otherwise.

Hence

(20t

SUPk f, Lk(x’ u, v)Rk(dv)>=
L(x, u, v)l (dr) 2e

if f L(x, u, v)l(dv)<

if L(x, u, v)R (dr) <,
1

e otherwise.

Since e was arbitrary, (17) is proved.
Case 2. Suppose N < K. Then Lu (x, u, v) =< LK (x, u, v),

Iv Lr(x’ u, v)R(dv).>-IvLV(x, u, v)R:(dv),

and the latter in turn is greater than or equal to vx L(x, u, v)l (dv)-e by (19). We
thus obtain

sUP fvLk(x’ u’ v)Rk(dv)>- fvLlV(x’ u’

Again, this together with (18) implies (20) and then (17) follows.
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Now (15) and (17) together imply

J*(x) >= Iv L(x, u, v)l (dv)

Hence

for every u e Ux.

J*(x) >= sup Iv L(x, u, v)l (dv),
uVx

Hence we obtain the reverse inequality and
depends on x).

(P) Hence J*(. satisfies (8). Suppose J(. is nonnegative and satisfies (9). Then
J(x)>-J(x)=-O for all x X. Hence, by induction, using (9) and (10), J(x)>-J"(x) for
all x X and all n, therefore J(x)>-J*(x).

(D) As earlier, J*(. satisfies (8). From (13), J*(. is bounded by O/(1-a). In
case B, Ux and Vx are finite for each x and by von Neumann’s Fundamental Theorem
of Matrix Games [7], (8) and (7) are equivalent. In Case C, by Lemma 3, J*(. is
continuous and since U and V are compact for each x, it follows from Lemma 1 that
(8) and (7) are equivalent. Hence, in summary, J*(. satisfies (7) in case D. To show
it is the unique solution of (7), we proceed as follows"

Let J(. be a nonnegative solution of (7). Given x, let

K(T’R)= Iv Iu Ix [aJ(y)+c(x’ u’ v’ y)]q(dylx’ u’ v)T(du)R(dv)’

Clearly,

K(T’R)-K*(T’R)=Iv Iu Ix (J(y)-J*(y))q(dylx’u’v)T(du)R(dv)
<-- IIJ-1"11 for all T, R, where I1" is the sup norm.

Hence K T, R <-_ K*(T, R / ,IIJ J*I[, and therefore

max K(T,R)<= max K*(T,
TeP( Ux) TeP( U,,)

and therefore

min max K(T,R)<= min max K*(T,R)/,IIJ-J*II;
RP(Vx) TeP(Ux) ReP(Vx) TeP(Ux)

i.e., J(x)<-J*(x)/ollJ-J*ll, We obtain J(x)-J*(x)<-ollJ-J*ll, Similarly, we can
show J*(x)-J(x)<-lI/-J*l[, therefore [J(x)-J*(x)[<-lI/-/*ll. Since x was
arbitrary, we have II1-J*ll-<-111-J*l[, Because c < 1, we must have II1-1"11- 0, i.e.,
J(x) =- J* (x), proving that J*(x) is unique.

$. Optimal stationary strategy for minimizer. In this section we show that J*(.
is in fact the value of the game. Additionally we show that player II has an optimal
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stationary strategy and show how such a strategy can be obtained from knowledge of
the value function J*(. ).

THEOREM 2.
(i) J*(. is the value function of the game, i.e.,

inf sup J(xo; F, G) sup inf J(xo; F, G) J*(xo) for every Xo X.
GD2 FD1 FDI GD2

(ii) Any G*={G, GO, GO, "’}eS2 such that G(dvlx) achieves the outer
minimum in (8) for every x is an optimal stationary strategy for player II, i.e.,

J(xo;F, G*)<-_J*(Xo) for every FeD1 and xoeX.

There always exists such a G*.
(iii) Denoting by J* (x) the value function of the game with discount factor a, we

have lim, J,* (x) J* (x).
Proof. (i and ii). We begin by showing the existence of a G* {G, GO, .}e $2

such that G(dv[x) achieves the outer minimum in (8) for each x e X,
(B) Since J*(. is measurable, the proof of existence of a measurable Rn(dvlx)

achieving the outer minimum in (10) given in Lemma 2 is applicable.
(C) J*(. is lower-semicontinuous (1.s.c.), and hence the map

k(x, u,.v) := fx[J*(y)+c(x, u, v, y)]q(dylx, u, v)

is l.s.c. [6, Prop. 7.31]. The map

l(x, u, R) := f k(x, u, v)R(dv)

is therefore l.s.c. (see proof of Lemma 2). The map m(x,R):=sup,tl(x,u,R) is
therefore 1.s.c. since {(x,r)lm(x,r)>y}=Uutr{(x,R)ll(x,u,R)>y} is open for all

3’ R. Now [8, Corollary 1] implies the existence of a Borel measurable stochastic
kernel, say G, which achieves the minimum in minRP(Vx(m(x, R).

To show G* {G, G, .} is optimal, let F e D be arbitrary. Then
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(21) + onEF,G*{.LF,G*[ max Iv IX [OJ*(y) + c(xn’ bln’ vn’ y)]
Un Oxn

u,, uo, Xl, x,] xo}
c(x, u, v, x.)lxo +,a*[J*(x)lxo]

k=O

(x, u, v, x+)lxo
=o

+a"-,.[*(x.) + c(x._, u._, v._,x.)lxo]

(x, u, v, x+)lxo
=o

+ "-Ev,*[*(x.-) + c(x._, u._, v._, x.-)[Xo]

o,.[*(xo)lxo] *(xo).
kcHence Ev..[=o a (x, u, v,x+)lXo]<J*(xo). Since this holds true for every n,

by the monotone convergence theorem as n we obtain J(xo; F, G*) J*(xo). Since
FDx was arbitrary, we obtain supvoJ(xo;F, G*)J*(xo). This combined with
Lemma 5 shows that J*(xo) is the value and also that G* is optimal for every Xo X,
and completes the proof of (i) and (ii).

J*(x)" then Val(x)<J(x) To show the reverse(iii) Let Val (x)= lim,a
inequality, we first show

(8’) Val (x)= min sup )R (v).
RP(Vx) uUx dVx

This inequality is similar to (8) and the proof is the same; hence we use the notation
(8’), (9’), (10’), , etc.

From (8),

(22) J (x)= min sup [ [[aJ (y)+ c(x, u, v, y)]qylx, u, v) (v),
RP(Vx) uUx dVx

and since aJ (y) Val (y) for all a (0, 1), we obtain that the RHS of (22) is less than
or equal to the RHS of (8’). Hence

J (x) min sup f y  q  ylx, u,
RP(Vx) uUx dx aX

Since this is true for all a (0, 1), as a 1 we obtain

sup f [[Val (y)+c(x, u, v, y)]q(dylx, u,Val (x) min v)e (dv ).
RP(Vx) uUx dVx

To prove the reverse inequality, let {a,} be a monotonically increasing sequence with
a, < 1 and lim, a, 1. Fix x, let " P(V) be such that " achieves the outer
minimum in (22) when a a,. Then

(14’) Val (x)J. (x)=max [ f[,J. (y)+c(x, u, v, y)]q(dylx, u, v)"(dv).
uUx dVx
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Now the same argument as in the proof of Theorem 1 shows that (15’)-(20’) are true.
Hence (8’) is also true. From Theorem 1 we know that Jx* (’) is the minimum (at each
x) among all the nonnegative functions which satisfy (8). Hence Val (x)_->J* (x) for
each x X, proving (iii).

6. Optimal and near optimal strategies for the maximizer. Player I does not
always have optimal strategies, stationary or nonstationary, in the positive case. We
give an example in 7. In the positive case we therefore prove the existence of near
optimal strategies, appropriately defined in Theorem 3 below. In the discounted case,
however, player I always has an optimal stationary strategy.

THEOREM 3.
(D) Let F*-(F,F,F,...SI be such that F(dulx) achieves the outer

maximum in (7). Then F* is an optimal stationary strategy, i.e.,

that

J(xo;F*, G)>-J*(xo) forevery GD2 and xoX.
There always exists such an F*.
(P)(i) For any A P(X) and any e > O, there exists a stationary strategy F $1 such

x" inf J(x;F,G)>-J*(x)-e ifJ*(x)<o
GD2

h ->_l-e.
1

j,=>- if (x)

In particular, for every finite subset S X and e > O, there exists an F $1 such that

J*(x)- e if J*(x) < oo and x s S,
J(x F, G) ->_ _1 ifJ*(x)=andxsS

F

for every G D2.
(ii) If X is compact and J*(. is continuous, then for every e > O, player I has an

e-optimal stationary stationary strategy; i.e., there exists an F $1 such thatJ(x F, G) >-

J*(x)-
for every x X.

Remark 3. To see that in (P)(i) the h measure of the set is well defined, we show
that infGD2 J(’ F, G) is universally measurable. This is true by Strauch [9], since for
fixed F the problem reduces to a dynamic programming problem with maximization
of a "negative" cost as the objective.

Proof. (D) From Lemma 3, J*(. is bounded; hence, as in the proof of Lemma
2, there exists an F* satisfying the conditions of the theorem. In Theorem 2, we have
shown that G* is optimal both for a < 1 and a 1 by (21). Replacing (F, G*) by
(F*, G), maxuux by minvvx and reversing all the inequalities in (21), we obtain

E,,o a (x, u, v, x/)lx0 + ,OL
k=0

--> J*(x0) for all Xo s X, all G s Dz.
In our case since a < 1, HJ*lloo < o, letting n --> c, we obtain

EF*.G a (Xk, Uk, Vk, Xk/l)lx0 >J*(xo)
k=O

for all Xo s X, all G D2.

Hence F* is optimal, proving (D).
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(P)(i) From Theorem 2, we have J*(x)J(x) as a’l. Let an: 1-(l/n),
In (x) := J* (x)" then as n , an’ 1 and In (x)’J* (x) Given e > 0 let

E. ={x x" I. (x < J* (x e,
1

if Yl* (x) < oo, or In (x) < if Y* (x)
e

Then ElE2E3 ’’" and also n_lEn--. Hence for any A s P(X),
limn-, A (En)= O. Choose N so large that A (EN)< e. We have for x #: EN,

)- e if J*(x) < eo,

if J*(x) c.

Let Fs be the optimal stationary strategy in the game with discount factor as given
above in the proof of (D). Then

:*(x)-
min J(x" Fs, G) > Is(x) >

if J*(x) <,

if J*(x) .
This proves the first assertion. For the second, if S cX is a finite set with m elements,
let A be the uniform distribution on S. Now let < min (e, l/m). Then the stationary
strategy F such that

x" inf J(x;F, G) >-Jopt(x) if J*(x) < oo

Z
1

>_--- if J*(x)
->l-g

is e-optimal for x S.
(ii) Let J*, J, F*, G* be J*, J, F*, G* respectively in the game with discount

factor c -< 1. SinceX is compact and J* (x) is a continuous real function, Dini’s theorem
implies J* (x)-J* (x)+0 uniformly on X as a’ 1, i.e., J* (x)’J* (x) uniformly on X as
t ’ 1. Given e > 0, choose a close to 1 so that J* (x) -> J* (x) e for all x X. Then F*
is E-optimal in the Positive (a 1) Case, since J(x;F*, G)>-J(x;F*, G)>-J*(x) >-

J* (x)-e for all x X and for all G D2.
Remark 4. In the proof of Theorem 3, it is clear that if J* (.)’J* (.) uniformly

as a ’1, then player I has an E-optimal stationary strategy, even if X is not compact.
On the other hand, an example in 7 shows that even if the convergence of J* (.) to
J* (.) is not uniform, player I can have an e-optimal stationary strategy for every e > 0.
Whether player I always has an e-optimal stationary strategy is an open problem. Some
related papers are Ornstein [10] and Bertsekas and Shreve [11].

Remark 5. (C) If J* (.) is a continuous real function, then for any compact subset
Y c X, J* ’J* uniformly on Y (Dini’s theorem). Hence for any e > 0, player I has a
stationary strategy which is e-.optimal on Y. The proof is similar.

7. Some examples. Our first example, adapted from [2], shows that even in
particularly simple problems, player I need not have an optimal strategynstationary
or nonstationary.
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Example 1. Let

X={xo, x,,x},

Ux {1, 2} for all x e X,

Vx {1, 2} for all x e X,

f(Xo, u, v)= x0 for all (u, v),

f(x,, u, v) x, for all (u, v),

f(x2, U, V)= X0 if u v,

f(x2, 1, 2)=

f(x2, 2, 1)= Xl,

1 if x # Xo, y Xo,
c (x, u, v, y)

0 otherwise.

Xo and x, are absorption points of the system. Hence the only nonzero cost-transition
is the transition from x2 to Xo which yields a cost 1. Clearly J*(xo)= O, J*(x,)= O.
Hence we need consider only x2. By Theorem 1, J*(x2) is the smallest nonnegative
number satisfying

J*(x:) value
0

Since

1
value [ 0 J*(lX2)] 1

2-J*(x2)’

the equation J*(x2)= 1/(2-J*(x2)) has a unique solution J*(x2)-" 1, which must be
the value at x2. However there is no optimal strategy for player I. To show this consider
two cases.

Case 1. Player I always plays u 1. Then if player II always plays v 2, the system
stays indefinitely in x2 and the total cost is only 0.

Case 2. At some time n, player I plays u 1 with probability 1 e, and u 2 with
probability e > 0. But then if player II at time n chooses v 1, the system ends in state
x, with probability at least e > 0, hence the total cost is less than or equal to 1- e.

Hence player I has no optimal strategy. Note however that if player I chooses u 1
with probability 1-e and u 2 with probability e, then this stationary strategy is
e -optimal.

Our second example shows that in the continuous model, J*(. need not be
continuous even when X is compact. This example therefore cannot be solved by the
results of [4], but can be by our results.

Example 2. Let

x/1 n positive integer {0},
n

Ux Vx ={1, 2} for all x X,
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1

UU
1

n+l’

{o,f(1, u, v)= 1/2,
f(o, u, v)= o,

c(x,u,v,y)=
O,

ifu =v,

if u #v,

for n ->_ 2,

ifu =v,
ifu#v,

for all u, v,

ifx=l,y<1/2,
otherwise.

Briefly, the game can be interpreted as follows. Both players play a matrix game at
1 ! n, with player I moving one step either towards or away from his goal x 0 depending
on whether u v or u # v. When player I reaches his goal x 0 from x 1, he gets a
reward of 1 unit and the game ends.

To solve the game, we first observe that J*(0)= 0. By Theorem 1, J*(. is the
smallest nonnegative solution of

(23) J*(nl-) value of matrix game [J*(f(, i, ]))+ c(nl-, i, ], f(n1--, i, ]))].
a bj is +.b), (23) is equivalent to

"1
Since the value of the symmetric matrix game

b a

J*(1) 1/211 + J*(1/2)],

j,(nl_.)=_[j,(ln_i) +J,(n+ll)] frn>2’=

(24)
J* (1/2) 2J*(1) 1,
1 2J,(nl_) j

,
for n -> 2.

By induction, it follows that

n +1 (n + 1)J*(1)- n.

Hence

n+l
+: J* >
n+l n+l n+l

for all n,

therefore J* (1) => 1. Also,

J*(, .1.1)=(n+1)J*(1)-n>=1.\n+

On the other hand J*(1/n) 1 is a solution of (24), and hence from Theorem 1 we
obtain J*(1 /n) --- 1.

Note now that X is compact with the relative Euclidean topology, q (. Ix, u, v) and
c(x, u, v, y) are continuous, (we only need to check at x 0), yet [4] does not work
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because J* is not continuous at x 0 (hence J* does not converge uniformly to J* as
a ’ 1). However, we note that player I actually has an optimal’stationary strategy which
consists of choosing the probability vector (, 1/2) always.
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AVERAGING METHODS FOR THE ASYMPTOTIC ANALYSIS OF LEARN-
ING AND ADAPTIVE SYSTEMS, WITH SMALL ADJUSTMENT RATE*

H. J. KUSHNERS" AND HAI HUANG

Abstract. Recently proven theorems concerning weak convergence of nonMarkovian processes to
diffusions, together with an averaging and a stability method, are applied to two (learning or adaptive)
processes of current interest: (1) an automata model for route selection in telephone traffic routing; (2) an
adaptive quantizer for use in the transmission of random signals in communication theory. The models are
chosen because they are prototypes of a large class to which the methods can be applied. The technique of
application of the basic theorems to such processes is developed. Suitably interpolated and normalized
"learning or adaptive" processes converge weakly to a diffusion, as the "learning or adaptation" rate goes
to zero. For small learning rates, the qualitative properties (e.g., asymptotic (large-time) variances and
parametric dependence) of the processes can be determined from the properties of the limit.

1. Introduction. References [1], [7] develop a useful method of studying the
asymptotic properties, as e 0 and ne -< T < for any real T, of solutions to stochastic
difference equations of the form

(1.1) Yn+l Yn +eh,(Y,,)+x/-g(Ye., sc,) + o(e), Y, Rr,
where the distributions of the random sequence {:,} might depend on the { Y, }. Such
equations occur frequently in applications. The methods in [1] also work when e is
replaced by a sequence e,- 0 as n oe, from which asymptotic properties (rates of
convergence) of various forms of stochastic approximations can be obtained.

The emphasis in [1] (an application of [7]) concerned the case where the he and
ge are smooth, and no details for the nonsmooth case or its applications were given,
nor was the asymptotic case where n oo, then e 0 treated. This is a deficiency, since
in many applications in communication, control and automata theory, the he and ge
might simply be indicator functions and the noise {:,} depend on {Y,}, and the
asymptotic properties (as n oe, then e 0) desired. Here, we apply the basic results
of [7] to two such problems. The two problems have current technological importance
in their own right and each has been the subject of a great deal of work. Our method
often yields a complete analysis of the asymptotic properties under realistic conditions.
The two problems are typical of a wide class, and they illustrate the power and
applicability of the general technique, as well as the method of applying it to concrete
problems. In a sense the method is an extension with more complex memory structure
of the sort of "slow learning" results obtained by Norman [9], and should have broad
applications to the areas cited above.

The basic type of result is the following. Define ye (.), [0, c), by ye (0)= Y
and ye (t)= YT, on lie, ie + e). Under appropriate conditions, Theorem 1 gives weak
convergence of {Y (.)}, in Dr[o, oo), to a particular diffusion process, as e --> 0. Now,
let {he} denote a sequence of integers tending to oo as e->0. For t_>0, define
,e (t) =-- ye (t +ene). The tilde always denotes a shift by ne (discrete parameter) or en
(continuous parameter). By using Theorem 1 but starting {Y } at time ne instead of at

* Received by the editors April 24, 1980, and in revised form January 12, 1981.
5" Divisions of Applied Mathematics and Engineering, Brown University, Providence, RI 02912. The

work of this author was supported by the Air Force Office of Scientific Research AF-76-3063, the National
Science Foundation Eng. 77-12946, and the Office of Naval Research N00014-76-C-0279-P003.

t Division of Applied Mathematics, Brown University, Providence, RI 02912. The work of this author
was supported by the National Science Foundation Eng. 77-12946 and the Office of Naval Research
N00014-76-C-0279-P003.

635



636 H. J. KUSHNER AND HAI HUANG

time 0, we will get a great deal of information on the asymptotic properties (large n,
small e). The next section gives some background material from [7]. Sections 3-6 treat
a learning automata approach to certain problems in adaptive routing of telephone
calls [2]-[3]. The second problem, in 7 and 8, concerns the asymptotic theory of an
adaptive quantizer from communications applications [4], [5].

2. Some background material. Dr[0, o3) denotes the space of R r-valued functions
on [0, ) which are right continuous and have left-hand limits; it is endowed with the
Skorokhod topology [6]. 0 denotes the continuous functions on R [0, c) with
compact support and c,0 the subset whose mixed partial derivatives up to order a in
and /3 in the components of x, are continuous. Let bi(’, "), aq(., "), i, f<=r, be

continuous functions on R [0, cx3). Let the operator

A ’ bi(x, t)
0 1 02
-xi+- y" aij(x, t),

i,j OXiOXj

be the infinitesimal operator of a diffusion process X(. ). Assume that the solution to
the martingale problem (on Dr[o, oo)) of Stroock and Varadhan [8], corresponding to
A, has a unique nonexplosive solution for each initial condition.

Let bN(" denote a function with values in [0, 1], equal to 1 on SN {x’lxl <- N},
equal to zero in R r- SN+I and with second derivatives bounded uniformly in x and N.
Define { sYn’ ,n>-0}by

e,NY,+ y,S +[eh(y’, )+4-g(Y’, )+o(e)]bs(r’S),
(2.1) / Y if[Yl<=N,y,S=. 0 otherwise,

and define y.S (.) analogously to Y" (.). For purely technical reasons, it is convenient
to state the theorem in terms of { y,,s}. Let As be the infinitesimal operator of a (not
necessarily unique) diffusion process, denoted by xS(.), and suppose that its
coefficients as(’, ), bs(’, ’) are continuous, bounded, have compact support and equal
a(.,. ), b(.,. in Ss. Suppose that {y.S (.)} converges weakly to some such Xs (.), as
e 0 for each N. Then [7] {Y (.)} converges weakly to X(. as n o. The following
theorem is a restatement of [7, Thm. 3], with re e. [7, Thm. 2] provides a very
convenient method of proving tightness, and we will use it in the sequel. Let Een’N
denote expectation conditioned on { ,N

Yi ,]<-n,,j<n}.
THEOREM 1. Assume the conditions stated above on the solution to the martingale

problem on Dr[O, oo) corresponding to operator A, and on A1" and Xs (.). For each N
and f(., @, a dense set (sup norm) in o, let there be a sequence {ff,s (.)} satiffying
the following conditions: it is constant on each interval [ne, ne + e ); at ne it is measurable
with respect to the tr-algebra induced by { y,U, j <_ n, , j < n } and

(2.2) supElff’S(ne)l+suplE ,s ,s ff,s]E,, f (ne +e)- (ne)l<;
n,E nE

,
and as e - 0 and ]’or each as ne t,

(2.3) Elff"s(ne) f( 1"Y,,’ ne)[--,O,
Ne N ne + e ff S ne ( 0 iv)(2.4) E En

e -+A f(y.N, ne) 0.

Then, if { y,S (.), e0 > e > 0} is tight in Dr[o, oo) for each N, where eo does not depend
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on Nand Y (0) converges weakly toX(0), {Y (.)} converges weakly toX(.), the unique
solution to the martingale problem with initial condition X(O).

3. An automata problem---introduction. Narendra [2], [3] and others have
studied the application of automata and learning theory to problems in the routing of
telephone calls through a multinode network and have suggested a variety of interesting
automata models for this application. Under various assumptions (both explicit and
implicit) they have stated convergence results in a number of cases. Generally, their
results are applications of Norman’s [9] results on slow learning. Here, we take one of
their models and show how to apply Theorem 1 to get a much more complete
asymptotic theory (large time) for small rate of change of the automata behavior (e),
under more realistic conditions. The case dealt with here can readily be generalized,
as will be commented on below. The example illustrates the power and usefulness of
the approximation techniques used here. The algorithm should be considered as a
prototype. It might not be the best, but it well serves to illustrate the method.

The problem formulation. Calls arrive at a transmitting or switching terminal, at
random, at discrete time instants n =0, 1, 2,..., with P{one call arrives at nth
instant} =/x, tz (0, 1), P{> 1 call arrives at nth instant} 0. From the terminal, there
are two possible routings to the destination, route 1 and route 2; the ith route has Ni
independent lines and can thus handle up to Ni calls simultaneously. Let In, n + 1)
denote the nth interval of time. The duration of each call is a random variable with a
geometric distribution: P{call completed in the (n + 1)st interval [uncompleted at end
of nth interval, route used} ,i, Ai (0, 1). The members of the double sequence of
the interarrival times and call durations are mutually independent. It is possible to work
with more general Markovian arrival processes, but we retain a simple structure in
order to emphasize the main points. In practice, a more complex network would occur;
and perhaps cycles might exist, and a vector routing parameter would be used, one
component per node. But the main idea is similar. As in Theorem 4, the average
dynamics are used for the stability analysis. From that point on, the proof of the
appropriate generalization of Theorem 5 would be quite similar to the proof of
Theorem 5.

The parameter e will be used for the rate of adjustment of the routing automaton,
the device which selects the route. The adjustment mechanism will be defined later.
The routing automaton operates as follows. For each fixed e, let { y ,} denote a sequence
of random variables with values in [0, 1]. In order to have an unambiguous sequencing
of events, suppose that the calls terminating in the nth interval actually terminate at
time n + 1/2, and arrivals and route assignments are at the instants 0, 1, 2,... precisely.
Thus the state at time (n + 1)- does not include the calls just terminated or calls arriving
at (n + 1). Define the "route occupancy process" X, (X,’1, X,’2 ), where X,’i is the

+ e,inumber of lines of route occupied at time n Thus, X, -<_ N. If a call arrives at instant
n + 1, the automaton "flips a coin," choosing route 1 with probability y, and route 2
with probability (1 y 7,). If all lines of the chosen route are occupied at instant (n + 1)-,
then the call is switched to route/" (] i). If all lines of route/" are also occupied at
instant (n + 1)-, then the call is rejected, and disappears from the system.

In a more realistic situation, the network would have many nodesmnot simply 2,
and many possibilities of routing from node to node. The adjustment algorithm might
be different, but the problem would be handled in exactly the same way. The object is
to adjust the {y,} sequentially (based on the system behavior) so that some desired
behavior occurs. In order to be specific, we use the following "linear-reward" algorithm
[3]. Let JT, denote the indicator of the event {call arrives at n + 1, is assigned first to
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route and is accepted by route i}. Let 0< yt < yu < 1. We use the algorithm (3.1), where
[yu denotes truncation at y, or y, and a(y)= 1- y, fl(y)=-y.yt

.)J. + y,.(3 1) y.+ [y. +(y

There are a (.), fl (.) such that a (.) a (.) in [y/, Yu 8 and B (") fl (") in [y/+ 8, Yu
and

(3.2) y,+ y + e [a (y)JT, + fie (y)J,

We will study the asymptotics of the behavior of a centered and normalized {y} for
small e.

Some definitions. If the choice probabilities y are held fixed at some value y for
all n, then the route choice mechanism still makes sense, although there is no learning.
For fixed route choice probability y (0, 1), let {X(y)} {X (y),X (y), 0<n= <}
denote the corresponding route occupancy process, on the state space Z {(i, j)"
N1, j N2} (whose points are supposed ordered in some fixed way). This Markov chain
is a single ergodic class, and the probability transition matrix, denoted by A’(y), has
infinitely differentiable components and

(3.3) P+(y) A(y)P,(y), with e0(y) given,

where P,(y) {e,(a y), a z} and
The pair {X, y, n 0} is a Markov process on Z x [y/, y,]. Define the vector

P; {P; (a), a Z}, where P; (a) P{X; a [y 7, < n, X }. Then

(3.4) P;+ A(y)P;.

Define P(N y) lim, p{xi, (y) N}. Finally, define the marginal transition proba-
bility

Pi(a, j, k ]y)= P{X (y)= k ]go(y)= },

and let E, denote the expectation conditioned on {XI, yl, n}.
A relationship of (3.1) to a differential equation. Define Pi (l-A/)N. Note that

(3.5a) E;JT gy;[1- vii{X;’ N}],

(3.5b) E;, g(1 y;)[1 t{X;’ N:}].

For small e, the behavior of {y} is approximated by {y(en)}, where y(. is defined by
(3.6), and fi(y)is just E[a(y)J +fl(y)J,], with the stationary process {X,(y)} used
in the definition of J,.

p a (y)y[1 P(N1 [y)]- g (1 y)fl (y)[1 P(N2 y)]
(3.6)

gy(1 y)[P(N y)-P(N y)] (y).
As y increases, P(N ]y) increases (and P2N2[y) decreases) monotonically. Thus,

there is a unique point (0, 1) such that F(;)=0. Also, P(y)>0 for y < and
fi(y)<0 for y > ;. We assume that (y/, Yu) and that fiy(;) 0. We actually will
study the asymptotic properties of U (y-)/ for large n and small e. In
particular, let n be a sequence of integers tending to as e 0, and define the
processes 0 (.) by 0 (0) U and U (t) U,+i on lie, ie + e). We show weak
convergence of U (.) to the Gauss-Markov diffusion u(. ), defined by (6.3). If n
fast enough as e 0, then the limit u(.) is stationary. The general method can be
applied to many other problems in learning, automata and systems theory.
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4. Some preliminary results. In this section, we prove some auxiliary results
concerning uniform convergence of Pn (y) and its derivatives, to P(y and its derivatives.

THEOREM 2. For each y [y, yu], let A’(y) denote a Markov transition matrix
(continuous in y) such that the corresponding Markov chain {Xn(y)} is ergodic with
invariant measure P(y). Then P(. is also continuous and there is a 3 > O, such that the
eigenvalues ofA (y), exceptfor the single eigenvalue unity, are bounded in absolute value
by 1 3 for all y [y, yu ]. P (y) converges to P(y) uniformly (and at a geometric rate)
in y [y, y, and in P0(y).

Proof. The last sentence follows from the penultimate sentence. The continuity of
P(.) is a consequence of the uniqueness for each y, of the eigenvector of A(y)
corresponding to the eigenvalue unity (the invariant measure). Next, suppose that there
is no such 3. Let A (y) be a q q matrix and let A (y),.. , A (y) denote the eigenvalues.
Order them such that h a(y)-- 1. Then there is a )7 and a sequence {y,} [y/, y,] such
that as y, )7, at least one eigenvalue (other .than the one which is always unity)
approaches the unit circle. In particular, suppose that the ordering is such that
[.h(y,)[-* 1 and that (choosing a sub.sequence if necessary)the h(yn)converge to some
hg as n -oo for 1,..., q. The {h} must be the eigenvalues of A(37). But then A’(y)
is not the transition matrix of an ergodic process, a contradiction. E3

DEFINITION. Let E(y) denote the span of the eigenvectors and generalized
eigenvectors of A(y), except for the eigenvector which corresponds to the eigenvalue
unity.

THEOREM 3. Assume the situation of Theorem 1, but let A(.) be continuously
differentiable on [y/, y,] (at the endpoints, take the left- or right-hand derivatives, as
appropriate); then so is P(. ), and Py (y) is the unique solution in E(y) to the equation

(4.1) Py(y) A(y)P +Ay(y)P(y).

Furthermore, the derivative en,y(Y) given by

(4.2) Vn+l,y(Y) A (y)P,,y + Ay(y)P,(y),

converges geometrically to Py (y), uniformly in y [y/, Yu and in the initial condition P0(y),
if we set Po,y (y) 0.

IrA (.) has continuous second derivatives on [y/, Yu], then so do P( and P, (.), and
Pry (Y) is the unique solution in E(y) to

(4.3) Pyy (y) A (y)Pyy (y) + 2Ay (y)Py (y) + Ayy (y)P(y).

Also, en,yy (Y) converges geometrically to Pyy(y), uniformly in y s[y/, Yu] and in the initial
conditions, if P0,y (y) P0,yy (y) 0.

Proof. Fix y. Since (I-A (y)) V 0 for V s E(y) implies that V 0, in order for
(4.1) to have a unique solution in E(y) it is necessary and sufficient that Ay(y)P(y)_L
W’(I-A’(y)), where W" denotes the null space of the matrix. W’(I-A’(y)) is the set of
vectors Q such that A’(y)Q Q. Since there is a unique eigenvalue of value unity and
since the row sums of A’(y) are all unity, the components of Q must all have the same
value. Thus, the necessary and sufficient condition reduces to Ay(y)P(y)_l_constant
vectors. For any constant vector, C (c, c,. ")’, C’A(y)= C’. Thus, C’Ay(y)=0, and
hence Ay(y)D _t_ constant vectors for any vector D. Consequently (4.1) has a unique
solution Py (y) in ,Z(y).

Next, we show that Py (y) is the desired derivative. Write (for y s (y/, yu), otherwise
3 > 0 or 8 < 0, as appropriate)

A(y + 3)P(y + 3)-A(y)P(y)= P(y + 3)- P(y).
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Thus,

[A(y + 8)-A(y)] [e(y + )-e(y)]
(4.4)

8
P(Y + 8) (1 A (y))

8

The left-hand side of (4.4) is uniformly bounded and is in E(y) for each 8 > 0 (since
(I-A(y))V y-(y) for any V), and it converges to Ay(y)P(y) as 8 0. When con-
sidered as an operator from Y.(y) to y-(y), [I-A(y)] has a bounded inverse. Thus, as
8 0, [P(y + 8) P(y)]/8 converges to Py (y), which must equal Py (y), bythe uniqueness
proved above.

We now turn to the convergence (4.2). By Theorem 1, Pn (y) converges geometri-
cally to P(y) uniformly in [y/, Yu] and in P0(y). Also, since we use Po.y(y)= 0,

Pn/l.y(y) An-i(y)Ay(y)Pi(y).
=0

But A (y)Pi (y) is a bounded sequence in E(y), and as it converges geometrically
and uniformly to Ay(y)P(y). Also A(y) is a contraction, uniformly in y [y/, Yu], when
acting in Y.(y). These facts imply the desired convergence of Pn, (y). The limit must be a
solution to (4.1).

The assertions concerning Pyy are proved in the same way and we omit the
details. 71

5. Tightness of { U,, small e, large n }. By "e small" and "n large" we mean that
there are eo > 0, N <, such that the assertion holds for e =< eo, n -<_ N. The actual
value of eo will be unimportant. Basic to the proof of weak convergence of {(. )} is
the tightness of { U,, small e, large n }.

THZOREM 4. For each small e > O, there is an N <o such that the doubly indexed
sequence {U, e small, n >N} is tight, where U, (ye_ 7)/e

Proof. The proof uses an "averaged" Lyapunov function. Define V(y) (y )2.
We have

(5.1) E, (y,+l y,) s[a( y,)y, (1 uI{X,’ N})

+ fie y )( 1 y , )(1 v2I{X,’2 N2})],

For small

E, (y. p)[ae (y.)J.. + fle(Y,,)J2.,, ]-< E. (y, p)[a (y.)J.. + fl(y,)J,,, ],

since 0 =< a (y) =< a (y) and a (y) a (y) only if y , => 0 (for small e ), and conversely
for the fie term. Using the above inequality, (5.1a) and ]y+ -y,[ O(e),

EeV(y+)-V(y

(5.2) <=2tze(y-)[a(y)yT,(1-uI{X,’ =N})
+ fl (y,)(1 y,)(1 v:I{X,’" N})] + O(e ).

Define the "perturbation" V (n) to the Lyapunov function V(n)= V(y,) by

V (n)= 2tze(y-;)a(y,)yvx [P(N[y)-P(X, f -n, NI[y,)]
(5.3)

+2/ze(Y,-37)/(Y,)(1-Y,)v2 E [P(NIy;)-P(X;,i-n,NIy)].
l=n

Note thatP(X,, 0, Ne y) r{X’ Ne}. By Theorem 2, the sums converge absolutely
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(the summands go to zero at a geometric rate) uniformly in n, y,, X. Thus. ]V (.)1
O(e), uniformly in all the variables.

Next, evaluate

(5.4)

E,V (n + I)- V (n)

-2/xe (y , 37)a (y ,)y,[P’(N [y ,) I{X," N,}]

2ze (y 7)/3 (y,)(1 y ,)v[P(N y ,) I{X’ N2}]

/=n+l
2/2, {E (y 7) (y)yEPl n+l O n+l n+l

[PI(N,Iy+I)-P’(X:+I, ]-n
-(y, ;)a(y:)yn[P’(N,ly:)-Px(X:, ]- n,

+ a similar sum for route 2.

We next show that the sums in (5.4)= O(e 2) uniformly in all the variables n, y,
X. Using lY+ YI O(e), the smoothness of a(. and/3(. ), Theorem 2,

EnP (X,, +, j n I, N y, P(X,, j n, N y ),

(the Markov property for {X(y), ] >- n } with y y and initial condition X, (y ,) X, ),
we can rewrite the sums as

o(e) Z.
j=n+l

E{[Pi(Nily ,+1)- pi(Ni[y ,)]

(5.5) -[Pe(X+l, j-n 1, Ng y+, )-P’(X+l, ]-/’/-- 1, N y)]}

+ 0().
Now, the smoothness of the pi (Nil’), pi (X, ], Nil. and Theorem 3 imply that (5.5)
O().

Define V(n) V(y,)+ V (n). By (5.2) and (5.4) and the fact that the sums in
(5.4) are O(e),

EgV (n + 1)- V (n) -< O(e 2) + 2/xe (y g 7)[a (y g)y g (1 vP(N[y g))

+ B (yg)(1 yg)(1

Owing to the fact that y , [y, y,], the bracketed term has its unique zero at y , 37
and it is positive (negative, resp.) for y, < 7(y, > 37, resp.). Thus, there is a 3’ >0 such
that

(5.6) EgV(n + l)- V(n)<-O(e))-eyV(yg).

By ]V (n)] O(e) uniformly in n,EnV’(n + 1)- V(n) <- o(eE)-eyV(n), and hence

(5.7) EV(n <- (exp -eyn )EV(O) + O(e ),

which implies the tightness. Finally, let 0 < Ko be arbitrary and let N be the smallest
integer n such that (exp-eny) <-Koe. [l

6. Weak convergence of { t) (’)}.
DEFINITIONS. Recall the definition ofN given at the end of the proof of Theorem

4. For any sequence of integers n >N, define Q n-N. Define )7, yT,+, and
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similarly define the "shifted" sequences U,, X and J,. Then

(6.1)

By Theorem 4, {,, e small} is tight. To use Theorem 1, we must truncate {}. For
each integer N, define O,.N, -,Y j;N via

(6.2)

and let O,],v (37,,v_)7)/x/e, define ,1. ,/l,Z is simply the indicator function of the
set {route is tried first and the call accepted}, when the sequence of choice probabilities
is {37,]’u}. Since [37,’v-37[_-< x/(N + 1) for small e, it is irrelevant whether we use a,
/3 or a,/3 in (6.2), and we use a,/3. To simplify the notation, we drop the superscript
N until Part 4 of the proof of Theorem 5.

We now define an auxiliary process which is used in the averaging method
employed in the proof. Let P denote the measure defined by the stationary process
{Xj()7), oo>j>-oo}, with corresponding expectation operator E. For each n, it is

n.ecessary to introduce the process {Xj(7), j >-n}, but with "initial" condition_ X,(;)=
X, (i.e., after time n, the route choice probability is ;). The operator E, denotes the
expectation of functions of this process {X()7), j>=n} conditional on the "initial"

X,. Let J0’(;) denote the indicator function/{call arives at j + 1, iscondition X(7) "
assigned to and accepted by route i}, when the route choice variable is )7 and the route
occupancy process is {X.()}. Whether we intend the ergodic process or the process
{X.(7), ]-> n} starting at time n with X,()7)= .., will be made clear by use of either
E or E,. Define

u;(y) [a( ;)J; (;) + t( Y)J; 7)].

Under P, the right side has zero expectation.
THEOREM 5. For any sequence n, _--> N, {D (.)} is tight in D[0, oo). All weakly

convergent subsequences converge to a Gauss-Markov diffusion satisfying (6.3). If
eQ- oo as e oo, then the limiting diffusion u(. is stationary in that u(O) has the
stationary distribution (in all cases u(O) is independent orB(. )), and

(6.3)

(6.4)

(6.5)

du Gu dt + o- dB, B (.) standard Brownian motion,

0
G fy (37)= --y-y/xy (1 y)[u2P2(N). y)- UlPI(N1

2
tr E(6uo(;))2 + 2 Z ff6Uo(y)6u, (;1.

n=l

Proof. Part 1. By (5.1),

(6.6) ,(,/1 ,) 4/z37, (1 -’y,)[u2I{,,’ N2} u11{fi,’1=N1}]br("U).

Let f(.,.)e @ 2o’3, the space of bounded (x, t) functions with compact support,
whose mixed partial derivatives, up to order 2 in and 3 in x, are continuous. If we
apply Theorem 1 to { (.)}, we will get an f (.) of the form

f(ne) f(’V., ne)+fo(ne)+fx(ne)+f2(ne),

where the f7 (ne) will be defined in the sequel. For each N, all o(. or O(. are uniform
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in all variables except their argument. We have

u, [(’Un+1, ne + e f( ne U./l ne) f( "U., n)]+[,( "U.,ne)e+o(e),
E:[(U;+, n)-(U:, n)]

U.+-.U)+E;f(U., ne)(’U.+ U.’ +o(e)

(6.7) -4A( "U,ne) (1 y)bs(O) [2I{’2 N2} 1I{’ N}]

+A(O;, n);( " ")U+ -U +o(e).
2

By the differentiability result of Theorem 3, we can rewrite the term before the
o (e) as follows:

u., n)
E;[, (;)J. (;) + t (;)]:. (;)]: + o(e).ebZN( " f,,( "U,,)

2

Part 2. We will "average out" the terms in (6.7) one by one. Define f(ne)
(analogous to the definition of V(n) in the last section)

(6.8)

Using expressions similar to those used in Theorem 4 in treating V] (n) and writing
pi(.,, f-n, NilYn) in the more convenient form "e (+, i- n 1, Niiy) for ] > n
(see above (5.5)), we can get (details are in [10])

(6.9)

(6.10)

(6.11)

The terms E,dln(y) and EnJin ()7) differ only in that in the first case 37 is used as the choice variable
to get the successor state to X,, and y is used in the second case.
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Part 3. Now, we "average out" the last sum in (6.11). Define f. (he) by

f (n) bu(0. )[6..(U.)L(" u.,’ n)]. E E
i=n k=/+l

By the (uniform) geometric convergence result of Theorem 2, the sum converges
absolutely and I (ne)l O(e). By a straightforward calculation using the stationarity
of {6u, (;)} under P, we can show that

Finally, we treat the term before the o(e) of (6.7)--in the form in which it is written
below (6.7). Define f(ne) by

f(ne)= e
U,,, ne) b(O) [(6ui(;))2-1(6ui())2].

By a procedure similar to that used [10] for f (ne), it can readily be shown that

- fu(U,, ne) bu(O,)ff.(6Uo())2E,fo(ne +e)-fo(ne)=o(e)+e
2

f U,, ne
b 2N(r )ff_. [a (])Ja. () + fl ()7)J2. ()7)]2.-e

2

Summarizing the previous calculations, we have

Ef(ne" +e) f(ne) o(e)+eft((J ,,, ne)+ef(U,,,ne)G" U,,bu(" U,,"

(6.12) +el.( " O: OUn, ne)bu,u( )bN( n) if" Uo() Ui()
i=1

U.,ne) bu(O /(tUo(7))2+2 y. /3Uo()8ui()+e
2

Part 4. Conclusion. Reintroduce the ,superscript N. Fix N. All the fT,v are
bounded and of order O(x/) and {O,s} {O,s (0)} is tight. Also ,;Nf,N (he + e)--
f’S(ne)= O(e). Thus, by [7, Thm. 2] the bounded sequence {O,,s(.)} is tight in
D[0, o). Let e index a weakly convergent subsequence with limit US(.). Since A is
defined to be the infinitesimal operator of (6.3), by (6.14) and Theorem 1, we see that
US( solves the martingale problem corresponding to an infinitesimal operator As

whose coefficients equal those of A in Sv. Thus, by Theorem 1, {’(.)} converges
weakly to a solution u(. of (6.3).The independence of B(. and u(0) is a consequence
of the fact that u (.) is the unique solution to the martingale problem. The stationarity
assertion is not hard to prove, but we omit the details. 71

7. Asymptotic theory of an adaptive quantizer: introduction. In recent years
there has been a great deal of research concerning the efficient quantization of signals
in telecommunications systems, e.g., of voice signals in telephone transmission systems.
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Let z (.) denote the actual signal process and A a sampling interval. In the problem of
interest, the signal is sampled at moments {nA, n 0, 1, ..}, then the samples {z(n A)}
are quantized, and it is only the quantized samples which are transmitted. Let
0=o<f1<’’ "fL-1 < fL C, 0= r/<r/2<""" <r/L, where i, r/i+, i=0,... ,L-l,
are real numbers. Let the quantization function O(. be defined as follows: there is a
y >0 such that for z(nA)>0, O(z(nA))=yrlg if z(nA)[yfi-1, yfi), and set O(-z)
-O(z). The parameter y is a scaling parameter. As the signal power increases
(decreases), y should increase (decrease) for efficient reconstruction of the signal from
the sequence of quantizations.

The problem of choosing appropriate values of y when the signal powers can vary
by an order of magnitude or more has led to the study of adaptive quantizers. We give
only a brief description in order to formulate the problem. For more detail and
discussion of the engineering considerations, the reader is referred to the references
[4], [5]. Let e denote a "rate of adjustment" parameter for the scale parameter y and
let y , denote the value of the adapted scale parameter at the nth sampling instant. Set
/3 (0, 1], and let 0 <M <M <. <M[ < o with M < 1, M[ > 1. We study an
adaptive quantizer which is a truncated form of the (typical in such an application)
adaptive system

(7.1) y,+l =(Yn)eBn, where B, M if Iz(nA)l e [Yni-1, Yni).

Goodman and Gersho [4] did a thorough analysis of (7.1) for the case fl 1 and
{z (n A)} independent and identically distributed (i.i.d). With/3 < 1, the system has some
desirable robustness properties and this case, together with simulations, is discussed
by Mitra [5] and others. The latter reference is concerned more with reconstruction of
the process z(. from {Q(Z(nA))} and does not give an asymptotic analysis.

Generally, with non i.i.d. {z(nA)}, it is hard to get concrete information on {y,}
for large n. If the signal power varies over time or if (as is realistic for moderate values
of A) {x(nA)} is not i.i.d., then techniques such as used in [4] fail, but for small rates
of adjustment (e) an asymptotic analysis can still shed light on the process behavior.
At the present time, it seems that little more can be done for the general case. Here,
we scale the problem so that an asymptotic analysis is possible. For mathematical as
well as practical purposes, it is useful to confine y, to some finite positive interval
[y, yu]. Now, we define the truncated form of (7.1) which will be studied. Let a > 0,
0 < ae < 1 and let {/} be real numbers such that 11 < 12 <’ < IL and Ix < 0, IL > O. Then
we use

(7.2) (y,)x-B rYn+l y,

where[denotes truncation and

B, (1 + eli) if Iz(nA)l
The asymptotic results can be used to get information on the effects of {/}, A,

structure of z(’) and a, on the performance for small e. For notational convenience
below, let y/<l and yu> 1. Rewrite (7.2) in the form (7.3), where yl-=
y[1-ea log y]+O(e 2) and (1 +eb)=-B are used, and F and b have the obvious
definitions:

(7.3) Yn+l =[Y (1 +eb )-eay log y,, +0(8 2 Y’---[y +eF(y z(nA))+O(e 2 y’
Yl Yl

In [4], the process {log y ,} rather than {y,} is discussed.
We proceed in very much the same way that we did for the automata problem.

The main difference arises from the unboundedness of {z (n A)}, under assumption (7.6).
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By definition,

L

b- . ldI[z(nm)l[Yi_l,
i=1

There are continuous functions l (.) such that (7.4) and the properties stated below it
hold.

(7.4)
y,,+ y,(1 + eB;(y,))-eay, log y, + O(e z

=-- y, + eF(y, z(nA))+ O(e2),

where

L

(7.5) B(y)
i=1

Also, l (.) can be chosen such that l (.) li out of an O(e) neighborhood of Yl (resp.
Yu) if li < 0 (resp. li > 0), and 0 -> l (y) => li for li < 0 and 0 =< 17 (y) =< li for li 3> O.

Some assumptions. For specificity, z(.) is assumed to be a stationary Gaussian
process with a rational spectral density. Thus there are an asymptotically stable matrix
M, a matrix C, a row vector D and a process v(. ), such that

(7.6)
dv Mvdt + Cdw, z Dr,

w (.) vector-valued standard Brownian motion.

This assumption is not essential--only certain smoothness properties of the
multivariate density are used, together with the exponential rate of decrease of the
effects of the initial conditions.

Define (y)=EF(y,z(nA)) and ’(y)=EF(y,z(nA)). Let ro2 =varz(t). We
have

(7.7)

We can see from the terms in (7.7) that .(y)/y is the sum of two strictly convex
functions, the first being bounded and having a negative slope, and the second going
to o as y 0 and to - as y-o. Thus there is a unique 37(0, ) such that
16y(37)=0. Also 16(y)>0 for 0<y<37 and /6(y)<0 for y> and J6y(;)#0. We
assume that y (y/, y,). For small e, the assertions in the last sentence hold with
replacing F. Define U, (y,- y)/,,/e and let E denote expectahon conditioned on
{v(la),i<n}.

8. Tightness of { U,, small e, large n }. The proof is similar to that of Theorem 4
in 5 and we only set it up and indicate how to deal with the fact that {z(nA)} is
unbounded.

THEOREM 6. Under the conditions in 7, the conclusions of Theorem 4 hold.
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Proof. Define V(y) (y y)2. There is a 3’ > 0 such that (y )7)P(y) <= -yV(y).
For all e > 0 and y e yt, y, ], we have

+1 --Yn) =O(e ), Yn+l =Yn +e (yn)+e[F(yn, z(nA))- (y,)]+O(e2),
L

L(y) y E /r(y)P{y- lz(na)l< y}-(r log y),
i=1

(a.l
L

E(y+ -y)= e(y)+ey 2 /7(Y)[P(r-
i=1

--P{Yi-1 Iz (n a)l < yi}]ty =y: + O(e 2).

As done in connection with (5.2) (where a,/3 were replaced by.a, fl),we get an upper
bound for the second moment by replacing li(y ) by li (hence F by F). Thus

(8.2)
E;, V(y )- V(y) < O(e y)P(,+ )+2e(y,-

+ 2(y 97) [sum in (8.1) with 17 (.) replaced by li].

Next, define V (n) by V (n)= V (n, y,), where

(8.3)

V (n)l can be estimated by use of the following fact. There are Ko < e and a > 0 such
that [e ut <- Koe -at. There is an a > 0 and a KI < c such that ]:or z2 > zx > 0 and on the
set {v(t)" [v(t)]e -a’l/: <-_ 1},

(8.4) [P{v(t + ’i) e Bi, 1, 2Iv (t)}- P{v(t + rg) e Bg, 1, 2}[ <_- K e -al.

for all B, B:.
In order to use (8.4) (in this application we set B range space of v(t), and write

the sum in (8.3) as

H

(8.) E + E
i=n /’=H+I

whereH min{m" e -(’-")a"/2 Iv (n A- a)l <- a} o(a + max (0, log Iv(n +/-- a)l))+". Then
the first sum in (8.5) is O(l+max(O, loglv(nA-A)[)), and the second is O(1)
by (8.4) and the summability of Y==_o exp (-al/’A). Thus [V[ (n)[-
O(e)[1 + max (0, log Iv(na- +/-)l)]_-< o()( + Iv(na- a)l). From this point on, the proof
is exactly the same as that for Theorem 4.

9. The limit theorem. We continue to use the tilde terminology of 6, and define
U,, y,, E,, etc., as there. Also, set zT(nA) z(n,A + nA) and tT(n A) v(n,A + nA). The
idea now is still to prove weak convergence of "(.). We use , for expectation
conditional on {v(fA),f<n+n,}. We have ((9.1b) defines )7,’N by O,,u=
(;;, ;)I
.(9 la). Un+l’ =U.+’4;P(f) +4;(F(),, (nA))-g(f,))+ O(e3/),
(9.1b) U,+’"u /),].u + 4e[/,()7,’u) + (F,(7"’u. Y.(nA))--ge(’N))+O(83/2)]bN(Oen’N).
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THEOREM 7. Under the conditions of 7, the conclusions of Theorem 5 hold, but,
now, G Fy () and (stationary process z (.) used)

o" =EFZ(;,z(O))+2 E EF(;,z(nA))F(;,z(O)).
n=l

Remark. If M, C or D is time-varying, then an extension of the technique is
possible, provided that the time variation per step is O(e). The limit diffusion yields
information on the dependence of the performance on the parameters a, {/g}, A, {i}, as
well as an estimate of the asymptotic variance and correlation function for small e.

Proof. Except for the unboundedness of the noise {z(nA)}, the proof would be
essentially the same as that of Theorem 5, and only an outline will be given.

Owing to the truncation 1,’1_-<N + 1, the F,/O in (9.1b) can be replaced by F
and j6, respectively, without changing the values, for small e. Let us make the
replacement. Fix f(.,. ) :o’3. Drop the superscript N on all variables for notational
convenience, as done in Theorem 5. Then, by a Taylor expansion,

U.+, ne + e) f( "U,,,ne)
o()+f,( " "U,,,ne)+ef,( neu., ):()(:;,bu(U.)"

(9.2)
+4-f(O ne)J[F(y +’,/- "u.. (na))-1(; + 4-(:.)]b,, (U.)"

U ne E* , F + x/- x/-+Lu( " U,, zT(n A)) P(37 + U, )]2b(U, ).

Since the second derivative of l,F(y, (nA)) with respect to y is bounded by
constant [1 / ItT(nzX-a)[3, the next-to-last term of (9.2) can be written as

(9.3)
ef,(f),,, ne)E,,[F(y, Y(n A)) P(;)]bu (U.)+efu(" U.,’ he)

O----/,[V(y, z’(nA)) (y)]l =(][,bN( "U.)+o(e)[1
0y

The last term of (9.2) can be written as (recall that/() 0)

(9.4) U., ne)E’[F(p,,, zT(nh)) 1O(;)]ZbZN( "" U.)+o(s).

Now, we use the method of Theorem 5 in order to average out the terms of (9.2).
We use fe (ne) *e 6f(U,, ne) + Yi=3 f7 (ne). Define f3 (ne) by (to average out the second
term of (9.3))

(U,,,ne)bN(U:) E E.U,, [F(y, (/A))- 16(y)]
]= -’y y=9

By an argument similar to that used below (8.5), together with the derivative bound
stated above (9.3), it can be shown that Ef3(ne + e)-f(ne)=-(second term of
(9.3))+o(e)[+l(nA-A)l] and that If(ne)lO(e)[+l(nA-A)l]. Next, intro-
duce f (ne) (to average out (9.4))"

f4(ne) f (fQ:,ne)bN(f)) E E’ :,,F (y, z’(/5))-EF(;, z(/A))].

Then, as for f, we have [f(ne)l<=O(e)[1 /l(nA-zX)l]. Using this, it is not hard to
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show via a small amount of manipulation that

U.,ne)bu((] -.)[E.F (y, Y(nA)) EFZ(;, Y(nA))]J_,enf4 (ne + e) f4 (ne) -f,.( "
+o(e)[1

Next, introduce f (ne) in order to average out the first term of (9.3)"

fs(ne) x/-f( "U., ne)bu(U.) E "EF(y, (jA)).
j=n

Then, again, ]f(ne)]= o(qe)(1 + ]t(nA- A)[) and we can write

Efs(ne + e)-f(ne)= -(first term of (9.3))

(9.5a) + eEn[f.(’ U.+," ne)bu(+ f.(., ne)bu( U.)]"

E En+lF(,
j=n+l

With a small amount of manipulation, we can show that the last term of (9.5a) equals

/=n+l
(9.5b)

Finally, f (ne) is introduced in order to average out the sum term in (9.5b) in the same
way that f (ne) was used to average out (6.11) in Theorem 5. Define

(9.6)

By (8.4), f;(ne) is well defined and is O(e)[1 + [7(nA-A)[2]. Also,

Lf; (ne + e f; (ne -(sum term in (9.5))

, U)] 2 EF(, zT(nA))F(35, zT(0))+ b,(u )[fu(U, n)b,(

+ o(e)[1 +lv(nx-a)].

Summarizing, with f(ne) defined by f(ne) f( "e 6U,,, ne)+i=3fi (he), we have

(9.7)
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Now, if the {’N(.)} (returning to the use of superscript N) are tight for each N,
then (9.7) and Theorem 1 imply that.any weakly convergent subsequence of {O’N (.)}
converges to a diffusion with o.perator AN, whose coefficients equal those of A in SN
and, hence, that the original {U (.)} converge weakly to the solution of (6.3) with the
G and r defined in Theorem 7.

But (dropping the superscript N again) [=3 f7 (ne)l- o(4)[1 + ]tT(n A- A)I] and
I2ff(ne + e)-ff(ne)[ O(e)+o(e)[1 + It;(na-A)123 and for any T <, K >0, the
Gaussian property implies that

lim P{ sup e Iv(ne)l4, ->g} 0.
e-O T/

Thus, since the above o(e) satisfies o(e)= O(e3/2), tightness follows by [1, Thin. 23 or
[7, Thm. 23 as it did for the case of Theorem 1. [3
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SOLUTION OF SOME STOCHASTIC QUADRATIC NASH
AND LEADER-FOLLOWER GAMES*

G. P. PAPAVASSILOPOULOS+

Abstract. The linear quadratic Gaussian static Nash and Stackelberg two-player games are considered
and completely solved. Necessary and sufficient conditions for existence and uniqueness Of the solutions are
presented as well as the procedure for finding all the solutions. For the Nash game, in particular, it is shown
that if there exists a solution there will exist a solution affine in the information, and that the solution will
be nonunique if (intuitively) the coupling of the information of the two players equals some power of the
inverse of the coupling of their costs. Many interesting dynamic cases with nested information structures can
be reduced to static ones and are essentially covered by the analysis presented.

1. Introduction. It has been recognized that the single objective optimization
problem cannot capture all the aims of a decision procedure. Usually there are many
conflicting objectives that a decision maker has to meet, and.the formulation of a single
objective as a weighted sum of the several objectives is not necessarily the only way to
go. Also, there might exist many decision makers with conflicting objectives who do
not agree on an overall average objective. On the other hand, an existing hierarchy
among the several decision makers in a certain organization should not be ignored
when one creates the mathematical model. Such considerations make game theory a
natural vehicle for studying multiobjective hierarchical decision procedures. In par-
ticular, the so-called Nash and leader-follower (or Stalkelberg) games offer themselves
for studying such situations. For definitions and some properties of these games see
[2], [3]. (See also [13] for some recent results concerning leader-follower games and
their relation to the theory of incentives in economics.)

There are several results concerning Nash and leader-follower games, but there
are still many open problems. In this paper we study, and solve completely the static
Nash and leader-follower games, where the players have quadratic costs and linear
measurements of a random variable which enters linearly into the costs, see (1)-(7).
Several dynamic cases (where there is time evolution), are included in the static
formulation, as long as appropriate nestedness conditions [4] are imposed on the
information of the players. For example, the stochastic linear quadratic discrete time
Gaussian Nash game, where the players share at each stage all the past information
with one step delay, belongs to the class of dynamic games that can be reduced to static
ones. Another example is the stochastic linear quadratic, discrete time Gaussian
leader-follower game, ,where the leader has information only at the first stage, whereas
the follower in addition to having his own information acquires the information of the
leader with one step delay. Although such dynamic problems can be handled by
the methods developed here, we will focus on the static case only. We will nonethe-
less provide in 5 the procedure, which reduces dynamic problems of this type to
static ones.

The only existing results concerning such types of stochastic games are in [6], [7].
There, sufficient conditions for existence and uniqueness of solutions are found by
imposing a contraction assumption. As a consequence, the results of [6], [7], in addition

* Received by the editors March 17, 1980, and in revised form January 20, 1981. This work was
supported in part by the U.S. Air Force Office of Scientific Research under grant AFOSR-80-0171.

? Dept. of Electrical Engineering, University of Southern California, University Park, Los Angeles, CA
90007.
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to being extremely conservative, cannot answer the important question of how the
interplay among the information and the costs of the players affects the solution.

The structure of the present paper is the following. In 2 we pose the problems
and in 3 we give the complete solution of the Nash game. It is shown that the solution
will be nonunique if some numbers, which are products of even powers of the canonical
correlation coefficients of the information of the two players, are inverses of eigenvalues
of a matrix (R1R2), which represents the strength of the coupling of the costs.
Intuitively, the solution will be nonunique if the coupling .of the information is equal
to some power of the inverse of the coupling of the costs. It is also shown that if there
exists a solution there will exist a solution linear in the information. The way to
construct all the solutions is also given. In 4 we solve the leader-follower game. In
5 we derive a sufficient condition for the existence and uniqueness of a solution of an

equation which is a generalization of an equation playing a central role in 3. A special
case of this condition was presented in [5], but our result, in addition to being more
powerful, is proven in a much easier fashion. This condition can be used to guarantee
existence and uniqueness of solutions of Nash and leader-follower games, if there are
many players and one is not willing to generalize the exact results of 3 and 4 to the
many player case. In this section we also sketch a way to reduce dynamic problems
with nested information to static ones. Finally, 6 presents the solution of a simple
one-dimensional Nash static stochastic game which can serve to illustrate some aspects
of the whole analysis. 7 is a conclusions section. The proofs of two lemmas used in
3 are given in Appendix A and B. Appendix C contains some results concerning an

operator which turns out to be of importance when solving the Nash or leader-follower
games.

In our analysis, we will consider two players only, but generalization to the many
player case is possible.

2. Statement of the problems. Let x :12 R be a Gaussian random variable with
respect to a probability space (iq, , P), which, without loss of generality, is assumed
to have zero mean and unit covariance matrix. Let

(1) Yi fix, 1, 2,

where the Ci’s are real matrices of dimension ni n. The random variable yi :-
generates a minimal sub o--field i of in 12. Let Ui, 1, 2 denote the space of
functions ui:D, R", which are ,-i measurable and for which Ilu,
where the inner product in Ui is defined by

(2) {ui, v}= uiv dP, ui, vi Ui.

U is a separable Hilbert space and u can be considered as a function of y; see [8]. For
a given pair (u l, u)e U x Ua consider

(3) J(u, u.) E[1/2u’u + uIRu+ u’$1x + UOlU+ u;Fx],

(4) Jz(ua, u2)=E[1/2u’2u2+ u’zR.u + u2S2x + uiOua + uIF2x],

where E denotes total expectation, and Oii= 0, Ri, $i, Fi are real matrices of
appropriate dimensions. We want to solve the problems N and S.

Problem N. Find the pairs (u, u2")e U1 x U2 for which

(6) ]2(u, u’)<-J2(u*, u2) Vu2e U2.
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Problem S. Find the pairs (u *, u) U1 x U2 which solve"

(7)
minimize J1 (/11,/32)

subject to (Ul, /t2) U1 x U2 and J2(/11,/12) <J2(b/1, /2) V/2 U2,

The formalism (1)-(6) describes a two-player nonzero sum, static, stochastic, Nash
game, where player has information yi, chooses u; and wants to minimize J;. The
formalism (1)-(4), (7) describes a two-player, nonzero sum, static, stochastic, leader-
follower game, where player has information y;, chooses ui and wants to minimize J;,
and, in addition, player 1 (leader) decides and announces his decision Ul, first, before
player 2 (follower) decides on u2.

Without loss of generality, we make the following assumption, which is assumed
to hold throughout the present paper:

Assumption.

rank Ci ni, 1, 2.

The formula E[x y;] CI (CiCI)-ICix, will be used repeatedly in the later sections.

3. Solution of the problem N. In this section we solve problem N. For fixed
u2 U2, the problem

(8) minimize J(u, u2), u U1,

is a quadratic minimization problem in the Hilbert space U,,1 {u:D. R "1, u is o
measurable and Ilull < +oo}, which has U as a closed subspace. Use of the projection
theorem yields (9) as a necessary and sufficient condition for ul to solve (8):

(9) Ul+E[Rluz]y]+E[SlX]yl]=O;

see 1 for details. El. y;] denotes conditional expectation. Similarly for fixed u U1,
the problem

(10) minimize J2(u, u2), u2e U2,

has u2 as a solution if and only if

(11) u2+E[R2blllY2]+l[S2x]y2]=O.

Substituting u2 from (11) into (9), we conclude that the study of Problem N is equivalent
to the study of the equation

(12) Ul-R1RzE[E[ullyz]Iy]=R1S2E[E[xlyz]Iyl]-S1E[Xlyl],
on which we will concentrate from now on.

We will need the following lemma.
LEMMA 1. There exist nonsingular square matrices T, T2 so that the matrices

C1 T C1, C2- T2C2,

have the following properties"
(1) CiC =I, C2C2--L
(2)

’I I ’2 221/, C12 C21, C1C2 0 Cl12C221 0

LC2.1 ] 0 0 I
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(3) Ca and C221 have the same dimensions k n and

o
Cl12 221 ". where OU=x/ 1

(4) The dimensions of all the component matrices are uniquely determined.
The proof of this lemma can be found in standard books on statistics [12], where

the elements of CC’2 are called the canonical correlation coefficients of ya, y2 and
algorithms for finding T1, T2 are described. For the sake of completeness we present
a proof of Lemma 1 in Appendix A.

The importance of Lemma 1 for our problem is that since Tg is nonsingular, the
minimal g-fields generated by yg and Tiyg are the same, and thus, we can consider
equivalently that ug is a function of Tiyi. In the following we will assume that C, Cz
have been brought into the form suggested by Lemma 1 (and drop the bars from C, C2).

In terms of the information structure of the game, Lemma 1 allows us to consider
y and yz as normal Gaussian vectors which can be decomposed into independent
components as y (Yl12, Ylll, Y12), Y2 (Y221, Y222, Y21), where Y12 Y21 is the common
information, y, is known only to player 1, y222 is known only to player 2 and yl2,

y221 represent the nontrivial coupling of the information.
Let us introduce the following notation"

(13)
y Cix, Yu Ciix, Yiit Culx,

ei E, yi3, Pi [, yi3, e E, yi13, i, , , 2,

P, Pi, P# and E are projections in the Hilbert space U,. An equivalent interpretation
of Lemma 1 is that, if without loss of generality, we impose E[u] 0 in U,, then
P and P2 can be decomposed into sums of orthogonal projections; i.e., Pa
Pxx +Plx2 +P2, P2 P222 +P22 +P2, where P2 P2, PxP2 0, P222Px 0,
P, xzPzzx PzzPx,2 and Ile22xexx211 IIPxx2P2zxlI a (see Lemma 2). One can verify that
P12 lim (PP2) as n +, Pxa lim (Px(I-P2)), P222 lim (P2(I-P2)), Pxa2
P-P2-Px, P221 =P2-P21-P222 (see [10, problem 96]).

We can write (12) as

(14) u-RRzPPzu Sya,

where

(15) S=RSC&CC[ -SC, S [sl’’ "ls.].
We will construct an orthonormal complete set for U. Let

(16) p,(z)
(-1)"

e
d"

e-’
dz

n=0, 1,2,...,

be the Hermite polynomials which constitute an orthonormal complete set with respect
to the Gaussian measure (z); i.e.,

(17) p(z)p(z) d(z)=
0 if n e l,

where

(i8) tz(z) I 1-e dw
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(see [9, p. 217]). Let yl (zl,’ ’, zn,)’. Since yl is a normal Gaussian random vector,

(19) {Pk,(zl)Pk2(Z2)’’" Pk. (Zn)}, kl,’" ", kn 6 {0, 1, 2,’" "}

constitute an orthonormal complete set with which we can express every component
of ul, see [11, p. 56]. Let us enumerate this set and denote it by

(20) {PO(yl), Pl(yl),"" "}.

We will assume, without loss of generality, that Po 1, (Pl(yl), ’, Phi(y1))’= yl, and
that as n increases, the power of each component of y in Pn (yl) goes to infinity. Each

can be expressed as

(21) u(y)= Z c.p(y),
n=O

where cn e R" and

(22) y I[cnll2 < +oo.
n=O

Equation (!4) can be written equivalently as

(23) , cnl,,(yl)-RiR2 ., cnP1P2n(yl)=Syl.
=0 =0

We will need the following lemma, the proof of which is given in Appendix B.
LEMMA 2. Let

anl E[pn(Yl)P1PzP(Yl)], an ann.

Then the following hold:
(1) a, a,.
(2) an =0/fn # l.
(3) a, 0 ifp, depends on
(4) an 1 if Pn depends only on y12, or if n O.
(5) If p,(yl)=pn3(y12)’Pm(Zl) "pmk(Zk), where y112=(zl, .,zk)’ then

tx Ix an is independent of/13, 0 < an < 1 and these an’s constitute a sequence
decreasing strictly to zero.

(6) The operators P112P221, P221Pllz, restricted on the domain of the u’s with
E[u] 0, have norm equal to max {ix1,""", Ix}< 1.

Multiplying both sides of (23) by Pn (yl), taking expectation and using Lemma 2 (2)
yields

(24) c-R1R2cnan= 0 otherwise,

or more concisely
f-_

(25) [Co, c1, "]-R1R2[co, c, .]]ao
Io

al 01 =E00lsl00’" .3.
m’lX1

The conditions for solvability of (25) are apparent.
Let us now state formally all the previous analysis, in the form of a theorem.
THEOREM 1. Consider equation (12):
(1) It has a solution if and only if there exist o, cl,’" R" which satisfy (25).
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(2) If there exists at least one solution, then there exists a solution linear in (the
information) y 1.

(3) The general solution, if it exists, has the form
q

(26) Ul Co "- [c 1, Cnl]Y "31- E CakPak (Y 112)(Dk (Y 12) + [Cr/711, Cfflr]( (Y
k=l

where Co, cl, , cnl, cnl, ", cnqsatisfy (24), 1, , q > na, c,, , c,rconstitute a
basis for the null space of (I- R1R2), b and dk are arbitrary measurable functions of y a2

taking values in g and R respectively, E[c 2g] 1, E[c’c < +, and c contains no

af-fine term in yaz (i.e., E[b] 0, E[yle" b’]= 0).
Proof. The proof is immediate from the previous analysis. It need only be pointed

out that the cnk’s will be finite in number since as n increases the an’s which correspond
to Pn(yle) decrease to zero, and RaRz has a finite number of eigenvalues. Co,

c,al,"" ", c,a, are all eigenvectors of R1Re corresponding to the eigenvalue 1. The
appearance of the product Pnk (Yl12)tk(Y12) is a consequence of Lemma 2(5).

The procedure suggested by Theorem 1 for solving (12) is the following.
Step 1. Try to find u =co+LlYl, which solves (12). (coR" and L1 will equal

[Cl, ", cn] see (26).) This is equivalent to solving the equations

(I-RaRz)co=O,

La-RaRzLaCaC (C2C’2)-C2C (CaC
)-1=RaS2C2(CeC’2)-aCeC’ (CICI)-I-s1c1 (C1C1

(Notice that we do not need to find Ci T,.Ci in order to carry out this step. If this has
been done and we use C in place of C then it is easily seen that the two equations above
are equivalent to (25) with n 0, 1,..., 171.) If there exists no such L I, stop and
conclude that there is no solution. Otherwise go to step 2.

Step 2. Solve for Lz the equation

(I-RxRe)Lz=O,

where Le is an ml r matrix and where r is the dimension of the null space of I-RxR2.
Set Uo L2q (y az), where q is any r 1 vector function of y 12, which satisfies E[c’q <
+, E[q] 0, E[yleq’] 0 (L2 will equal [c,,..., c,], see (26)).

Step 3. Calculate the eigenvalues of R are, the/xi’s of Lemma 1, and consider Tyi
in place of yi in accordance with Lemma 1. Check whether for some nonnegative
integers m a, , ink, not all zero/z ,/z k is the inverse of some eigenvalue of
R IR2. This check will stop in a finite number of steps, since/x ’1 tz goes to zero
because at least one of the mi’s increases. Let .../x’ be an inverse eigenvalue
of R1R2 with corresponding eigenvectors ca,’", car. If /xg corresponds to the ith
component of ya12, zi (see Lemma 2 (5)) consider

Ud= ., Ca,pma(Zl)’’’Pmk(Zk)qgak(Yl2),
k=l

and set

Uc Z ua (finite sum),
d

(Uc corresponds to the third term of (26)). Then the solution of (12) is ua uL + Uo + Uc.
It should be noticed that the part of u which depends on y aaa is determined

uniquely and is linear in y a, because every Pn which depends only on Y aa has an 0,
and thus the corresponding cn is either equal to s or 0.
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Let us now consider the impact of the possible nonunique solutions for (u l, u2) to
the costs J1, J2 of the Nash game. Let Oij 0, Fi 0, /’. If (u 1, u2) is a solution, then
using (9), we obtain

Thus,

E[u’aR u2] E[PI(u 1R1u2)] E[u’IR1Pl u2]

E[u (-//1 SIPIX)] -E[u’xul]- E[u’Slx].

? (u, u)= -E[u’1//1],

and from (26)

J* (u, u2)-- -1/2{llcol[2 / IIcllz /... / IIc,ll2

/ [Ic 2
/... / IIc ,112 / E[’C’. C]}, where C [c1 c r].

If O12, F1 are not zero, we can again calculate J*. Jl* will have some more quadratic
terms in the ci’s, but it will also include the term E[4,’C’R.Q12R2C&]. It is clear that
in the case of nonuniqueness of solutions, by choosing the cn’s, and b appropriately,
we can vary J*, J*. If O12 and F1 are not set equal to zero, but are chosen so as to
convexify J* as a function of the ci’s and b, then the possibility of arbitrarily small J*
will be ruled out. It will then necessarily hold that C’(-I+2R.O12R2)C>=O (i.e.,
-I + 2R’2012R2 >= 0 on the null space of I-R1R2) and thus player 1 will choose b 0.
Thus, if C’(-I + 2ROlzR2)C => 0, a second level deterministic problem can be intro-
duced where player 1 will determine the c’s to find the best (for himself) out of the
many Nash solutions. Of course additional restrictions will have to be imposed in order
to guarantee the convexity of the second level deterministic problem.

It should also be noticed that Theorem 1 reveals the dependence of the solution
of the Nash game upon the relation between the matrices which determine the
information and the matrices which determine the cost. Obviously only C1, C2, R1R2
have an impact as far as it concerns the existence and uniqueness of the solution.
Nonetheless, the matrices Qij, Fi have an influence in the choice of the best out of the
many Nash solutions when the second level optimization problem is solved and this
influence can be very drastic (see 6).

In Appendix C we present some useful results concerning the operator I-
R1REP1P2, which is obviously of central importance in our analysis.

4. Solution ot problem S. The purpose of this section is to solve Problem S. Our
development will be brief in view of the analysis of 3.

For a given ul the follower solves problem (10), finds u2 in terms of ul (see (11)),
and//2 is substituted in J1 so that the leader has to solve

minimize J(ul) E[1/2ul (I-(R1R2 + R’zRI + R’zOlzRz)Pz)ul
ueU

+ u ($1 + P2(-R 1S2 + RQ12S2- R2F1))x

XtI1st+ 2012S2 S’2F1)P2x]

(27)

To guarantee inful J(ul) > -c, we assume that J1 is convex in ul for//1 Plul, i.e., we
assume that

(28) P1 ->- RP1P2P1,

where

(29) R RIR2 +RR +RO12R2.
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If (28) holds, then ul is a solution if and only if

(30) u RPP2u +P($1 + P2(-R 1..2 -- RQ12S2 R2F1))x O,

which is of exactly the same type as (12) and thus all the analysis of 3 carries over.
The only question pertaining to Problem S in particular is present in assumption (28).
Using (21) and Lemma 2 we obtain the following relation equivalent to (28):

E IIc.112 E c’n(anR)c., VCo, cl,’’" with E IIc 112<
=0 =0 =0

or

(31) a,R =<L n 0, 1, 2, ,
and since ao 1, we conclude that (28) is equivalent to

(32) R<=I.

(32) could have been deduced directly from (28) by allowing u constant, but (31) can
be useful if we decide to restrict u. For example, if u is restricted to being a nonlinear
function of y112, only, then using (B-5) and (37), a weaker condition which will involve
the zi’s, can be substituted for (32).

In light of the discussion above and the analysis of 3 we can easily conclude the
following concerning the leader-follower game:

(i) If R </, then there is a unique solution and it is linear in the information
(since if R < I no inverse eigenvalue of R can be equal to some/x ,1 ,k).

(ii) If there exists a solution there will exist a solution affine in the information.
(iii) If R has some eigenvalue equal to 1 then the general solution of (30), if it

exists, will be of the form l0 + Llya +L2q (y12), where l0 + Lay1 is a solution and the
columns of L2 constitute a basis for the null space of 1- R.

(iv) If (32) does not hold then inf J1 - (since if u c R"I, where (I R)c
&c, & < 0, then J - as Ilcll +).

Solving the leader-follower game is less demanding than solving the Nash game
since the calculation of ,..., txk is not necessary. Of course, one needs to find y2 if
! R is singular.

It is clear that the discussion in 3 about different values of the cost induced by
different solutions, convexification and a second level game, carry over to the leader-
follower game as well.

5. A sufficient condition, extensions to dynamic cases. It is an immediate con-
sequence of the analysis of 3 that, if RaR2 has no eigenvalues in [1, +), then the
Nash problem admits a unique solution which will be linear in the information. This
can be proved independently as a consequence of Theorem 2 below. Theorem 2 is
related to [5, Thm. 1], which is a special case of our Theorem 2. In addition our proof
of Theorem 2 is much simpler than the one given in [5].

THZOrEM 2. Let H be a Hilbert space over the complex numbers and P an
orthogonal profection in H. Let O"H H be a continuous linear operator (P and O do
not necessarily commute) and v an element of H. Then, a sufficient condition that the
equation

(33) POu +Pv 0, Pu u

have a unique solution u H is that there exist a continuous linear invertible operator
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E" H -H which commutes with P, and that the following holds"

(34) QE* +EQ* >- I on PH.

If (34) holds, then the solution of (33) is given by

(35) u=P , [(I-E-1Q)P]nI-lv,
n=0

where 6E for any 6 > IIOO*ll.
Proof. The requirement that u solve (33) is equivalent to the requirement that u

solve

(36) PQu PEu +Eu +Pv 0

for some E, as in the statement of the theorem. Obviously, (33) implies (36). Con-
versely, if (36) holds, applying P to both sides of (36) yields

(37) PQu + Pv O,

and (36) together with (37) implies -PEu +Eu 0, i.e., Pu u. (36) can be written as

(38) [I-PEI-E-IO]]+ u +PE-av =0.

A sufficient condition that (38) have a unique solution given by (35) is that

IIP[I E-10 ][[ < 1,
or equivalently

(39) P[E-aO-I][O*E-a*-I]P<-(1-e)I onH,

for some e, 0 < e < 1. Taking into consideration the fact that we can multiply E by any
6 > 0, we can easily conclude that (39) is equivalent to (34).

Condition (34) holds if O O’> 0, is a real matrix, if we choose E eL where e
is sufficiently large and positive. This special case was proved in [5] by more complicated
arguments.

To apply Theorem 2 to the Nash game we first bring RxR2 into its Jordan form,
T-1TRR2 =J andlet u Tul, v= TSyl. If ui is a component of u and pi an eigenvalue

of RIR2, it suffices to be able to invert the operator 1-piPP2. The role of O in
Theorem 2 will be now played by 1-piP2. Taking E to be any complex number
and using (34), we conclude that if pi [1, +c) then the solution of (12) exists, is unique
and linear in the information. (It should be pointed out tharJ does not need to be
diagonal" if a 2 x 2 block of J involves the eigenvalue p and has a 1 in the upper right
corner, then we first invert the 1-pPIP2 associated with the component of u, ui

corresponding to the bottom row of this block and move to the above row in order to
solve for the other component of u, ui-1; the 1 of the Jordan block multiplies ui which
is already known, and so we have to invert 1-pPP2 again.)

Another application of Theorem 2 is in the study of equations of the form

(40) POu + Pv O, Pu u,

where H HI H2@’ (R) Hn, P diag [P1, , Pn ], O is a real matrix, v e H and P
is the projection of H onto Hi. Such an equation will appear if we consider the n-player
Nash game instead of the 2-player game of 2. It will also appear in the study of
dynamic linear quadratic Nash games with noisy linear state measurements, a discrete
time evolution equation and appropriate nestedness conditions (see [4]) on the infor-
mation of the players. Application of Theorem 2 to (40) yields that if there exists a real
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matrix E diag [El, , E. ], Ei’Hi "-> Hi, Ei, with

(41) EO* + OE* > 0,

then (40) admits a unique solution. Of course, if the Hi’s admit Hermite polynomials
as a complete set of orthonormal eigenvectors, one can follow a procedure identical to
the one of 3, but the formulae derived will be quite complicated. Finally notice that
if n 2 and

then (40) represents another way of writing (9) and (11). Application of the condition
(41) is possible, but the result will be weaker than the one derived by first transforming
(12) into its Jordan form and then applying Theorem 2.

In the rest of this section we will show how some dynamic problems can be reduced
to static ones (see also [4]), and how one can solve them. Let

x,+a A,x,, +Bu +B2u2 k=0, 1,...,N,

Yk Ckx +v, 1, 2

i’ i]Ji(Ul,//2) E XN+I[ 3v E XkON+IXN+I kXk nt- bl kU k "nt- u R ,u
k=O

i,/= 1, 2,

Xo, wk, v k are independent Gaussian random variables with nonsingular covariance
i’ >O, Riimatrices. The real matrices Qk Q, k, Ak, B ,,Ck have appropriate dimensions,

kxR",u6R ,yR andui=(u ),.o, Ul, uk Player 1 chooses u as a function
2of (yo,y,"’,y,yo, .,y,_), and player 2 chooses u as a function of

(yo, y-l, yo, y). Using the evolution equation, we can express the Ji’s as
2quadratic functions of x0, wk, v, u, u k and the y’s as functions of Xo,

WO Wk-l V V /) V -1 and u ,. , b/k-l /go b/k-1. Because of
the nestedness of the information we can do away with the presence of the u i’

lS
0=< l-<_ k 1 in the expression for y, and similarly for y Let X (Xo, WO, WN,

2 v2u). We have thus transformed our problem into the following"V0 VN V0

Jl(Ul, u2)= E[ulQllUx + uIgl2u2 + blISlX -b b/O12U2 +- u’zF1x + x’LIX],

J2(ul, u2)= E[uO22u2 4- uR21Ul + uS2x + u(21u1+ UlF2X +x’L2x],

YlO CloX, Yll CllX, YlN C1NX,

Y20 C20x, y21 C21x," ", Y2N C2NX.
Let

Plk =El’lYe,"’", y,, yg,’"", y#_,],

P2k El’ lYe,.""’, Y#k-1), yo2, Y:],
P1 diag [P,o, ’, PN], P2 diag [P2o, ’, P2N].

(PIIcPzl P2I, P2IcPll Pit if <_- k 1 and Pad,Pat Pt, PzkPzl Pzl if <_- k.) If we are
interested in the Nash solution we can write down the analogues of (9) and (11), which
can be viewed together, as an equation of the type (40). We can thus either apply a
generalization of the analysis of 3 or settle for less and use Theorem 2. (If we are
interested in the leader-follower solution, we have to assume that y 0 for k -_> 1.)
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6. Example of a Nash problem. In this section we will solve a one-dimensional
Nash problem. Let

yl xl, y2 xl + ax2.

xl, x2 are normally distributed, independent Gaussian random variables and a # 0. Let
0 be the absolute value of the correlation coefficient of ya, y2, 0 (1 + a2)-a, 0 < 0 < 1,

Ja(ul, u2) E[1/2u + rlulu2+ ul(slxl + s2x2)+1/2quZ2 + u2(hxxa + hzx2)],

(u, u) E[gu2 + rulu2+ u2(s21xl + s2x2)+q2u + uz(t2xxa + t22x2)],

where r, sq, q are reals. (12) assumes the form

(42)

where

0 rr2, s ra(s2 + as22)- Sl.

Let u ,=0 c,p, (ya), where the p, are the one-dimensional Hermite polynomials
(see [9]), and c] <+. A straightforward application of Theorem 1 yields the
following. Consider the equations for the c’s,

c,(1-p0)
if n 0, 2, 3,....

If:
(i) 1 00 ", n 0, 1, 2,..., then the solution exists, is unique and is given by

u(yx)=s(1-pO)-ay.
(ii) 1 00, but O0"= 1 for some n =0, 2, 3,..., then the solution is ua(y)=

s(1-00)-ya + cp,(ya.), c arbitrary and real.
(iii) 1 pO and s 0, then the solution is u (ya)= lya, is arbitrary and real.
(iv) 1 pO and s 0, then there is no solution.

If 1 =p0 for some n 2, then case (ii) holds and an easy calculation shows that

Jx c2[-1 +qOr + constant,

since 0"= 1/(rlr2)>O. We conclude that if r/r>q player 1 can make his cost
arbitrarily small or sufficiently large c. If r/r2 < qa he will do well to choose c 0. If
both rx/rz<qx and r2/r <q2, hold then both players will agree on c =0 (or on c
sufficiently small if ra/rz > qa and r/r > qz). If r/ra q, then player 1 does not care
about c. Conflict will arise about the choice of c if r/r2 > q and r;/ra <q2, in which
case player 1 will want c as big as possible whereas player 2 will want c 0. If player
1 is faster than 2, he calculates his u through (42) first, realizes the possibility
choosing c arbitrarily and by declaring his decision he forces player 2 to use (11) to
find his decision and thus player 1 imposes his choice of c. Therefore, the case of
nonunique Nash solutions carries hidden in it the concept of the leader-follower game.
Finally, notice that if J is convex in u a, u2, i.e., q r, since fir2 1/0> 1, then we
obtain 1/rz<ra and thus r/r2<r Nq, i.e., q ra/r2; therefore player 1 will prefer
c 0, in agreement with the fact that the convexity of J cannot permit it to go to -m.
Nonetheless, it might very well be that ra/r < qa < r in which case player 1 will again
prefer c 0, although J is not convex in ua and u2, i.e., he cannot make J arbitrarily
small although J is not convex in (u, u2). This situation is due to the fact that what
matters is the convexity of J in ua Pu, u P2u2, i.e., convexity on some subspace
and this convexity is guaranteed by qa > r/r2.
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The condition 1 pO", i.e., 0 correlation coefficient of yl, y2 (rlr2) -n, is critical.
rlr2 can be interpreted as the coupling of J, J2, whereas 0 is the coupling of the
information. We can thus interpret the condition 1 pO, as saying that if the coupling
of the information equals the inverse of some power n 1 of the coupling of the costs,
the solution will be nonunique.

7. Conclusions. Here we will point out several directions in which the analysis
presented can be generalized, or problems which suggest themselves for study within
our framework.

The second level problems that have to be solved in the case of nonunique
solutions, as discussed at the end of 3 and 4 are of definite importance. In the Nash
case, J* is a quadratic function of the ci’s (we set 4 0) and the constraints on the ci’s
are finite, since the ci’s involved are finite in number. Thus player 1 is faced with a
classical quadratic deterministic optimization problem subject to linear constraints.
Although it is an easy problem, it merits special attention because it will provide the
best Nash decision to player 1.

To generalize our analysis to the many player case one needs to extend Lemma 1
and Lemma 2. One can go one step further and allow different components of U to
have different information or even more, one can study equations of the form
PQu +Pv 0, where P diag [P1, P ], Pu u, P diag [P1," Pk ], where Pi, Pi
are projections. Such extensions are important in order to be able to handle dynamic
games with nested information structures (although conceptually they are covered by
the methods presented here).

Another interesting problem whose study lies within the capabilities of the.
methods presented, is the one where one leader is followed by two followers, which
followers play Nash.

Appendix A: Proof of Lemma 1. Let R (C) denote the range of a matrix C. All
bases to be mentioned are orthonormal. Let the rows of C2 C21 be a basis for
R (C) fq R (C.). Let the rows of (1 be a basis for R (C) fq R (C)+/-. Let the rows of
222 be a basis for g (C)- f’) R (C). Choose ffxx2 so that its rows together with those
of C1 and Cx2 constitute a basis for R (C). Choose C22 so that its rows together with
those of ff222 and ff21 constitute a basis for R (C&). This construction proves (1), (2) and
(4). Let us concentrate on Cl12, C221, which we will denote by D1, D2. If D1 is kl n,
DE is k2n and k k2, let k > k2, without loss of generality. Then there are
nonsingular square matrices L1, L. so that LDD.L will have its last row equal to
zero, which means that the last row of L1DI is an element of R(D) perpendicular to
R (D&) Such elements, nonetheless, were put in R -’(C and thus k cannot be strictly
greater than k2. Reversing the roles of kl and k2 we conclude that kl k2 k and that
DD is a square nonsingular matrix. Let A be the diagonal Jordan equivalent of DID,
i.e.,

(DID’I U UA,

where U is the matrix of the orthogonal eigenvectors. Let M be the diagonal Jordan
equivalent for which

(A-1/2 U’DD; (D2D;)-ID2D UA-1/2) V VM,

where V is the matrix of the orthogonal eigenvectors. Let

/1 V’A-1/2 U’D1,

12 M-1/2 V’A-/2U’DD& (D2D. )-ID2.
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It can be verified that

11 L 21’ L 1 M/2,

so we can use Da,D2 for Ca2, C221. R (D) andR (D2) have no common elements, since if
they had one, it should have been placed in R(z) from the beginning. M is diagonal
has positive elements, and each //is the product of two nonidentical unit length
vectors (rows of 3, 32). Thus 0 < 4//< 1. 71

Appendix B: Proof of Lemma 2.

ant EEp.P,Pp] E[pP2ff/] E[(Pzp) fill aln,

since Pi is self-adjoint and Pp. p.. p. and pl have the form

Pn (Yl) Pn(Yl11)Pn2(Y112)Pn3(Y12),

//(Yl) h(Y111)12(YII2)I(Y12).

Using the independence of some of the components of y, ye, we have

ant E[n(Yx)VxV2t(Yl)]

E[/ (y)Pp/(y 1)]

--E[n(Y1)E[ffll(YIII)12(YII2)ffI3(YI2)[Y2, Y22, Y222]]

=E[P,,(y1)P(ya2)E[pll(y11)P:(ylI2)Iy1:z, y2zl, y22]]

E[/:3,, (y 1)/13(Y 12)E ffh (Yll )//z(Y 112)I y22]3

(B.1) E[pn(Y1)fi13(Yxz)E[E[fi11(Y111)ffl_(Y112)[Y221, Y11211
E[n(YI)l(YI2)E[2(YII2)E[h(YII)IY22,
E[n (y 1)/:33 (y 12)E i0t(y 12)E[ p/x (yx 1)] Y221]]

E[n(Yx)" 13(YI2)E[PlI(Y1)]" E[ffl2(Yx2)] Y22]]
E[Pnl(yl)P.(yz)P.(yz)P(yz)E[P(y)]. E[P(y12) yzz]]

E[P1(y111)]’ E[pl(Yl)]" E[P.(YZ)Pl(Y12)]" E[P.(Y12)E[pl(Y112)IY2z133.

It holds that

(B.2)

Let

E[p,(y11)] { 0 if n # 0,
1 if na =0,

E[/3,,3(y12)//3(y2)] ]
1

if n3#/3,
if n3 13.

10n2(Y112) Prnl(Z1) Prn (Zk),

i0/2(Y112) psx(Z1) Pst (Zk),

where ),’112 (Zl," Zk)’. Let Y221 (WI,’
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Since zi depends only on wi and vice versa (Lemma 1, (3)) we have

E[psl(Za)’" psk(zk)lwl,’’’, wk]

=E[E[p(z). p,,(z,)lz, w,.. ., w,]lw,.. ., w,]

=E[ps(zl)E[ps2(z2)" ps,.(z,)lz, w," w]lw," w,]

=E[ps(Zl)[Wl]" E[psz(Zz)" ps,(z)[w2," ,.Wk]

[pzlw]. [pzlw]. E[psZ,,lw,,].

Therefore,

(B.3) =E[pm(Za) pm,(z,)E[Psl(za)lw,]" U[ps.(z,)lw,]]

E[p,(za)E[Psl(Zl)lwa]]’’" E[p,,(z,)E[p,,(z,)lw,]].

Since E[zaw]=/--, E[ps(zl)[w] will be a polynomial of order sl in w and
the leading coefficient of this polynomial will be the leading coefficient of
multiplied by (/-)sl. Similarly, E[E[ps(z)[wl][z] will be a polynomial in za of
order s a, with the leading coefficient of ps multiplied by (/--)2. Thus

$1E[E[p(z)lwl]]z] tz ps,.(z)+ Hermite polynomials in z of order strictly less than
s x. Thus we conclude that

E[p,,(zx) E[p(zl)[ w]]= E[p,,.,(z)E[E[ps(zl)l w][ zl]]

j" 0 if s < ml,

if ml s.

Since E[p,(zx)E[ps(z)] wl]]=E[ps(zl)E[p,,,(z)l wx]], we conclude that

(B.4) E[p,(zx)E[ps(Za)l w.]]= {
From (B.3), (B.4) we now obtain

(B.5) E[p,.,(yxxz)E[p2(ylz) yzza] t
Equations (B.1), (B.2) and (B.5) prove (2)-(5).

if n2# 12,
if n2 12 and
Pn2(Yl2) pm(Zl) Pm, (Zk).

Let us now prove (6). To find IIP112P22111 we will calculate P112P221u. U can be
restricted to depend only on yl12 and thus u n= cnp(yx2), where ,__a
(Co 0 so that E[u 0).

[P112P221u[[ E[(P112P221u)’ P112P221u]

E[u’. PzzlP2P22au]

E CClE[p.(y1z)P22,PePzzxP,(y12)]
n,ll

CnClanl.
n,ll

An argument similar to the one used before shows that 8,1 0 if n # l, and if n l,

m 2ink 2nn an an.
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Thus, IIP1a2P221u[I2 En_-i IIcll2a 2 Also

Ilu[I= E c’c,EEO., p,]= E IIcll,
n,l>--I n=l

and therefore

IIPl=P=ull 27=111cnll=a
Ilull2 Y=xllcll2

Obviously IIP:P::ll=supa,. and since a. decreases, because 0</xi<l, we
conclude [IPlP:ll=max{,..., } a. For reasons of symmetry, IlPPll
max{a,..., }=IIPI:PII.

Appendix C: The operator I-RPPz. From the analysis of 3 it is obvious that
if instead of having to solve (14) we had to solve

(c.) (I nele)u v,

where v Ua (and thus v Ei=o diPi, C R m, E IIdll2 < +), we would end up with the
equivalent system of linear equations

(C.2) (I aR )ci di, O, 1,. ..
If (C.1) has a solution Co, c,. , with ci e Nm then

u E cp, E c < +,
]=1

is a solution of (C.2). Therefore the R’s for which I-RPPe is invertible are those
which do not have any of the 1/a’s (for an 0) as eigenvalues.

To find II- RPlell, let u 2o c0. Thus Ilull
[I(I-RPP)ull E[u’u + .’R’RPPP. 2u’neP:u]

E
n=0

., c’ (I a,,R (I a,,R)c,, < 2 Ilcn = sup IlI- a,,R ,
rt=0

and obviously III-RPP:II-sup,IIZ-a,RII. If (z-ee- exists, to find II(I-
ReP-II, let v EodP, llvll= Eolldll=<+, Then (I
2o(I aR)-ldpp ECoCp.,ll(I-RP1Pe)- [
(I a.R)-d.. Thus [[(I RPP)-[[ sup. I1(I- aU)-l, (It is easy to see that if
(I a.R)- exists for all a., then sup.

Let us formalize this discussion into a proposition._
PROPOSITION 1.
(1) spectrum (RPxPe) {a.r; r eigenvalue of R, n O, 1, 2, .}.
(2) I[I- RPxPeII sup. III- anU[I.
(3) (I RPIP)- exists, if and only if 1 # a.r for all n and then II(I- RPP)-I[

supn II(I a.R)-l.
We can use (3) in the case where we have to solve for u the equation (I RPIP)u +

f(u)=v, where I[f(u)-f(a)llLllu-a[ and f:UlU, vU. If L<
inf. [[l(I-a.U)-ll-] the contraction mapping theorem is applicable and yields
existence and uniqueness of a solution. Equations of this form can arise when the cost
J is nonlinear in Ux, u.
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SUFFICIENT CONDITIONS FOR OBSERVATION-INNOVATION
EQUIVALENCE IN WHITE GAUSSIAN CHANNELS WITH FEEDBACK*

KENKO UCHIDAt

Abstract. This paper deals with the problem of establishing conditions for the informational equivalence
between observation processes and their innovation processes in white Gaussian channels with feedback. It
is shown that the informational equivalence holds in either case that there is a nonzero time delay in the
feedback loop or that a time integral operation is included in the feedback loop.

1. Introduction. The objective of this paper is to establish some sufficient condi-
tions for the informational equivalence between observation processes and their
innovation processes in white Gaussian channels with feedback.

Let the white Gaussian channel be described by dy(t) F(t) dt + dw(t), where the
signal F is a stochastic process and the noise w is a Wiener process. Let us denote by
/(t); the expected value of F(t) given by the past of the observation up to time t, i.e.,
l(t)=E{F(t)]y(s), O<-s<-_t}. Thus, the innovation process corresponding to the
observation y is du(t)= dy(t)-’(t) dt. It can be shown that, under weak conditions,
z, is a Wiener process [6], [8]. The subject of this paper is the question whether the
observation y and z, are informationally equivalent, i.e., whether y and u generate the
same families of r-fields.

This question is called the "innovation problem", which was first posed by Frost
[6]. Though it is now known that the answer to the general case is in the negative [3],
various conditions for the positive answer have been reported. In the Gaussian case
where F and w are jointly Gaussian, informational equivalence was proved in [1], [5],
[9], [16]. Clark [4] obtained a positive answer for the case that F is not necessarily
Gaussian, but independent of w and bounded. An extension of Clark’s result was tried
in [2]. The assumption of independence between F and w is adequate, indeed, for
many problems related to one-way signal processing, but it is also true that this
assumption excludes many problems of practical importance, e.g., multi-way communi-
cation and detection problems and estimation and control problems. Beneg [1]
succeeded in eliminating this independence assumption in a control problem setup.
Another result was obtained by Kallianpur [11].

In this paper our concern also lies in establishing informational equivalence
without the independence assumption between F and w. We describe here the
dependence between F and w explicitly as the presence of the feedback of the
observations in the signal F similar to the model of [7]. First, it is shown that
informational equivalence holds in the case that there is a nonzero time delay in the
feedback loop. Secondly, we also establish the informational equivalence in the case
that an integral operation with respect to time is included in the feedback loop.
Examples of the control problem setup are presented for both cases. Finally, we discuss
the case of additive type feedback.

2. Formulation and preliminaries, The model to be considered here is the white
Gaussian channel with feedback, which is precisely written as

Io(1) y(t) F(s, x, y) ds + w(t), 0 <-_ <- T,

* Received by the editors April 22, 1980, and in revised form February 12, 1981.
? Department of Electrical Engineering, Waseda University, Tokyo 160, Japan.
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where y(t) is the observation, F(t, x, y) is the signal, x is the message and w(t) is the
noise. Let (I), Y3, P) be an underlying probability space which carries x and the w(t)
process; x takes its value in a measurable space (X, W), w(t) is a Wiener process, and
x and w(t) are independent.

Let C be the space of continuous functions from [0, T] to R, and ct be the o--field
of C generated by {f(s), 0 <- s <-_ t, f C}. The signal function

F:[0, T]XC-R

is a jointly measurable function with the following properties:
(A.1) F(t, .,. is W (R) t-measurable for each [0, T].
(A.2) There exists a number M>0 such that IF(t,x,f)l<=M for all (t,x,f)

[0, T]xXC.
Assumption (A.1) means that the signal F(t, x, y) consists of the message x and

the past observation {y(s), 0-<s-<_t}.
Let t cr{y (s), 0 <- s _-< t} denote the g-field of f generated by the observation up

to time t, and define/6(t, y) E{F(t, x, y) t}. Then, the innovation process is defined
to be u(t)=y(t)-io(S, y) ds. This gives another expression of the observation
process

y(t) f/6(s, y) ds + u(t).()
Jo

The problem is to determine whether t Wt for all t, where t o-{v(s), 0 _-< s-< t}.
However, we know from the definition of u(t) that v(t) is a t-adapted process; i.e.,

t Wt for each t. Therefore, in the following, we can focus our attention only to the
question whether t c Wt for all t.

Our arguments are based on the Bayes formula for JO(t, y). The following result
is a special version of the Kallianpur-Striebel formula 10]. For the details of the proof,
see [14].

LEMMA. Let y(t), 0 <= <= T be a strong (i.e., W v o’{w(s), 0 <= s <= t}-adapted) sol-
ution of the stochastic differential equation (1). Then,

(3) (t, y)=’[xF(t’ x, y)a(t, x, y)/x (dx)
xa(t, x, y)/x (dx)

where Ix is the distribution function for x and a(t, x, y) is given by

a(t, x, y)= exp F(s, x, y) dy(s)- IF(s, x, y) ds

3. Main results.
(a) Delayed feedback. Consider the case that there is a nonzero time delay h > 0

in the feedback loop. Specifically,
(A.3) F(t,., .) is f(R) /_h-measurable for each t[0, T], where s ={b, C},

-h<_s<_O.

Then, it is noted that in the interval [0, h there is no feedback loop and so the problem
is the same as Clark’s [4]. Under assumptions (A.2) and (A.3) the stochastic differential
equation (1) has a unique, strong solution y(t), 0 -< t-< T. This is shown by dividing the
interval [0, T] into the subintervals [0, h], [h, 2h], [2h, 3h],. and constructing the
solution recursively on these subintervals.

THEOREM 1. Under assumptions (A.2) and (A.3), it follows that t Wt for all
[0, T].
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Proof. The proof here is a modification of Clark’s [4]. Let Zt be progressively
measurable with respect to t and bounded as IZI =< M. Writing

RtZ(x) fo F(s, x, fo Zr dr+ u) du(s)

2folF(s,X, fo’Z  r + = fo’Zrdr+p)Zsds,
set

(4)
(xF(t, x, Z ds + u) exp RtZ(x)t(dx)

Tt(Z) = ]’x exp RtZ(x)t(dx)

Then, since u(t) is t-measurable, T(Z) is e&-measurable and has a progressively
measurable version with respect to t. It is also shown that IT(Z)I <_-M,

If we take Zt =-t (fit 15(t, y) for short) we obtain exp R(x) a(t, x, y) by (2).
Therefore, the Bayes formula (3) gives

This means that/6 is a fixed point of Tt. In the following we will construct a sequence
of ,-adapted processes converging to this fixed point F.

Now consider T(Z)-F, and rewrite it as

T,(Z)- ,(Z)- T,(#)

=[IxexpRZ(x)tx(dX) fxeXpR(x)tz(dx)l
-1

Ix Ix [{F’z (x)-Ft(x)} exp RtZ(x)exp R?(x’)

+ F?(x){exp RZ(x)- exp R?(x)} exp Rt(x ’)

+F?(x) exp R?(x)lexp RtP(x’)- exp RZt(x’l}]lx(dxllx(dx’),

where for short we write

Io + )

Using the inequality ]exp - exp (I N {(exp + exp ()l- (I, , ( e R in the second and
third terms of the numerator, and IFf (x)l N M, we find

,Tt(Z)-Ptl [fxeXp Rff(x),(dx)]-’
(6) x [Ix ’Ftz (x)-Ft(x)] exp RtZ(x)tx(dx)

+M (exp Rf(x)+exp Rf(x))lRtZ(x)-RV,(x)l#(dx)
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where

RtZ(x)-Rt (x)= Io (FZs (x)-Vs (X)) du(s)

(7)
_1 (iFf (x)]2_lF(x)12) ds + (Ff (x)Zs-F(x)s) ds.
2

Remember here that F(t, x, y) is assumed to be dependent on the delayed feedback
{y (s), 0 _<- s _-< h }. Therefore, if Zt is taken such that Zt Ft for all [0, k ], k -> 0, it
follows that

(8) FtZ(x)=Ft (x) forallt[O,k+h],

and so (6) and (7) are reduced to
-1

x Mix (exp R,Z(x) + exp

(0 ,(x-t(xl= Fs (xl(Z,-Ll ds

for all t[k, k + hi. Substituting (10) into (9) and using IF(x)IM, we obtain

’ { xexpR(x)(dx)}xexp.,x)ITt(Z)-F,IM2 IZ-l ds 1 +=2-(dx)
Here, using [Ft (x)1--< M, IF,z (x)l M, I1 M and Iz, M, we have

.j’xexp R(x)tx(dx)
<

exp Mt .[xexp.[; Fs (X) d,(s)tx(dx)
J’xexp RZ(x)tx(dx)=exp (-Mt) J’xexp FZs (x) du(s)tx(dx)

exp 3MZt,

where the last equality follows from (8). Thus, for the particular Zt such that Zt if’t,
0 -< -< k, we have

(11)

]Tt(Z)-tl<--gI IZs-ff’slds, g=MZ(l+exp3MeT) forallte[k,k+h].

Now define the Art-adapted processes Ft, n 0, 1, 2,... in the interval [0, hi as
^0follows. Set F --0 and define

P’ Tt(ff’n-1), /7 1, 2,’’’ for e [0, h].

Then, setting k 0 and replacing Z by/6- in (11), we have from (11)

Kn+l tn+lIff’r +1 -Vtl <--M(n + )i for e [0, hi.

This implies that/67 converges to the fixed point/6t uniformly on the interval [0, h ],
which is Art-measurable.

Next, .using thus obtained fixed point Ft, 0 <= <= h, define the Art-adapted processes
Ft, n 0, 1, 2,... in the interval [h, 2h] as follows. Set/6’ Ft, n 0, 1, 2,... for
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’o
6 [0, h ], and define F =- ffZh and

g7 Tt(pn-1), /’/ 1, 2," for [h, 2h].

Then, setting k h and replacing Z by/n in (11), we have from (11)

gn+l

Pn+lt l’l<2M(n= +1)!
(t-h)+1 fort[h, 2h].

This implies that/6;’ converges to/6t uniformly on [h, 2h], which is Wt-measurable.
In this manner, the fixed point/6t can be constructed recursively on [0, h ], [h, 2h ],

[2h, 3h ], and it is proved to be a Wt-adapted process defined on the whole interval
[0, T]. Then it follows from (2) that y(t) is W/-measurable for each el0, T] and
therefore 0,0,0 C o/ for all

(b) Integrated-Lipschitzian feedback. Consider another type of observation pro-
cess which involves feedback loops in some smooth manner. Let F(t, x, y) have the
particular form

(A.4) F(t, x, y)= Fo(s, x, y) ds +F(t, x),

satisfying the Lipschitz condition that there is a number L > 0 such that

for all (t, x) s [0, T] X and f, g C.

Then, by modifying the standard argument slightly, it can be shown the stochastic
differential equation (1) has a unique strong solution under the assumptions (A.1),
(A.2) and (A.4). For this type of the observation we will establish again the informa-
tional equivalence between the observation and the innovation.

THEOREM 2. Under the assumptions (A.1), (A.2) and (A.4), itfollows that t
for all [0, T].

Proof. The proof is again based on the successive approximation for the fixed point
of Tt which is defined by (4). First note that all the arguments up to the derivation of
(6) and (7) in the proof of Theorem 1 are still valid here. So we will start from the
estimate (6) with (7).

Applying the Lipschitz condition on F0 to the first term of the right-hand side of
(6), we have

(12)
IxlF,Z (x)-F, (x)[ exp RtZ(x)l(dx)

Ix exp R tZ(x )tx (dx
<-__L fot foS(,Zr-ffr]+ for[Zu-15,]du) drds.

In order to estimate the second term, let us observe (7). Using the particular form of
F assumed in (A.4), the first term of (7) is rewritten as
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Therefore the Lipschitz condition on Fo and Schwarz’s inequality give

(fZs (x)-F (x)) dr(s)

[Io (s’ "1[Io (I; (’-’ Ion’-’""The second and third terms of (7) are estimated by IFIM, FIM, IZIM,
1NM and the Lipschitz condition on Fo as follows:

1 tf [2 [F (x) 2) ds foi(]Zr__r]fo]Zu__u]d)drds,t(14) I Jo (]F(x) ML +

o
(Ff (x)Z F(x)L) as

(5)
M IZ-Llds+Mt IZr-l+ IZ-&ldu drds,

Substituting (13), (14) and (15) into the second term of the right-hand side of (6), we
have

x (exp Rf(x) +exp

(16)
xexp R(x)(dx)
exp R(x)(dx) Right-hand side of
exp (dx) (13)+(14)+(15) /"

To bound the first factor on the right of (16), note that

[fO ] 1/2[;t $2 2 ]1/2
follows from (13). Denote the right-hand side of this inequality by m (t, p). Then, we find

(17)

Ixexp Rt (x)lz(dx)
<
xexp ( Ff (x) d(s) +M2t + m(t, ))l(dx)

ixexp RZt (x)lx(dx) ixexp (i’o FZs (x) dv(s)-M2t)tx(dx)
=exp (3MZt + m(t, v)).

(18)

It follows from (13)-(17) and (6) that

ITt(Z)-ltl <-Mo(t, ) fo I/-LI ds

+M(t, v) fo [Z-Pr[ + Iz -P.I du dr ds

2

+M(t, ")[fo’ (]o (IZ,-rl +/o’ Iz.-.1 du)dr) ds]
1/2
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where

Mo(t, ,)= M(1 +exp (m(t, t,)+ 3M2t)),
Ml(t, ,) L(I,(t)I + 2M)(1 +exp (m(t, ,) + 3M2t)) + L,

1/2

m2(t, t.’) L[fo lU(s)12 ds] (l +exp (m(t, t,)+ 3MZt)).

Thus, we find

(19) IT,(Z)-1 <-N(t, ,) fo IZs-sl ds,

where

N(t, ,)= Mo(t, ,)+ t+. Ml(t, t,)+ (1 + s ds M2(t, ,).

Now, we define the -adapted processes, n 0, 1, 2, in the interval [0, T]
0as follows. Set F 0 and define T(-), n 1, 2,.... Then, replacing Z by

in (19) and using a simple induction, we have

(20) IP7+ -lN(t, u)
[I; N(s’ u)dS]"Mt"

n
This implies that 7 converes to the fixed point uniformly in t. Thus, since 7 is
-measurable, we see that F is -measurable, and so y(t) by (2). Therefore, , =
for all [0, T].

As examples for both cases, we will present two particular types of observation
processes involving feedback of observation via stochastic differential equations, which
are regarded as setups of stochastic control problems (compare with the model of [1]).

Example 1. Let the observation process be given by

(21) y(t) H(s, z(s)) ds + w(t).

Here z(t) is the state variable satisfying

(22) z(t)= G(s,z(s), y(r),-h<=r<=s-h)ds+v(t),

where y(t)=0 for t[-h, 0], and v(t) is a Wiener process independent of w(t). This

setup is a general one for control problems with delayed controls [17]. If G satisfies
the Lipschitz condition and the growth condition in the second argument, i.e., there is
a number K > 0 such that

(23)

(24) IG(t,, y)l(l+l’l) for,srR,

(with, of course, appropriate measurability conditions in all arguments), then the
stochastic differential equation (22) has a unique solution; z(t, v(s), y(s-h), 0=<s =< t)
for each y e C. In this case, if H is bounded, the observation (21) becomes the delayed
feedback type (where x v).
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(25)

Example 2. Next consider the following type of observation"

io’ioy(t) H(r, z(r)) dr ds + w(t),

where z(t) is the state variable satisfying the same equation as (22) but h 0:

(26) z(t) G(s, z(s), y(r), O<-r<-s) ds +v(t).

Similarly as before, if G satisfies the Lipschitz condition (23) and the growth condition
(24), then (26) has a unique solution z(t, v(s), y(s), 0-< s -<_ t) for each y C. Further-
more, if the Lipschitz condition as used in the assumption (A.4) holds with respect to
the third argument of G, it can be shown that the solution satisfies the similar Lipschitz
condition in the third argument. Therefore, the observation (25) becomes the
integrated-Lipschitzian feedback type (where x v), if it is assumed additionally that
H is bounded and satisfies the Lipschitz condition as (23) in the second argument.

4. Remarks. From the previous discussion it may be conjectured that the
existence of a strong solution of (1) is sufficient to ensure informational equivalence
between the observation and the innovation, though we have not found out any cue
for the proof. The delayed feedback and the integrated-Lipschitzian respectively are
sufficient conditions for such existence. The other special case is that with additive type
feedback" F(t, x, y) ff’(t, x) + ff’(t, y). For this type, the informational equivalence has
been already established in [11]. We give here a simple proof. First note that

u(t) y(t)- E{F(s, x, y)ls} ds

37(t)- fo E{P(s, x)l,} ds,

where y(t)=oP(S,x)ds+w(t). Let t]tt=o-{y(s),O<-s<-_t} and 7(t)=37(t)-x
E{P(s, x)l@} ds. Now it follows from Clark’s result [4] that oOt =tr{7(s), O<-_s<-t}
whenever/3 is bounded. Therefore, if we can show that t 0,, we have u(t)= (t)
and the desired result. However, from the definition of y(t),

(27) y(t) y(t) + (s, y) ds

therefore the Lipschitz condition and the growth condition on/ give a one-to-one
correspondence between y and 37, i.e., t t. It should be noted that the delayed
feedback assumption, i.e., /(t, y(s),-h <=s<=t-h) assures also such one-to-one
correspondence in (27), (see [17]).

Finally we give additional remarks on the references. A published version of
Clark’s proof [4] appears in [15] (see also [14_-1, [12]). After submitting this paper, the
author learned of a recent result of Krylov [13] which assures observation-innovation
equivalence when the signal arises from a diffusion process different from the one in
[1] and is not independent of the noise. Krylov’s result is summarized in [12]. The
reviewers informed the author that Beneg [2] and Kallianpur [11] both have the same
mistakes in the proof of their extensions.
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RECURSIVE ESTIMATION IN DIFFUSION MODEL*

G. BANONt AND HUNG T. NGUYEN{

Abstract. This paper is concerned with the nonlinear identification of dynamical systems disturbed by
white noise, an important problem in control engineering. A nonparametric identification procedure for such
systems which are usually described by a diffusion model is given in Banon (1977), (1978), where weak
consistency of estimators has been obtained and simulation study has been carried out successfully. In this
paper, we prove a stronger result concerning asymptotic properties of the estimators of the drift term, namely,
strong consistency, and also related results.

1. Introduction. The diffusion model is usually used to describe the behavior of
dynamical systems disturbed by white noise. Specifically, we are concerned with
systems represented by a stochastic differential equation of the form

(1.1) dXt=m(Xt) dt+o-(St)dWt, t>=O

where (Xt, => 0) is the one-dimensional observation process, (Wt, _-> 0) is the standard
Wiener process, and m(. ), tr(. are unknown functions to be estimated.

In the case of linear systems, many identification techniques have been proposed,
e.g., Kalman and Bucy (1961). The approach which is presented in Banon’s work
(Banon (1977), (1978)) to solve a class of nonlinear identification problems is based
mainly on the kernel method in statistical estimation theory. The estimators obtained
are recursive in the sense that they can be easily updated when more data are available.

Since the diffusion term o-2(x) can be expressed as

(1.2) lim 1E((Xt+s-Xs)2IXs x), x , s >=0,
t0

the property of quadratic variation of diffusion processes (Wong and Zakai (1965)), can
be used to obtain a recursive estimator for o-2(x), as shown in Banon (1978); we are led
to focus on the nonparametric estimation of the drift term rn (.), assuming that r2 is
known or unknown but constant.

If we denote by f the common probability density of the Xt’s (a stationary Markov
process, solution of (1.1)), and f’ its derivative, then it can be shown (Banon (1978)) that

1 2/’(x)
rn (x) - cr

f(x)’ f(x) > O.

Therefore, we are led to consider the estimation of the logarithmic derivative of f based
on a realization of the continuous-time, stationary Markov process (X,, -<_ T). For this
purpose, we shall use the results in Nguyen (1979) concerning the estimation of f(x) at
each point x such that f(x) > 0. (The values of m (.) on {f 0} are irrelevant, based on
the observations X,, >-0).

This paper is organized as f611ows. In 2, we shall show that a stationary Markov
process satisfying a certain mixing condition, namely the G2 condition of Rosenblatt
(1970), (1971) can be interpreted as an asymptotically uncorrelated process. This
condition G2 will be used throughout our work to obtain asymptotic properties of the
estimators. In 3, we shall extend various results in Nguyen (1979) to include recursive

* Received by the editors February 29, 1980, and in revised form January 23, 1981.
I-Laboratoire d’Automatique et d’Analyse des Systmes, Toulouse, France.
$ Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts

01003.

676



RECURSIVE ESTIMATION IN DIFFUSION MODEL 677

estimates of Yamato type (Yamato (1971)), and recursive estimates of the derivative of
a probability density. In 4, we specify the assumptions on our model of diffusion,
describe in detail the estimation scheme and prove the strong consistency of the
estimator of the drift term. This main result is stronger than the one in Banon (1978).
Note that the asymptotic normality of all the estimators involved in these papers has
been obtained in Nguyen (1978). A simulation study in order to compare our procedure
of identification with others is under consideration.

2. Asymptotically uncorrelated processes. In density estimation from stationary
Markov processes, e.g., Rosenblatt (1970), Barton (1978), asymptotic properties of
estimators, e.g., consistency in quadratic mean, have been obtained under an additional
condition on the process, namely the G2 condition of Rosenblatt (1970). Strictly
speaking, such a condition applies to the transition operator. We shall show that a
stationary Markov process (Xt, s R+) satisfying the condition G2 can be interpreted as
an asymptotically uncorrelated process (Rosenblatt (1971)).

From now on, we assume that the stationary Markov process (Xt, R/), the
solution of (1.1), has first order density f(.) on the real line N. Conditions for such a
situation will be given in 4.

For continuous-time processes, let us recall the definition of the condition G2
(Banon (1978)) (for discrete-time processes, see Rosenblatt (1970)). For each

(0, +oo), let Tt be the transition operator of (Xt, +) defined on the space L of
bounded Borel measurable functions. (For our purpose, it is sufficient to consider
bounded functions on N.)

(Ttg)(x) E(g(Xt)lXo= x), g L, x .
We consider the following norm of the operator T,

T,g[lp
1 <- p <-(Tt)p =sup

g_LX [[g[[p

where ][g[[ stands for E1/, [g(Xo)[" for g L, g _1_ 1 means E(g(Xo)) 0 and E means
expectation with respect to the stationary density f defined previously.

The process (Xt, e R+) is said to satisfy the condition Go (s, a) if there exists s > 0
such that

(Ts)o <-_ a < 1.

As for the discrete case, one can show that the above Go conditions, 1 < p <
are all equivalent to each other.

Rosenblatt (1971) has considered the L-norm condition for discrete-time Markov
processes. We now extend his definition to continuous-time Markov processes. A
stationary Markov process (X,, g+) is said to satisfy the L-norm condition, 1 _-< p -<

+c if (Tt)o --) 0 as t- +.
It was shown in Rosenblatt (1971) that the L-norm conditions, 1 < p < +c, are all

equivalent to each other, and that the L2-norm condition is equivalent to the fact that
the Markov process is asymptotically uncorrelated. It is easy to see that these results
remain true for continuous-time processes.

According to the above assumptions, a stationary process (Xt, 6 +) is said to be
asymptotically uncorrelated if

Egl(Xo)g2(Xt)
sup 0 ast+oo.

gl,g2-1-1
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The LP-norm and the Gp conditions, 1-< p---+oe, are equivalent. Indeed, if the
Gv(s, a) condition is satisfied, then it is easy to check that (Tt)p :<= d t, where d a 1Is

(0, 1), for ks, k 0, 1, 2, (using simply the fact that (Tt, R/) is a semigroup of
contractions).

Now, if R/, let k be an integer such that ks <-_ < (k + 1)s; since (Tt, e N+) is a

semigroup and (Tu)_-< 1, Vu -> 0, we have

(Tt)p<--(Tt,s),<=dkS-<-d t-s ()d
Therefore limt_,+(Tt),=O; i.e., the process (Xt, t+) satisfies the LP-norm
condition.

The fact that the L"-norm condition implies the G, condition is obvious. We state
the above results in

LEMMA 2.1. Let (Xt, +) be a stationary Markov process. 1]: p, q (1, +oo), then
the following statements are equivalent:

(i) The process satisfies the L"-norm condition.
(ii) The process is asymptotically uncorrelated.
(iii) The process satisfies the Gq condition.
Any one of (i) or (ii) or (iii) implies that (Tt)r<=cd for d (0, 1), t+ and

r (1, +oo).
If p =q [1, +oe] then (i) and (iii) are equivalent.

3. Strong consistent .estimates of the density and its derivative.
3.1. Estimation scheme and assumptions. In the sequel, we shall make the

following assumptions on the stationary Markov process (Xt, R+):
(i) (Xt, +) is asymptotically uncorrelated.
(ii) (Xt, +) is a measurable process.

(iii) The common probability distribution of the Xt’s is absolutely continuous with
respect to the Lebesgue measure on [. We denote by f its Radon-Nikodm derivative.
We also assume that f is continuous and bounded.

The conditions for such a situation will be given in 4.
We consider the following class of recursive estimators of f(x), x , which have

been investigated in Nguyen (1979). These estimators are the analogue of the ones in
the case of independent identically distributed random variables, introduced in
Deheuvels (1974), containing as a particular case the sequential estimators of Yamato
(1971).

For x E and > 0, the estimate of f(x) based on the observation process up to time
is taken as

ft(x) h(s)H(h(s)) ds H(h(s))K h(s) ds,

where h(. is a mapping from R+ to E+-{0} and H(. from +-{0} to [/ such that:
(a) h(s)J,O as s
(b) h(.)H(h(.)) is locally integrable on N+, and

h(S)H(h(s)) ds +oe as t+

and where the kernel K is a Borel measurable function on [ such that:
(Co) K is bounded and _+2 K(y) dy 1, K >= 0.
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Remark. In Banon’s work (1978), H(x)--1. If H(u)=l/u, we obtain the
analogue of Yamato’s estimates in the discrete case.

For the estimation of the derivative f’ of f, we make an additional assumption on
the process:

(iv) The density f has a continuous and bounded derivative.
As estimate of f’(x), we use the derivative of f,(x):

-1

Io H(h(s))/h(s)K’[(Xs-x)/h(s)] ds,

where the kernel K is such that:
(cl) It is a density of bounded variation and its derivative K’ is bounded.
For simplicity, we will adopt the following notation. If u and v are functions on

some subset of N, and if there is some constant c such that u(t)<-_ cv(t) for all in that
subset A, then we will write u(t) O(v(t)) for A.

In Nguyen (1979), under the G2 condition, sufficient conditions for almost sure
convergence of ft (x) are given, for the case whereH(.) is bounded orH(t) 0 (1 / t), for
> 0. In this section, we consider the case H(t) O(tk) for > 0 and k [-1, +eo) which

contains the estimates of Yamato type as a special case.

3.2. Preliminary lemmas. We start by improving some technical lemmas in
Nguyen (1979).

LEMMA 3.2.1. Let (Z, .+) be a measurable second-order process, with EZ 0
for all +. Let g be a mapping from + to + such that g(t) > 0 for > 0. If

(i) there exists b (0, 1) such that g(t)
(ii) there exists a nonnegative constant u such that C(t, t) O(t2u) as - +oo, where

C(., .) denotes the covariance function of the process (Z, +), and 0 is the usual
notation, then

( 1 )’qa 0,2(u+l_b) W,-WmoO,

almost surely as - +co, where

and (m a, m 6 N-{0}) is a sequence ofpositive real numbers such that, for >- 1, m <-_ <
(m+l)a.

The proof of this lemma is similar to that of Lemma 5 in Nguyen (1979), which is,
roughly speaking, an adaptation of the technique employed in Loeve (1960) for the
almost-sure stability problem.

LEMMA 3.2.2. Under the hypotheses ofLemma 3.2.1 and if, in addition:
(iii) there exists a v > 0 such that

l fot fot ’) (t2(b-a-u)-v)t2 C(s, s ds ds 0 as

where u is the constant defined in (ii) and b is the constant defined in (i), then Wt O,
almost surely, as

Proof. Since v > 0, there exists an a such that

1
--(2b-2-2u-v, 2b-2-2u).
a
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For such an a, Lemma 3.2.1 tells us that W, Wma 0, almost surely, as +co. The
announced result is obtained if we prove that W,a 0 almost surely as m +0o. But
from assumption (iii) we have, for n +0o,, io  io2ab C(S, S’) ds ds’= O m O(1)

m=l m m=l

since a(2b-2-2u-v) <-1, recalling that g(t).- b. This result implies that

io  i0EWm,, C(s, s’) ds ds’= O(1)
m=l m=l g2(ma)

which completes the proof.
We now specify the process (Zt, R+).

(i)LEMMA 3.2.3. Let (Z +), O, 1, be two processes defined for . by

Z(ti) [H(h (t))/ h (t)i][g(i){(Xt x )/h (t)} Eg(i){(Xt x )/h (t)}],

where (Xt, +) is a stationary Markov process satisfying the conditions (i) and (iii) of
3.1, h(. ), H(. ), and K(. are]unctions defined in 3.1 with K(. satisfying (co) (resp.

(cl)) for i= 0 (resp. i= 1).
If Ci(’,’) is the covariance function of the process (Zti, -), then there exists

d 6 (0, 1) such that, for s, s’ /, one has

Ci(s, s’)= )[H(h(s))H(h(s’)){h(s)h(s’)}I/2-idlS-L’l], i= O, 1.

Proof. By Lemma 2.1, the transition operator of (Xt, [/) satisfies (Tt)2 =< d for
all E/ with d (0, 1). Therefore, as in Banon (1978), we have, for any s, s’ [+,

Ci(s, S t) EZ(si)z(i)s’ O[dlS-S’lE1/2(Z(si) )2E1/2(Z(s )2].

Under the assumption (Co) (resp. (c)) for i= 0, (resp. i= 1) and the fact that f(.) is
bounded, we have, for any s +,

E/(Zsi))2 <__H(h(s))h(s)-iEa/E{Ki)[(Xo-x)/h(s)]}2

O(H(h(s))h(s)/2-i,
which completes the proof.

To prove the strong consistency of estimators in the following paragraph we need
the following lemma on asymptotic unbiasedness"

LEMMA 3.2.4. If (Xt, +) is a stationary Markov process satisfying conditions (ii)
and (iii) of 3.1, and h(. ), H(. ), K(. are functions satisfying conditions (a), (b) and
(Cl)) for i= 0 (resp. i= 1).

Eft(x) f(x) as +o.

If in addition (Xt, /) satisfies condition (iv) in 3.1, and K(.) satisfies the
stronger condition (ca) instead of (Co), then Ef (x)- f’(x), +0o.

The first statement above was proved in Nguyen (1979); the second one follows
from arguments similar to those used in Banon (1978) and Nguyen (1979).

3.3. Strong consistency of estimators. Let us call assumption Ao the set of the
conditions (i)-(iii), (a), (b) and (Co) above and assumption A1 the set of the conditions
(i)-(iv), (a), (b) and (ca) for simplicity. We will use the previous lemmas to prove the
following theorem.
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THEOREM 3.3.1. If, in addition to assumption Ao (resp. A1), the functions h(. and
H(. are such that either one of the following two conditions is satisfied"

d) H(t)= O(tk) ]:or t>0, with k el-l, i-],

th(s)H(h(s)) ds and O(t"), +c,b h(t) 2k-2i+1

with b (q/2 + 43-, 1] and q [0, 1/2),
d’) H(t)= O(tk) fort> O, with k i-,

fo h(S)H(h(s)) ds b and Io h(S)2k-2i+l ds O(tb’)

as +, with b (b’/4 + , 1) and b’ 6 (0, 1] for 0 (resp. 1), then, for any x ,
fi) (x) fi)(x), almost surely, +, or O, 1

Proof. Let (Zi, +) be the process defined in Lemma 3.2.3 and g(. be the
function defined by

g(t) J0 h(s)H(h(s)) ds.

Then [t (x)-Ef (x) W, where

Zi) ds.

(i)Under the assumptions of the theorem, we first note that (zt e +), O, 1, are
.--(i)measurable, second-order processes with EZt 0 for all +, and that g(t) > 0 for

> O, and there exists b e (0, 1 for which g(t) as + +m. Under assumption (d), i.e.,
k i- 1/2, from Lemma 3.2.3 we have, for +m,

Ci(t, t)= O[H2(h(t))h(t)-2i] O[h(t)2-2i+]
O(t) O(t2") for any u q/2.

Hence, for u q/2, Lemma 3.2.1 is satisfied, and we also have, for +,
Ci(s, s’)= O[{h(s)h(s’)}-i+/2 dlS-s’l],

h (.) being decreasing as -->

1 for Iott2b Ci(s, s’) ds ds’= O[f(t)2’-ei+ata-2b]

O(t"+a-2b) O(t2(b--")--v) for any v 4b-3-2u-q,

which proves that Lemma 3.2.2 is satisfied, since the conditions b > q/2 + and u q/2
imply the existence of a v > 0.

In the same way, under (d’), i.e., k 1 -, we have, for +, C(t, t) O(1)
O(t2") for any u 0. Hence, for u 0, Lemma 3.2.1 is satisfied and we also have for

l forgot [ fat2 Ci(s, s’) ds ds’= 0 -2 h(s)2-2i+1 ds

O(t’-)
O(t2(b-l-u)-) for V =<4b-2-2u-b’
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which proves that Lemma 3.2.2 is satisfied since the conditions b > b’/4 + 1/2 and u 0
imply the existence of a v > 0.

Therefore, under either (d) or (d’) we have, for -0, 1 0 almost surely as

The last result together with the property of asymptotic unbiasedness (Lemma
(’>3.2.4) imply that for any x e and 0, 1, ,()(x)-f()(x) w +Ef(/ (x) )0,

almost surely as +, which completes the proof of the theorem.
Remarks. We get the estimates of Yamato type by setting H(t)= 1/t, then

h(s)H(h(s)) ds t, i.e., k -1, b 1. The corresponding sufficient condition for
the almost-sure convergence, =0, is the existence of a q e[0,) such that for
+, 1/h(t) O(t).
The asymptotic bias and variance of these estimators, and also the conditions for

asymptotic normality, are given in Nguyen (1978).

4, Slrong ensislenl estimates lhe ri[l lerm,

4.1. Nonlinear ienlifiealin problem. Consider a stochastic dynamical system
represented by the following stochastic differential equation

dXt m Xt + Xt dWt, +

with a second-order initial condition, X0 X, independent of (W,, +), which is a
standard Wiener process defined on the same probability space as the observation
process (X, +), and m (.), (. are two Borel measurable functions on the real line. We assume that the random variable X has a probability density on , denoted by
fx(.).

The problem is to estimate m(. (and (. )) from the observations Xt.
A restricted class of such identification problems is described as follows:

(i) The functions m (.) and (. satisfy the Lipschitz condition [m (x) m (y)[ +
[(x)-(y)[ c[x- y[, for all x, y where c is some constant. These two functions

2satisfy also the linear growth condition [m(x)[ + [(x)[ c(1 + x
Note that under this assumption, the process (X,, +) is unique with probability

one and is a measurable Markov process.
(ii) The function (.) is such that, for any x R,

(x)0>0.

Under (i) and (ii), the above process has a stationary transition density (Wong
(1971)). We denote its value by f(x, t), x, a and +(f(x, t) is the density of Xt
given that Xo a).

(iii) The derivatives m’(. ), ’(. and "(. satisfy the Lipschitz and linear growth
conditions of (i).

Under (i), (ii) and (iii), f(.,. is the unique fundamental solution of the forward
equation of Kolmogorov.

(iv) The functions m(.) and (.) are such that the solutions of the equation
d(a(x)w(x))/dx m(x)w(x) are bounded and integrable on .

Under (i)-(iv), f(.,.) converges, as +, for any a , to a bounded and
continuous limiting density on , f(. ), say, which is solution of the above differential
equation (Banon (1978)).

Since we are interested in asymptotic results, we assume from now on that
fx(" )= f(’ ). In this case, the limiting density f(.) is the common density of the Xt’s.

(v) The functions m(. and (. are such that

rain lim r(x), lira r(x)) > O,
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where r(. is the function defined by

r(x)
m2(x) m’(x) 0-’(x) 0-’2(x) 0-(x)0-"(x)
0- (x)+-m(x) +-- x [.

2 2 0-(x) 8 4

Roughly speaking, this condition (v) is about the nature of the spectrum of a
Sturm-Liouville problem; for details see Banon (1978).

Under (i)-(v), it is shown in Banon (1978) that the corresponding process
(Xt, R +) satisfies the condition G2, i.e., by Lemma 2.1, is asymptotically uncor-
related.

Now consider the case where 0- is known or unknown but constant (a recursive
estimate of 0

-2 in this latter case can be constructed, recalling that 0- may be
characterized as a conditional expectation). Since f(. is a solution of the differential
equation given in (iv), we have, for x R,

2

m(x) {0-2(x)}’+
f(x)

Therefore, the estimation of m(x) is reduced to the estimation of the quotient
O(x) f’(x)/f(x), for x such that f(x) > O.

4.2. Strong consistent estimates of Q(x). Based on the previous investigation of
the estimation of f(x) and f’(x), a natural estimate of O(x) from the observations up to
time is

h(s)

Xs --X -1

.[foH(h(s))Ko{.h(s) j+e]
where Ki(" ), 0, 1, are two kernels and e is a positive constant.

THEOREM 4.1. Let (Xt, +) be the process defined in 4.1 under the assumptions
(i)-(v), with fx(" =f(’); h(. and H(. the function defined in 3.1, and satisfying
(a), (b); Ki(’ ), 0, 1, the kernels satisfying (ci), O, 1, respectively. Ifin addition, h(.
and H(.) satisfy (d) or (d’) of Theorem 3.1 with i= 1, and if f’(.) is continuous and
bounded, then, for any x such that f(x) O, we have

Ot (x) O(x), almost surely, as - + 0o.

Remark. Before proving the theorem, let us.mention that the e appearing in Ot (x)
is added to make sure that the denominator will not vanish. On the other hand,
examples of models which satisfy all conditions stated in 4.1 are given in Banon’s work
(1977), (1978).

Proof of the theorem. Write

-1

To prove the strong consistency of Qt(x), it is sufficient to have the strong consistency of
f(i) (X), i= 0, 1 since under (b),

h(S)H(h(s)) ds +0o as t-> +0o.
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Now under (i)-(v), we have seen that the process (Xt, +) satisfies the assump-
tions (i)-(iii) of 3.1. If in addition, f’(. is continuous and bounded, then we are under
all the sufficient conditions on the process to have strong consistent estimates of f(x)
and f’(x).

Because h(t)2t’+1 O(h(t):k-), as +oe, we note that:

(d) with i= 1 and k [-1,-]:ff (d) with i=0,

(d) with i= 1 and k [-, ]:ff (d’) with i= 0, k [-21-, ],
(d’) with i= 1 =), (d’) with i= 0.

Therefore, under the hypotheses of Theorem 4.1, we may apply Theorem 3.1 twice to
obtain the announced result.

Example. For H(t)= k and h(t)= -a, we have b 1-a(k + 1). The correspond-
ing sufficient condition for the almost-sure convergence of Or(x) is that:

a (0, ) when k [-1, 1/2],

( 1 ) when k >1/2"a 0,
2k+5

This can be obtained by looking at (d) or (d’). For k =, the strong consistency is
obtained for any a (0,-).

COROLLARY (Strong consistent estimates of the drift term). Under the conditions
of Theorem 4 1, the rcursive estimators m,(x) 5({0" (X)}’ nt- o-2(x)Ot(x)) of the drift
re(x), at each point x such thatl(x) O, is strongly consistent, i.e., mt(x) re(x), almost
surely as

Remark. One could try to estimate m (x) by using the fact that

m(x) lim 1E(Xt+s-XslXs x).

The approach used in this paper is based on the relationship

re(x) 2 )’ cr
2( (x + (x)O(x))

where Q(x) ]’(x)/](x).
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AN ANALYSIS OF OPTIMAL MODAL
REGULATION: CONVERGENCE AND STABILITY*

J. S. GIBSONt

Abstract. This paper treats the linear-quadratic regulator problem for infinite dimensional, second order
(in time), linear oscillators. We solve the problem approximately by modeling a finite number of modes and
obtaining a linear feedback control via the solution of a finite dimensional Riccati equation. This control we
call the "modal control," and our analysis focuses on the convergence of the sequence of modal control laws
corresponding to a sequence of models of increasing dimension. We seek conditions under which we can say
that, as the number of modeled modes increases, the modal control law converges to a control law that is
optimal for the full system, and that, if enough modes are modeled, the full closed-loop system that results
from applying the modal control law to the actual system is stable. Roughly speaking, we have the
convergence and stability we want if and only if we model enough damping to make the free system uniformly
exponentially stable.

1. Introduction. The most common method for designing an active control scheme
for a distributed system is to approximate the infinite dimensional system with a finite
dimensional model and apply finite dimensional theory to an optimal control problem
formulated for the model. The resulting control is then used for the actual system. In
this paper, we investigate such a procedure for linear distributed systems represented
by evolution equations of second order in time. Our finite dimensional optimal control
problem is the standard linear-quadratic regulator problem, the solution of which
follows from the solution of a Riccati matrix equation. Two closely related questions
should be asked about a control scheme based on finite dimensional modeling of an
infinite dimensional system: as the dimension of the model increases, does the control
scheme somehow approach a control law which is optimal for the full system? and, if
the model dimension is large enough, is the actual system guaranteed to perform
satisfactorily? The first question is a question of convergence; the second, especially
when posed about the closed-loop system resulting from a feedback control, is a
question of stability. Answers to these questions are the goal of this paper, in which
the results of [9] and [10] are applied to linear modal regulation.

Until recently, the common engineering philosophy and practice has been to
assume that the answer to both questions is, in some sense, yes, for realistic systems
and models. However, the increasing complexity and distinctly distributed nature of
modern control systems such as electromagnetic and thermonuclear power plants and
highly flexible aerospace structures have spawned a need for rigorous investigation of
the convergence and stability questions stated above, particularly with regard to the
modal regulation that has become so popular (see [3], [13], [17], [21] and their
references). The need for such analysis in control theory for distributed systems is
hardly surprising in view of the integral part that convergence analysis has come to play
in the more developed theory of computational mechanicsufor example, the finite
element method for computing structural response to dynamic and static loading, or
the characteristics of wave propagation in magnetic fields. Also as in computational
mechanics, the purpose of the analysis is not just to say yes or no about the
convergence of a particular approximation scheme, but studying the convergence

* Received by the editors April 16, 1979, and in revised form October 24, 1980. This research was
supported by the National Science Foundation under grant ENG78-04753.

Mechanics and Structures Department, School of Engineering and Applied Science, University of
California, Los Angeles, California 90024.
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properties of a modeling scheme can yield significant information about its desirability
and improvement, in terms of both computational efficiency and design optimality.

This paper points to clear advantages of modeling inherent damping in modal
regulation; the most important conclusion is that the answers to our convergence and
stability questions are generally negative when no damping is modeled, and definitely
positive when sufficient damping is modeled to provide a unifor/n decay rate for the
free system. The difference results from the impossibility of using a compact linear
feedback to give a uniform decay rate to an infinite dimensional linear oscillator when
the free system does not already have a uniform decay rate (see [9]). As always in active
control, the control vector here is finite dimensional. Hence the compactness of the
feedback control laws.

It should help the reader to know at the start what is about to happen. In 2 we
define the distributed control system, lay some mathematical preliminaries concerning
the semigroup which represents the free system response, and discuss the differences
between the ways external damping and internal damping affect the free system
response. Then, in 3 we formulate the optimal control problem for the original infinite
dimensional system and the sequence of finite dimensional approximate problems; in
4 we give the pertinent results on the infinite dimensional regulator problem and

convergence of sequences of approximate solutions; in 5 we apply the results of 4
to the approximation scheme of 3 for systems without damping; and in 6, for systems
with damping.

The vectors spanning the finite dimensional space on which the approximate
optimal control problems are defined we call "modes," and these may or may not be
the natural modes of undamped, free vibration. From the solution of each approximate
optimal control problem, we obtain a "modal control," which is a linear feedback
control based on the modeled modes only, and our investigation focuses on the
convergence of the sequence of modal control laws. In view of the central role played
by the Riccati matrix equation in the finite dimensional regulator problem, it should
not be surprising that the analysis of this paper hinges on an infinite dimensional Riccati
equation corresponding to the optimal control problem for the full system and the
approximate solution of this equation via the solutions to the sequence of finite
dimensional Riccati equations corresponding to the approximate optimal control
problems.

We obtain the finite dimensional optimal control problems by projecting the
original infinite dimensional problem onto a sequence of finite dimensional spaces. In
the previous literature on optimal control of distributed systems, a philosophical
dichotomy has divided authors into a group with predominantly mathematical back-
grounds and another group with predominately engineering backgrounds. The
mathematicians have begun by defining an optimal control problem for the actual
infinite dimensional system and then shown that its solution could be approximated by
the solutions to a sequence of finite dimensional approximate problems, while the
engineers have defined optimal control problems for their finite dimensional models
only, without worrying much about what the solutions might approximate. It is true
that the only optimization problems that actually will be solved for control parameters
will be finite dimensional; however, if a control scheme based on finite dimensional
modeling has any meaning with regard to optimal control of the actual system, then,
as the dimension of the model increases, the control should converge to a control that
is optimal for the full system, and the response of the full system should converge to
the corresponding optimal response. Hence the usefulness of defining an optimal
control problem for the infinite dimensional system and talking about convergence in
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the full state space: the optimal control problem for the full system provides a single
framework in which to study all the controls that are based on the sequence of models
of increasing dimension. Even though the optimal control law for the full system may
be somewhat abstract because it is defined in terms of infinite dimensional operators,
by comparing, in the framework of the full state space, the finite dimensional control
laws and the corresponding system responses to the ideal control law and system
response, we are able to compare the finite dimensional control laws to one another
and to address the convergence and stability questions that motivate our analysis.

Projecting the infinite dimensional control problem onto finite dimensional sub-
spaces is a classical and fairly straightforward idea (for example, the Ritz method),
which the technicalities of the procedure should not be allowed to obscure. In 4, after
projecting onto a finite dimensional subspace, the resulting optimal control problem is
then artificially extended back to the full state space. This is done in order to satisfy
the conditions of Theorem 4.2, which concerns convergence and is stated--as it must
be--in terms of sequences of operators on the infinite dimensional state space. The
thing to recognize is that the purpose of all this projecting and extendingqs to reconcile
the finite dimensionality of the approximating models with the infinite dimensionality
of the actual system. Once this reconciliation is accomplished, the theory of infinite
dimensional Riccati equations sheds the light we need on the boundedness and
convergence of the sequence of finite dimensional control laws and the stability of the
full distributed system when these control laws are applied to it.

2. The distributed control system. This paper deals with control systems represen-
ted by the second order (in t) differential equation

(2.1) k’(t)+Cgok(t)+agoX(t)=Yaou(t), t>=O,

where x(t) is in a real Hilbert space H and u(t) is in a real, finite dimensional Hilbert
space U; ago is a self-adjoint linear operator from D(ago), which is dense in H, onto
H; ago is coercive, i.e., there exists 0 > 0 such that

(2.2) (agoX, X)H pZ[[xlI, X D(ao);

and a4 is compact, ego is a nonnegative, symmetric linear operator from D (ego), which
contains D(a4o), to H, and there exists 3’ >--0 such that

< 211 0x11., x e D(ago).(2.3) I1%x11.-
0 is a bounded linear operator from U to H.

There are important examples where 0 is unbounded; for example, flexible
mechanical systems with internal damping. However, we should have at least (2.3) in
physical systems. We take U to be finite dimensional because any real active controller
has only a finite number of control variables. Note that 0 e (U, H) means that, if
dim (U)= m, so that u(t)= (u(1)(t), u(2)(t) u(m)(t)), then

(2.4) 0u(t)= b(i)u(i)(t),
i=1

where each b (i) is an element of H.
Now we will define the natural "energy space" and write (2.1) in first order form.

Assuming that H is infinite dimensional, we know (see [12, pp. 187,260], [25, p. 343])
that the spectrum of o is an infinitely increasing sequence of positive real eigenvalues
o,, each of finite multiplicity, and that the corresponding mutually orthogonal eigen-
vectors b, comprise a complete basis in H. Of course, the on’s and bn’s are, respectively,
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the natural frequencies and mode shapes of free, undamped oscillations. As usual, we
define the space E V H, where V D(o/2) is a Hilbert space with inner product
(vl, v2)v (’0/2vl, 0/2/22)n; E has the energy inner product ((/21, hi), (v2, h2))E
(/21, /22)v +(hi, h2)H. In defining E, we do not identify V with its natural image in H, so
that we are free to identify E with its dual, as we do henceforth. The eigenvectors of
0 are also mutually orthogonal and complete in V, and the pairs (&n, 0) and (0, On)
are thus mutually orthogonal and complete in E.

Next we construct the generator of the semigroup that provides the homogeneous
solution to (2.1). We begin with the operator defined by

J D D(o) x D(o),
I !

(2.5) = -’o -c0
()

and seek an extension of which generates a strongly continuous semigroup. (Strictly
speaking, the I in is the inverse of the natural injection of V into Hthink identity.)
We know (see [18], [24, p. 62]) that a linear operator on a Hilbert space E generates
a strongly continuous contraction semigroup if and only if 4 is densely defined and
maximal dissipative. is said to be dissipative if

(2.6) (y, Y)E ----< 0, y e D(),

and maximal dissipative if is not a proper restriction of another dissipative operator.
(All operators here are linear.) While the of (2.5) is densely defined and dissipative,
in general, it is not maximal dissipative.

Any dissipative operator has a maximal dissipative extension (see [18], [24, p. 20]).
We will construct explicitly the unique maximal dissipative extension of the of (2.5).
Since a one to one correspondence exists between the class of semigroups on E and
the class of generators, if had more than one maximal dissipative extension, we would
face a troublesome uncertainty about which semigroup, if any, provided the solution
to the evolution equation we want to solve ((2.1) or (2.13) below). Fortunately, we
have the following result.

THEOREM 2.1. Let 4 be a densely defined, dissipative linear opeator on a Hilbert
space E.

(i) Suppose that the range of, denoted by R (), is dense and 4 has a bounded
inverse 4-1. Let 4-1 be the bounded extension of 1-1 to all of E. Then 4 =- (1-1)-1 is
the unique maximal dissipative extension of 4, and R (A ) is dense ]:or A > O.

(ii) IfR (Ao ) is dense for some A0 > 0, then 4 has a unique maximal dissipative
extension, and R (A ) is dense for A > O.

Proof. (i) If a maximal dissipative operator is invertible, its inverse is maximal
dissipative. Also, it is easy to show that a dissipative operator with dense range is one
to one: Suppose is such an operator, Ilxll 1, and x 0. Since R () is dense, we
can choose y D() such that []y-x]]< 1/2. Then,,with a a positive real number,
(,(ax + y)y, (cex + y))=a(,y,x)+(,y, y)>--_a/2+(M,y, y), which is positive for a

sufficiently large, contradicting the dissipativeness of M. Hence, if a maximal dissipative
operator has dense range, its inverse is maximal dissipative. Thus M-1 and (M-l)-1 are
maximal dissipative.

Since any maximal dissipative linear operator with dense domain is closed (see
[18], [24]) and since R() is dense, any maximal dissipative extension of must have
an inverse which is a closed extension of -. But, since - is densely defined and
bounded, it has a unique closed extension, namely, 4-1. Therefore, 4 (4-1)-1 is the
unique maximal dissipative extension of .
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Since s-1 is densely defined and bounded, the graph of s is dense in the graph
of M, and therefore the graph of A -s is dense in the graph of A -M for all (complex)
A. In particular, R (A s) is dense in R (A M). Since R (A M) E for A > 0, R (A s)
is dense in E for A > 0.

(ii) Let M be a maximal dissipative extension of s. Then (A-M)-1 (E, E),
A > 0. Since (Ao-S)-1 is bounded and densely defined and (Ao-M)-1 is a bounded
extension of (Ao- s)-a to all of E, (Ao- M)- is uniquely determied. Thus M is uniquely
determined.

Since (Ao-s)-- is densely defined and bounded, the graph of A0-s is dense in
the graph of Ao- M, so that, as before, R (A -s) is dense for any A in the resolvent set
of

Now we will derive the maximal dissipative extension of the defined in (2.5).
THEOREM 2.2. Under our hypotheses on o, and qo, -o has a bounded

extension to all of V, which we will denote by ga Co.
Proof. Let v D(so). ThenoV z D(/o), and

(2.7)
1/2II,-g-I (0V[I <(oV, ,9-I(oV>H < <(OV, V)2<0I0v, Iov)H

The first inequality follows from the generalized Schwarz inequality, and the second,
from the fact that our hypotheses on So and o imply (see [12, p. 292, Thm. 4.12])

(2.8) <(oX, X>H <’]/2<,5oX, X)H, x 6D(sgo).

The theorem follows from (2.7).
We can see easily that R (s) D(s-1) D (So) x H, and that s4- (the extension

of s- to E) is

I 0

Then, as in Theorem (2.1), we have s (s-)-a, where s is the unique maximal
dissipative extension of s. D(s) is just R (-1). This sg generates the semigroup (.
that represents the free response of the control system of (2.1), and in general we have
dissipation of energy:

(2.10) II(t)y[[ <_- IlylG t->0, yE.

If o 0, we have conservation of energy, i.e., equality in (2.10).
Remark 2.1. So far, the only place we have needed o to be symmetric is the

proof of Theorem 2.2. Since any bounded perturbation of s results in a semigroup
generator, we could require only that the unbounded part of o be nonnegative and
symmetric (and So-bounded) in order to extend s to a semigroup generator s. As
long as o is nonnegative, s and s will be dissipative and (. will be a contraction
semigroup. In subsequent sections, the only place where the symmetry of Co itself,
instead of its unbounded part only, seems essential is the proof of Theorem 6.1. For
convenience, we will continue to assume that o is symmetric.

To solve the optimal control problem of this paper,we will need the adjoints of s
and -(. ), which we denote by sO* and *(. ), respectively. To construct sO*, we first
observe that (s-)*= s-* (E, E), and

-I 0
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(Remember that this is the adjoint of ,5-1 with respect to the energy inner product.)
We have then * (sO-*)-1. Also, D(s*) R (s-*) DD(Sgo) xD (Sgo), and

(2.12) 4*ID()D()=
4o --o"

In general the restriction of* to D(do) x D(s4o) is not closed and is not equal to *.
Clearly, 4" and 4-* are maximal dissipative; also we have the general result (see

[18], [24, p. 21]) that the adjoint of a maximal dissipative operator with dense domain
is maximal dissipative with dense domain. The operator * generates the semigroup
*(. ).

With y (x, 2) E, the first order form of (2.1) is

(2.13)

where

(t) dy(t) + u(t), >- O,

(2.14) [1 (U, E).= o
Actually, since we want to allow y (0) to be any element of E and u to be any element
of L2(0, ; U), in general we will have only the integral version of (2.13) (see (4.1) in
4 below), which is written in terms of 3(. rather than 4.

Because we allow Co to be unbounded, -(. is, as we will see, in general only a
semigroup of bounded linear operators on E. The difference between Co being bounded
and o being unbounded and the resulting differences in the spectra of /and 3-(.
have both mathematical and physical significance. If o 5’(H, H), D(d) D(do) x V
and 4-1 is compact (see [9]). But neither is the case in general; for example, take
o 54o. Also, if o (H, H), 3"(. is a group in W(H, H). The standard argument
notes that, for o- 0, both and -4 generate strongly continuous semigroups, and
that ([11, p. 390]) a bounded linear perturbation of a group generator yields a group
generator.

To get an idea of how the type of boundedness of o affects the response of the
system (2.1), consider the free vibration of a simply supported or cantilevered beam.
The operator 4o is then a fourth order partial differential operator. First, suppose that
the beam is subjected to no external damping, but is made of a material modeled by
the Voigt-Kelvin (see [19]) model for linear viscoelasticity. Then (see [5, pp. 301-302])
o CoS4o, where Co is a positive constant. The natural modes of free vibration remain
uncoupled in the presence of the internal damping represented by o, and the
eigenvalues of 54 corresponding to the nth mode are

(2.15) a. (-CorO 2 + 4C2oro -4w])/2 n > 1

(To get An, set u(t)= 0 in (2.1), expand x(t) in terms of the natural modes, and take
the H-inner product of &n with the resulting equation..) Note that the eigenvalues are
complex for only a finite number of modes. As ton approaches c, the values of An
approach -c and -1/Co. When 4-1 is not compact, the spectrum of 4 may contain
points other than eigenvaalues, and in the present example the spectrum of 4 consists
precisely of the sequence of eigenvalues in (2.15) and the continuous spectrum {- 1/Co}.

Since 4 has a sequence of eigenvalues whose real parts approach -c, 0 turns up
in the spectrum of 3"(t) for t>0, so that (. is not a group of bounded linear
operators. (It is instructive here to think of 0 as e-t and 3"(t) as e sgt, for > 0,.) As a
matter of fact, 0 is in the continuous spectrum of 3"(t) for > O.
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Generally, (2.3) guarantees that the system damping is sufficiently bounded
relative to the stiffness to keep the spectrum of bounded away from zero. As the
next examples illustates, this is necessary for (. to be uniformly exponentially stable.

For an example where Co is not bounded relative to sO0, let Co Co. While this
Co does not represent any physical damping of which the author is aware, the example
is instructive because the resulting semigroup is not uniformally exponentially stable,
even though Co is positive definite. Our subsequent Theorem 6.1 says that, if Co is
SCo-bounded and positive definite, the semigroup ’(t) is uniformly exponentially stable,
but of course s is not SCo-bounded for the present example; i.e., Co does not satisfy
(2.3). Referring to (2.5) with D() D(So) D(o), we could show that R( -.) is
dense for A > 0, so that part (ii) of Theorem 2.1 says that s has a unique maximal
dissipative extension, which generates a semigroup. Since the eigenvectors of o are
also eigenvectors of 2o, the natural modes again remain uncoupled, but this time the
eigenvalues corresponding to the nth mode are

(2.16) )t, --(--C0.O 4 q-4C20w8 --4W])/2 n > 1

As w, approaches oo, these two values of A, approach -oo and 0. Therefore, (. does
not have a uniform decay rate.

Since s has a sequence of eigenvalues approaching 0, 1 is in the spectrum of -(t)
for _>- 0. Actually, though we have not bothered to define D() explicitly for this case,
it is not difficult to see that 0 is in the continuous spectrum of , and hence 1 is in the
continuous spectrum of (t) for > 0, Since the norm of -(t) is greater than or equal
to the spectral radius, and since we already know that (. is a contraction semigroup,
we have II(t)ll 1, t-> o.

Now suppose that our beam is made of a linearly elastic material, but is surrounded
by a linearly viscious fluid. We have external damping and o5(H, H) (see [5,
p. 301]). Hence, -(. is a strongly continuous group in (E, E), and s-a is compact.
Since s has compact resolvent, the spectrum of s consists of eigenvalues with finite
multiplicities, with no finite accumulation point (see [12, p. 187]). Since ’-a(t)=
(-t) g?(E, E) for -< <, the spectrum of cannot contain a sequence whose
real parts approach -o.

3. The optimal control problem and the modal approximation scheme. To the
extent that we can cope with an infinite number of modes, the most natural optimal
regulation problem for the control system here, in the case of unconstrained control,
is: given y(0) in E, choose the control u L:(0, o; U) which minimizes the cost
functional

(3.1) J(y(O), u)= | ((@y(t), y(t))+(Qu(t), u(t))er) dr,

where @ @* (E, E), Q Q* (U, U), and both @ and Q are positive definite.
Of course, (3.1) assumes that there is a control for which J is finite; we will discuss
certain necessary and sufficient conditions later. It is important that @ be positive
definite so that, whenever J is finite, all the energy is driven out of the system, and,
whenever J can be made finite for all y (0), the optimal feedback sytem is asymptotically
stable (see [8], [10], and Theorem 4.1 of the next section). The optimal control problem
just stated will be referred to as "the optimal control problem on E."

While we can prove theorems about existence and uniqueness of an optimal
control for this problem and stability of the resulting closed-loop system (see [6], [8],
[10], [15], [16], and 4 of this paper), the infinite dimensionality of the problem
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prevents us from computing the optimal control scheme exactly, which we can do for
the finite dimensional linear regulator. Therefore, we seek methods to approximate
the optimal control scheme, and the most common approach, at least for flexible
systems, is called modal control (see [3], [13], and their references). In modal control,
a finite number of modes are modeled and a control problem for the approximate model
is formulated and solved for the control scheme to be used for the original infinite
dimensional system.

We will denote by ,, n -> 1, the basis vectors for the approximation scheme, and
we assume the following:

HYPOTHESIS 3.1. The vectors ,, n 1, 2 are linearly independent and are
complete in D(sgo) when D(so) is a Hilbert space with I1" ]]D(o)= Ilego IIH.

Certainly, the natural modes 4, satisfy this hypothesis. While in modal control the
vectors O, are usually taken to be the natural modes, this is not necessary for our
analysis. However, though the O,’s can be shape functions other than natural modes,
in view of the current popularity of modal control schemes for flexible systems, we will
refer to the ,’s as "modes," in an attempt to make the implications of our analysis as
concrete as possible. Whenever it is important that the 0,’s be the eigenvectors of o,
we will use the term "natural modes." The modal control problem is formulated by
projecting the optimal control problem on E onto subspaces spanned by finite combina-
tions of the J,’s.

Suppose then that we model the first n modes of the system (2.1). Let H,
span {gs.}.__<, with (.,.)H. (’,")H, V, span {j}.__<, with (. ,. )v. (" ," )v, and
E, V, H, with (., )E. , )E. Denote the (orthogonal) projection operator from
H onto H, by An., the projection operator from V onto V, by Av., the projection
from E onto E, by A,,. If the .’s are the natural modes, then Av. AH.IV, but in general
we have only Av.[v. =AH.I.=L Define the operators 0n "--AH..4oAv., o.
AH.CgoAtt., o. AH.O,, AsgA,, , A,Y3 and@, A,@A,. Denote the restric-
tion of o. to H, byAo., and similarly set Co. Co. [tt., Bo. Ydo., A, s, Iz., B, Y3,,
and D. @. 1..

Of course, the finite dimensional operators Ao., Co., Bo., A., B., and D. can be
identified with appropriate matrices; for example, if we denote by Ao,, the matrix
representing the operator Ao. with respect to the basis vectors , 1 <= <_-n, we have

(3.2)

where Ao. and o. are n x n matrices whose elements are (’ogSi, Oi)n and (i,
respectively. In particular, if the g’s are the natural modes b,, then o. is a diagonal
matrix containing the first n eigenvalues to/2 of So, reapeated according to geometric
multiplicity. For expressions and equations involving operators on E, like e
ea"tA, + I-A,, we must remember the difference between an operator and a matrix
representing that operator, but we may interpret expressions and equations involving
only finite dimensional operators, like e a"t or the finite dimensional Riccati equation
(3.13), in terms of the matrices representing the operators.

Note the identities

(3.3) " -o. _Co"
A,

-Ao. -Co.
The I in , is the inverse of the natural injection of V into H, as in (2.5), and the I in
A, is the natural identification of Vn with H,. The subspaces E, and E are invariant
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under M. and et, and we have

e A.t Snt(3.4) e"’l. and e

We have similar identities and properties for s4* (Ans4An)*.
Also note

(3.5) Ile-tll- lie *n’[I _-< 1, => 0.

As we will see in the next section, the extension of e A"t to all of E, as e sgnt, is useful
because it allows us to talk about convergence in E.

To deduce the convergence we will need for e a"t (as n - c), we apply the following
Trotter-Kato approximation result (see [12, p. 504, Theorem 2.16])’

THEOREM 3.1. Let and 5n, n 1, 2 generate strongly continuous contrac-
tion semigroups T(. and n(" ), respectively, on E. If
(3.6) (h n)-1

-’)’ (/ --,5)-1 strongly

for some h with Re h > 0, then

(3.7) Wn (t) 3"(t) strongly,

uniformly in any finite interval of >-_ O. Conversely, if (3.7) holds for all in an interval
of positive length, then (3.6) holds for every h with Re h > 0.

TI-IEOREM 3.2. For the modal approximation scheme we have defined, we have

n(3.8) e - 3-(t) strongly, 0-<_ <

(3.9) e’ *(t) strongly, 0<_- <

and the convergence is uniform in for in bounded intervals; i.e., for each y E,
E

e"ty -(t)y uniformly in each bounded t-interval, and similarly for e

Proof. Let h>0. Writing (h-s4n)--(h-s4)-=(h-sqn)--(s4n-s4)(h-s)
and noting II(h s4 )11 <- l/A, n >_- 1, we see that (3.6) holds if (s sg)(h s4)-y - 0
for y in a dense subset of E. Let 7 LI,__> En. For ) ’, we have sCn3 A,,s)3 for n
sufficiently large, and thus sO,)) sO)). Now we need only show that (h s4)(E) is dense
in E to prove that (h- s4n)-- (h-s4)-1 strongly.

According to Theorem 2.1, R(A-s) (h-s)(D(o) x D(s40)) is dense in E.
Let v, h eD(sgo). Then, by Hypothesis 3.1, we can choose a sequence (n,/)
in such that [IS4o(3,, v)[l + ][S4o(/n h)[lu "0. Then, since s4/2, Co, and the identity
are bounded by o (as in (2.3)), (h-s)(3, aCn)- (h-sg)(v, h). Thus, (h-s)() is
dense in R (h -s), which is dense in E.

In the same manner, we can prove that (h s* )- - (h s4*)- strongly, by using
the restriction of s4* to D(s0)x D(s0) instead of s.

At this point, we should comment on the classes of vectors 0n that satisfy our
hypotheses. Actually, the requirement that the O,’s be in D(s4o) considerably restricts
the choices for these shape functions. In applications, the Hilbert spaces H and V are
spaces of functions on a finite dimensional region and s0 is a partial differential
operator. For S4o to be coercive, enabling us to use the energy norm for E, D(So) must
be restricted to those functions which, along with their spatial derivatives, satisfy
boundary conditions that result from the physics of the particular problem. Thus, while
we do not require the g,,’s to be the natural modes, we do require them to satisfy the
same natural boundary conditions that the natural modes must satisfy. Of course, the
functions in D(s4o) must be sufficiently smooth.
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It is possible for an approximation scheme like the modal scheme we have described
to yield the convergence of (3.8) and (3.9) but not satisfy our hypothesis that the basis
vectors form a basis for D(M0)--either because the basis vectors are not sufficiently
smooth or because they do not satisfy the natural boundary conditions. For the
convergence results of the subsequent sections pertaining to approximate solution of
the infinite dimensional regulator problem, all we really need is the convergence of
Theorem 3.2. (See Remark 4.1.).

However, the shape functions used in modal control schemes ordinarily should
satisfy the hypotheses we have stated for the On’s because, for a control law of a given
finite order to be most effective, it should be based on mode shapes that represent the
most significant motions of the system to be controlled. Most often, these motions are
the free oscillations of the system. We allow shape functions other than the natural
mode shapes (i.e., the eigenvectors of 0) because, for complex control systems, some
of the O,,’s are often taken to represent motion of certain components relative to the
overall structure. For example, a satellite with a rigidly attached flexible boom might
be modeled by the rigid body motion of the central body plus the natural vibration
modes of a cantilevered beam for the boom. In this and similar examples the "modal
coordinates" do not represent the natural modes of the composite system, but the shape
functions 4’ represent physically significant motions and satisfy the natural boundary
conditions and smoothness requirements implicit in Hypothesis 3.1.

In view of the prominence of the finite element method, it is natural to ask whether
the basis vectors of finite element approximation schemes satisfy our hypotheses on
the 4,,’s. In general, the answer is no. As we have indicated, the most practical modal
control schemes are based on "modes" that represent the most significant motions of
the system. The role of the finite element method in modal control is to determine the
mode shapes and corresponding frequencies; the basis vectors of the finite element
scheme usually are not themselves the mode shapes we want and need not satisfy our
hypotheses on the O’s.

For the optimal modal control problem of this paper, the control u. is chosen to
minimize

(3.10) J.(y.(O), u.)= Io ((D.y.(t), y.(t))+(Oun(t), u.(t))r) dr,

where

(3.11) ,(t)=a,y,(t)+B,u,(t), t>-_O, y, (0) E,.

The problem of choosing u, to minimize J, we call "the optimal control problem on
En" or "the nth approximate problem;" (3.11) represents the model based on the first
n modes. We assume the following:

HYPOTHESIS 3.2. For each y,(O)E,, there is a u L2(O, oe; U) such that
Jn (y, (0), u) < oo; or, equivalently, the unstable states of (3.11) are controllable. (See Balas
[3] for "modal" conditions for controllability).

We know then from finite dimensional control theory (see [1], [14]) that the
optimal control control u, is the feedback control

(3.12) un(t) Q-1B*,P,yn (t),

where P, is the unique real, positive definite, selfadjoint, 2n x 2n matrix satisfying the
Riccati (Kalman) equation

,
(3.13) A*,P, +PA,-PnBQ- B,P +D, =0.
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Remember that the adjoints in (3.12)-(3.14) are taken with respect to the energy inner
product on E.

Based on (3.12), the modal control an for the full system (2.1) or (2.13) is given by

(3.14) an(t) -O BnPnAny(t),

and this feedback control results in a closed-loop system which we will use the
semigroup ff’n (") to represent. The generator of S?n (’) is Q-1B*,PnAn. Since the
modal control law of (3.14) occupies the center of our attention, let us be as explicit as
possible about it. The projection operator An picks out the first n modes (and their first
derivatives with respect to time) from the full state vector y(t), and then tTn (t) is taken
to be the control that would be optimal if there were no other modes present. Now this
modal control generally cannot be implemented exactly because of a limited number
of measurements and "observation spillover" (see Balas [3]) of the unmodeled, or
residual, modes into the sensor data; the hardware almost never can realize fully the
projection An. However, linear modal regulators usually are designed to approximate
(3.14) as closely as possible. A typical procedure (see Balas [2], [3] and Skelton and
Likins [20], [21]) is to filter the sensor data to remove as much of the spillover from
the truncated modes as possible, and then feed the filtered measurements into a
Luenburger observer to estimate the right side of (3.14).

The main questions this paper addresses are (1) what are the convergence
properties of Pn and of the control law of (3.14), as n increases? and (2) is the
closed-loop system represented by 6en (.), i.e., the full system with the modal control
tTn, stable for n sufficiently large?

4. Approximation theory for the infinite dimensional regulator problem. We now
state, in the form most covenient for present purposes, the results of [i0] to be relied
upon explicitly in this paper, and from these results we derive convergence properties
for approximation schemes like the modal scheme of the previous section, Because this
paper deals exclusively with optimal control on infinite time intervals, so that the
resulting control laws are time-invariant, it must rely on [I0] for the pertinent results
concerning the infinite dimensional regulator problem and its approximate solution,
rather than on earlier works such as [6], [8], [15] and [16]. Although these works did
a lot to motivate [10], their results concerning steady-state solutions of infinite
dimensional Ricatti equations are not adequate for the analysis of this paper. Especially
important for this paper are (a) the fact that existence of a nonnegative, selfadjoint
solution of the Riccati algebraic equation of our problem implies that there is a bounded
(and, in our problem, compact) linear feedback which gives the control system a
uniform decay rate (see Definition 4.2 and Theorem 4.1); and (b) Theorem 4.2, which
concerns approximation of the solution of the Riccati algebraic equation. The earlier
works contain neither these results nor anything that could be used in their place here.

Remark 4.1. For the results of this section, we need only the definitions stated in
this section and Hypotheses 4.1 and 4.2. The control system of 2 and the approxima-
tion scheme of 3 satisfy these definitions and hypotheses.

Let E and U be real Hilbert spaces, identified with their respective duals, and take
U to be finite dimensional. Let t generate a strongly continuous semigroup of bounded
linear operators r(. on E, and let (U, E), (E, E), and Q (U, U) with

and Q positive definite and selfadjoint. Define the state y(t) E by

(4.1) y(t)=T(t)y(O)+fo (t-,)u(rl)dn, t>-_O, y(0) E,
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where the control u(. L2(0, ; U). The cost functional J(y (0), u) is given as in (3.1)
with y (.) given by (4.1). Solutions of (4.1) are called "mild solutions" of (2.13) (see
[4]).

DEFINITION 4.1. A function u L2(0, oo; U) is an admissible control [or the initial
state y, or simply an admissible control [or y, if J(y, u) is finite; i.e., if the state y (.)
corresponding to the control u(. and the initial condition y(0) y is in L2(0, co; E).

DEFINITION 4.2. Let the operators s4, , , and O be as defined above. An
operator in (E, E) is a solution of the Riccati algebraic equation if maps the
domain of s into the domain of s4* and satisfies the Riccati algebraic equation

(4.2) s4* + sg O-l.+@ 0.

The following theorem gives a necessary and sufficient condition for a nonnegative,
self-adjoint solution of (4.2) to exist. For such a solution, (4.2) is justified in [10] by
showing that it holds on the domain of s, which is dense, so that s* + has a
bounded extension to all of E.

THEOREM 4.1. (see [10, Thm. 4.11]). Let the operators s, , @, and Q be as
previously defined. There exists a nonnegative, self-adfoint solution of the Riccati
algebraic equation if and only if, for each y E, there is an admissible control for the
initial state y. When such a solution exists, it is the unique nonnegative, self-adfoint
solution of (4.2); the unique control u( which minimizes J(y,. and the corresponding
optimal trajectory y( are given by u(t)= -Q-l*y(t) and y(t)= 6e(t)y, where (
is the strongly continuous semigroup generated by s-Q-I.; and S( is uniformly
exponentially stable. Furthermore,

(4.3) J(y, u)= min J(y, v)= (y, y)z,
admissible

where u is the optimal control for the initial state y.
For the appropriate version of the most significant approximation theorem of [10],

we need the following.
HYPOTHESIS 4.1. There exists a sequence of Co semigroups -n(" on E, with

generators sn, and I[’, (t)[I is bounded uniformly in n and for tin bounded intervals.
Also, there exist sequences of operators and in(U, E) and (E, E), respectively,
with * > d > 0 for n > 1 and d independent of n. As n c,

(4.4) ff (t) -(t) strongly,

(4.5) ff* (t) ff*(t) strongly,

(4.6) , - strongly,

(4.7) N*, - N* strongly,

(4.8) n - strongly,

and, for each n, the Riccati algebraic equation corresponding to s,, , , and Q has
a nonnegative, self-ad]oint solution ,,.

Note that, since dim (U)< oe, (4.6) implies (4.7). From [10, Thm. 5.3] we have:
THEOREM 4.2. Assume Hypothesis 4.1. If [1,[I is bounded uniformly in n, then the

Riccati algebraic equation (4.2) has a nonnegative, selfadjoint solution ,
(4.9) , strongly,

A semigroup 6e(. is said to be uniformly exponentially stable if there are positive constants M and
a such that [[6e(t)ll<-_Me -’, t>=O.
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and

(4.10) 9n(t)9(t) strongly, t>=0,

where n(" and (. are the semigroups generated by 1, _,O-l., and
o-l., respectively, and there exist positive constants M and 3 such that

(4.11) [l,(t)[l<-_Me -t and IIS(t)]l<-Me -’, t>0.--

Furthermore, ifthe convergence in (4.4) and (4.5) is uniform in for in bounded intervals,
the same is true ]:or the convergence in (4.10); in view of (4.11), the convergence in (4.10)
is then uniform in for 0 <-t <, and, for each y6E, 5,( )y converges in Lz(O, o; E)
to St( )y.

Note that the nth approximate problem here, i.e., the optimal control problem
corresponding to the operators sn, n, ,, and Q, is defined on the whole space E,
while in practice each approximate problem is stated on the finite dimensional subspace
En (see (3.10)-(3.13)). We can bridge this gap by artificially extending the sequence of
finite dimensional problems to all of E. For this procedure, we need an additional
hypothesis’

HYPOTHESIS 4.2. There exists an increasing sequence of finite dimensional sub-
spaces En, n >-1, whose union is dense in E, each E, is in D(s4), and the proection
operatorfrom E onto E, is An. Fors A,s4An, e"tconverges strongly to 5r(t) and
converges strongly *(t), and this convergence is uniform in ]:or in bounded subsets of
[0, o).

Also, we take , A,, and @, A,@A,.
The operators 4, and @, are almost the n and n needed for Theorem 4.2, but

not quite, because we need the nth approximate optimal control problem defined on
E to admit a finite cost functional Yn with n >= d > 0. Define ’, n + An- I and. @n + I-An and note that En and E reduce ., ., and e 2"t. Set
D. n[z @.[z., and Bn .. For un L2(0, c; U), define the state vectors y.(t) and
33.(t) in E. and E, respectively, by

(4.12) y,(t)=ea"ty,(O)+ f ean(t-n)BnUn(’o)d’o, t>-O, y.(O)E,
.o

and

sntn [. e(y,(t) e (0)+ t-n)Bnun(rl)
(4.13)

y. (t) + e-’ (33. (0) Yn (0)), => 0, f. (0) 6 E, y. (0) A.f (0).

Here, y.(0) is an arbitrary vector in E. and G(0) is any vector in E such that
y. (0) A.p. (0). Hence . (t)- y. (t) E, 0.

The nth optimal control problem defined on E. is to choose u. to minimize

(4.14) J.(y.(0), u.)= J0 ((D.y.(w), y.(W))z +(Ou.(w), Un())U) dn,

and the nth optimal control problem defined on E is to choose u. to minimize

o
(4.1s)

J (y (0), u) + l[Yn (0) y (0)112
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The nth problem on E then is a purely artificial extension of the nth problem on En,
and the assumption in Hypothesis 4.1 that n exists is equivalent to assuming that the
Riccati algebraic equation for the nth problem on En has a positive definite, selfadjoint
solution Pn 5f(En, En). From Theorem 4.1 applied to the optimal control problems on
En and on E, we see that the optimal control for both problems is un (t) -O-1BnPnyn (t)
and that n, the solution of the Riccati algebraic equation for the nth problem on E,
is (see (4.3), (4.14), (4.15))

(4.16)

Also,

(4.17)

and

(4,18) II,[[ max {I[P,[I, 1/2}.

The semigroups -n(’ and n(" are given by

(4.19)

Note that

(4.20)

By Hypothesis 4.2,

(4.21) An --> I strongly,

n PnAn + 21-(I- An).

and own(t) 8 (s’-NnO-1N*’p’)t,

llnO-l*n BnO-1B*PnAn.

so that (4.6)-(4.8) hold. Suppose that (4.9) holds also. Then (4.16) shows

(4.22) PnAn --> strongly.

We then have

(4.23) (B*P,A,)* A,P,B, A,P,,A,Y -->N strongly.

Since U is finite dimensional, (Bn*PnAn)* must also converge in (U, E), so that

(4.24) B*PnAn 3" in(E, U).

The significance of (4.24) is that it implies

(4.25) n (t)--, 9(t) in (E, E), uniformly for 0 <- < c,

where if’n(" is the semigroup generated by s-YdO-1B*PnAn (see (3.14)). Recall (see
Theorem 4.1) that St( represents the optimal system response and ow( is uniformly
exponentially stable. Thus, when (4.25) holds, the response corresponding to the
control an of (3.14) converges to the optimal response, in the sense of (4.25), and, for
n sufficiently large, the closed-loop system represented by Sen is uniformly exponen-
tially stable.

Now the big question" under what conditions is II  ll uniformly bounded in n ? In
view of (4.18), this is equivalent to asking the conditions under which IIP[I is uniformly
bounded in n. Note that, if n converges weakly to some (E, E), then the
Principle of Uniform Boundedness implies that II  ll is uniformly bounded in n, so that,
by Theorem 4.2, n converges strongly to the of Theorem 4.1. Next we apply the
results of this section to the problem formulated in 3.
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5. Systems without damping. In this section, we consider the modal control
problem of 3 for 0 0. To deduce the generally negative result for this case, we
need the following theorem from [9].

TI-IOM 5.1. Let 4 be the operator defined in 2 for o O, and let c be a
compact operator in L(E, E). The semigroup generated by g + c cannot be uniformly
exponentially stable.

The theorem follows from the fact (see [22, p. 204]) that, since c is compact, it
can be approximated uniformly in norm by the sequence of operators CA,, where A,
is the projection onto the E spanned by pairs of the first n natural modes. Thus, if the
semigroup geneated by /+ were uniformly exponentially stable, so would be the
semigroup generated by s4 +A for n sufficiently large. But this is impossible; just
choose an initial condition in E+/-., and the feedback control represented by CA, is never
activated.

From Theorems 4.1 and 5.1, we know that there can be no nonnegative, sfadjoint
solution of the Riccati algebraic equation (4.2) for the optimal control problem on E
of 3 with Co 0; for, if there were such a solution, Theorem 4.1 would imply that the
semigroup generated by s4-Y3Q-a* is uniformly exponentially stable, contradict-
ing Theorem 5.1 because U is finite dimensional and therefore Y3Q-* would be
compact.

The implication here is quite negative for modal control models that neglect the
inherent system damping represented by Co in (2.1). In light of Theorem 4.2 and (4.18),
we must have

(5.1) I[, -> c and I[P,[[--> as n -> .
By Hypothesis 3.2, Pn exists for n->l, so that n is defined by (4.16) for n >-

lmregardless of whether exists.
While the operators , may seem rather abstract, the finite dimensional operators

P, and their matrix representations certainly are not. Specifically, (5.1) says that the
maximum eigenvalue of P, increases without bound as n increases. We know also from
(5.1) that cannot converge to anything in (E, E), strongly or weakly.

It may be tempting then to dismiss the results of the modal scheme of 3 with

0 0 as meaningless with regard to optimal control of the full system, but the following
speculations should be considered first. We know from Theorem 4.1 that there exists
some y (0) E for which there is no admissible control (see Definition 4.1). However,
with certain conditions on Y30, Russell has shown in [23] that a bounded linear velocity
feedback makes the system strongly stable2 and that, for y (0) in D(s4), this control is
an admissible control. Russell’s results and those in [10] suggest the following con-

jecture"

Suppose that, for the system (2.13) with o 0, there is an admissible
control for each y(0) in a dense subset of E. Let/ be the largest such
subset. Then the Riccati algebraic equation has a nonnegative selfadjoint
solution , which is a closed operator with domain ’, and s4 O-aN*,
defined on the maximal domain, generates a strongly stable semigroup.
Furthermore, when y(0), the feedback control u(t)=-O-N*y(t)
minimizes the cost functional of (3.1).

A semigroup 6e(. is said to be strongly stable if, for each y E, I(t)yl[--> 0 as t--> .
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After the present speculations about this , we will resume adherence to Definition
4.1 and say that an operator is a solution of the Riccati algebraic equation only if it is
a bounded operator.

We might also suspect that E contains each of the modal subspaces En, which is
true when D(M)c, and that

(5.2)

It is quite conceivable that we could have more; for example,

(5.3) ,y
In most applications, including those where the n’s are the natural modes, (5.2) says
that the elements of the matrices representing the operators Pn converge individually
(not uniformly, of course), which seems to be the least we could require in order to say
that n converges in any meaningful sense. Also, if (5.3) holds weakly, we will have

(5.4) Bn*
and it seems possible that B,*ny could converge, and maybe for all y E, without
(5.3)--but probably not without (5.2).

None of these speculations appear to be easy to check out, and finding sufficient
conditions which are less restrictive than Russell’s for the existence of an admissible
control for each y in a dense subset of E appears quite difficult. However, from the
mathematician’s point of view, just making the theory more complete should be worth
some effort, and the speculations should be relevant for the engineer who feels
compelled by certain very lightly damped systems to design control schemes based on
models without damping.

But (5.1) and its implications are inescapable. In practice the Riccati matrix
equation must be solved numerically for Pn, and (5.1) suggests that Pn becomes
increasingly ill-conditioned as n increases. Indeed, if (5.2) holds, then the greatest lower
bound of Pn is bounded in n, so that ]IP 111 does not approach zero and

(5.5) [IPII" IIesX - co.

When this is the case, algorithms for computing Pn become less and less practical as n
increases.

While there remains some possibility of meaningful convergence for n when
damping is not modeled, we know that (5.1) holds and therefore n cannot converge
as in Theorem 4.2. The full significance of this negative result will be seen only when
it is contrasted with the positive results that are available, as the next section shows,
when sufficient damping is modeled.

As for the stability of Sen (.) when 0 0, we cannot say much in general, except
that there is no n for which own (.) is uniformly exponentially stable. In the case where
the ff,’s are the natural modes bn, which without damping are uncoupled, it is easy to see
that the energy in the first n modes (i.e., the subspace En) decays exponentially, while
the energy in the truncated modes remains bounded. When all of the initial energy is
in the first n natural modes, all of the energy in the truncated modes results from the
action of the control t2n(’ on these modes. Balas has termed this action "control
spillover," and, in [3], has given estimates of the resulting energy in the truncated
modes.

6. Systems with damping. Now we require o 0 in (2.1). First consider the case
where the semigroup ’(. ), which represents the free response of (2.1), is sti’ongly
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stable,3 i.e.,

(6.1) I[(t)y[[z--,0 as to, y E,

but not uniformly exponentially stable. We have then the physically realistic situation
where, for any initial condition y, all the energy is eventually damped out in the free
system (u 0); however, there is no uniform decay rate. Theorem 2 of [9] says that, if
( is a strongly stable contraction semigroup on E and is not uniformly exponentially
stable, then no compact linear feedback can yield a uniformly exponentially stable
closed-loop system. Thus, the reasoning of the preceding section also applies here, so
that (5.1) holds.

To obtain positive convergence results, we must assume

(6.2) Ilea"’[l<Me -at t_>0, n_->l,

where a and M are positive constants independent of n, and A, A,Anlz, as
previously. Since ea"’ converges strongly to if(t) for _-> 0, (6.2) implies that Ilff(t)ll-<-
Me -at. According to the following theorem and its proof, a sufficient condition for
(6.2) is that Co be positive definite. Recall o and Co from (2.1)-(2.3). As in (2.13),
g is the maximal dissipative extension of the operator defined in (2.5), and
generates the semigroup -(. ).

THEOREM 6.1. Let go, Co, g, and if(. be as in 2. If there exists a positive.
constant such that

(6.3) (CoX, _-> Ells I1, , x 6 O(o),

then there exist positive constants Mand a, which depend only on fl, p, and % such that

(6.4) IIT(t)llz <=Me -at >0

(Recall p and 3’ from (2.2) and (2.3).)
Proof. Referring to (2.1), let (x(0), k(0))P() and [l(x(0),k(0))l[z 1. Also,

assume for the moment that Co is bounded. We have

d
(6.5) d--[[(x(t), (t))ll- -2(Co (t), k (t))n.

Set u(t) 0 in (2.1) and take the H-inner product of each term with x(t). Then integrate
the resulting equation over the interval (tl, t2), integrating the first term by parts. The
result is

II(t)ll, dt (it(t), x(t))H + (Co(t), x(t))n dt
tl

(6.6)

+ (4ox(t), x(t))n dt, 0 <- t <- t: < o.

According to (6.5), II(x(t), (t))[l IIx(t)[[v+[l(t)ll2H <- 1, t>_--0, SO that

(6.7)

and

2(4oX(t), x(t))H IIx(t)[Iv-- 1

1
(6.8) IIx (t)ll <--, -> 0.

P

For a necessary and sufficient condition for the case where Co is bounded, see Dafermos [7].
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Next, we have (see the sentence following (2.7))

IItl (o (t), x(t)),dt

(6.9) _-< (rgo (t), (t))2(Cgox(t), x(t)) dt

_-<( (ok(t), k(t))nd 2 d

Choose c > 0 such that

0--< t--< t2< oo.

(6.10)

and suppose that

2 4 1

(6.11) Io (k(t)’ k(t))ndt <c2"

Let S={t’O<-t <- 1, II(t)ll2H4(c2/a)}. Then measure (S)< 1/4. (6.5)and (6.11)lead to

(6.12)

(ox(t), x(t)). ll(x(O), (o))[12- 2

>1- 2ca+4 t[O, 1]--S.

Choose tl E (0.1/4)’-’S and t2E (1/4, 1)---S. Then (6.6), (6.8), (6.9), (6.11) and (6.12)yield
t2

(6 13) ]l(t)lldt> [1-(2c2+42)](41---) 4c
j- Cy,

which, with (6.3) and (6.11), yields

(6.14) (!_[..2) 2 (___ ) 1
2

c + + c>,
contradicting (6.10). Thus (6.11) cannot hold, so

(6.15) II(x (1), (1))112<- 1- 2c.

Since c depends only on/3, y, and p, and D(d) is dense in E, the theorem is proved
for o (H, H).

Next, we take advantage of our approximation of 3(t) by e"t to establish (6.2)
and obtain the theorem for unbounded o. Given the definitions of the bounded
operators Ao., Co., and An in 2, we see that (2.2), (2.3) and (6.3) imply

(6.16)

and

(6.17)

2
p _-<Ao., n_->l,

2j2<-- Con <--’y Ao., n -<1.

Thus (6.4) holds with ]](t)][ replaced by [[ea"t[[E. for n -> 1. Hence, (6.2). Since e "’,
which is an extension of ea"t (see 3.4), converges strongly to 3-(0 for _-> 0, the theorem
is proved.
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Now, for the optimal control problem on En, we know from Theorem 4.1 (and
from finite dimensional control theory; see [1] or [14]) that

(6.18) min Jn(y(O), u,) (Py,(O),
u, admissible

so that, when (6.2) holds, setting un 0 shows

M2 M2

(6.19) lIP, II-<- liD, --< I1 II, n -> 1.

Therefore, (6.2) is sufficient for IIP[I to be uniformly bounded in n, and hence for the
convergence properties of (4.9), (4.10), and (4.22)-(4.25), and for ,(. to be
uniformly exponentially stable for n sufficiently large.

Since we do not assume that the modes remain uncoupled in the presence of the
damping represented by o, the stability of 5e, for sufficiently large n is a nontrivial
result. If the On’s are the natural modes of the undamped system, which of course are
uncoupled, and if the damping makes the free system uniformly exponentially stable
without coupling the modes, then the closed-loop system resulting from the modal
control tT, of (3.14) is obviously also uniformly exponentially stable, for any n;
however, unless the eigenvectors of0 are also eigenvectors of o, the damping couples
the modes and the stability of ,(. is not at all obvious. As the following example
shows, it is sometimes possible, even in finite dimensions, for damping to couple the
modes of an otherwise stable system in a way that results in instability.

Consider a finite dimensional version of our optimal control problem on E, with
H=2, U=,

0 = =C2 C3 b2
(6.20)

=L O=1,

where ba 0, cc3-c 0. Let x(t) be (xa(t),x:(t)). We have then a system with two
modes, xa(t) and x2(t). Suppose the control is chosen based on a model of the first mode
only, i.e., we take n 1 in the modal control scheme of 3. The solution of the Riccati
equation (3.13) yields the feedback control

(6.21) ffa(t) -b(p2xa(t) +p32a(t)),

where

(6.22) p2=(w4w +b-w)/b and p13=(4c +b(2p:+ 1)-c)/b.4

The resulting closed-loop system (the full system) has the characteristic equation

(6.23)
h 4 + (c + c3 + bP13)h 3 + (og + oo + bP12 + ClC3- C + c3bP13- Czblb2P13)A 2

2 2 2+ (C022 + b21P302 + c30912 +c3bPx2-c2bb2P2)h + (0102 +w2bPl2) 0.

We know that, if C2--0, xl(t) decays exponentially and x2(t) at least remains
bounded; if ca 0 and Ca > 0, XE(t) also decays exponentially. However, if c2 0, it is
possible to select bE to make the coefficients of A and A in (6.23) negative, so that the
characteristic equation has at least one root with positive real part. For this, it does not

4 The reader who cares to check (6.22) should remember that the adjoints in (3.13) are with respect to
the energy inner product on E1 R2, and that this is the inner product for which the matrix P1 is selfadjoint.
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matter that p12 and p13 are given by (6.22) as long as one of them is nonzero. The only
reason for (6.22) is to make this example--or counterexample--follow our optimal
modal regulation scheme precisely. But, forgetting optimal control for a moment, we
should realize that this example shows that it is possible to have a system which is
uniformly exponentially stable, and becomes unstable when certain symmetric, positive
definite (or semidefinite) damping is added. For instance, let Ca and p13 initially be
positive numbers and let c2 initially be zero, so that the initial system is uniformly
exponentially stable. Then add a symmetric, nonnegative increment to the 0 matrix
so that the new c2 is positive. If b2 is sufficiently large, the coefficient of A 2 in (6:23)
will be negative for the new system.

Now, if the parameters of a two mode system like the example resulted in
characteristic roots with positive real parts, the system probably would be contrived,
and coupling of natural modes by damping, especially light damping, might not create
stability problems in many real control systems. But whether it can appears to be a
worthwhile question, the answer to which is not obvious. As for an infinite dimensional
system of the type considered here, with the modal control tTn, we know that the full
closed-loop system will be uniformly exponentially stable if n is large enough.

7. Conclusions. The results of the previous sections indicate significant advan-
tages to including inherent system damping in the modeling scheme on which a modal
control for a distributed system is to be based. When the damping is sufficient for a
single uniform decay rate, like that in (6.2), for all the finite dimensional models, we
can say definitely that, as the number of modeled modes increases, the modal control
of (3.14) approaches the optimal control for the full system, and the corresponding
response of the full system approaches the optimal system response; also, if enough
modes are modeled, the resulting closed-loop system is uniformly exponentially stable.
Not only were we unable to show that these statements are true when no damping is
modeled (or when the modeled damping suffices for strong stability but not uniform
exponential stability), but we found that the norms of the solutions to the finite
dimensional Riccati equations increase without bound as the model dimension
increases (see 5.1), while this sequence of norms is bounded when (6.2) holds. As
conjectured in 5, a possibility remains for a kind of weak convergence for the Pn’s
(the solutions to the finite dimensional Riccati equations) when no damping is modeled,
but the Pn’s cannot converge in the strong sense in which they converge when the
damping is sufficient for (6.2).

Note that the important thing for guaranteeing (6.2) is that all the modes be
damped uniformly. The damping can be arbitrarily small as long as it provides some
uniform decay rate. In particular, Theorem 6.1 shows that (6.2) holds if the modeled
damping is positive definite. While we should expect a relationship between the amount
of damping and the convergence rate of Pn, it is not at all clear how useful estimates
of such a relationship could be obtained.

Returning to our discussion of the reasons for defining and proving theorems
about infinite dimensional optimal control problems, we now can be more specific than
we were in the Introduction. In particular, why an infinite dimensional Riccati
equation? Philosophically, it is reassuring to know that the optimal regulator problem
defined in terms of the actual infinite dimensional system has, under realistic conditions,
a solution given by the solution of a Riccati equation involving operators on the full
state space; if this were not the case, we would have to ask whether the results of finite
dimensional control theory mean anything with regard to optimal regulation of
distributed systems.
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But really it is not surprising that we can generalize in some sense the finite
dimensional regulator theory to infinite dimensional Hilbert spaces. The real value of
the infinite dimensional Riccati algebraic equation (4.2) lies in the role that it played
in answering our convergence and stability questions. The finite dimensional control
laws were defined via the Pn’s satisfying the sequence of finite dimensional Riccati
equations, and these operators all had different dimensions. Extending the P’s to the
’s enabled us to deal with them all in terms of a common denominator, and that
common denominator was the infinite dimensional Riccati equation. For each n, ,
was the solution of the Riccati equation corresponding to the nth approximate control
problem extended to the full state space, so that the ,’s were all operators on the same
space. Thus, the equation gave us a framework for analyzing the convergence and
boundedness of the sequences {} and {P,}, and hence the convergence of the
corresponding sequences of control laws and system responses.

It was especially important to know that, whenever it exists, a bounded nonnega-
tive, selfadjoint solution of the Riccati algebraic equation for the actual control system
(and for @ positive definite) defines a feedback control that results in a uniformly
exponentially stable closed-loop system (see Definition 4.2 and Theorem 4.1). This
fact was essential both for the positive result that, when the modeled damping is
sufficient for (6.2), the closed-loop system represented by 5(.) is uniformly exponen-
tially stable for n sufficiently large, and for the negative result that IIPII- when no
damping is modeled.

Acknowledgment. The referees made many valuable suggestions concerning the
revision of earlier versions of this paper.
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ADDENDUM:
CONTROLLABILITY AND STABILIZABILITY

IN MULTI-PAIR SYSTEMS*

DAVID P. STANFORD,- AND LUTHER T. CONNER, JR.J"

At the conclusion of [1] we listed three basic questions concerning convergence
of sets of matrices. These questions are answered in this addendum, and we note that
the answer to question (2) leads to the following results.

A. The set {Ha, H2, , HN} of n n matrices is convergent if and only if some
finite product of the Hi’s has spectral radius less than 1.

B. The set {Ha, H2, , HN} of n n matrices is exponentially convergent if and
only if it is convergent.

We begin by answering [1, question (2)] with the following theorem.
THEOREM 1. If {Ha, H2, Hu} is a convergent set of n n matrices, then there

is a single sequence {pi} i1 from such that

k i=k

Proof. For each q {qi}=l from/Q, let

k i=k

Then each Vq is a subspace of R", and, by the convergence of {H1, H2," H},

R"=UVq.
q

If for all q we have dim (Vq)< n, the Baire category theorem is contradicted, and so
there is a sequence p {pi}i%a from with Vp R". Hence

k i=k

We observe that statement A above is easily justified using Theorem 1. Also, since
contractiveness relative to any norm implies convergence (see [2]), we obtain the
following result, which answers [1, question (3)].

COROLLARY. If {HI, H2, HN} is contractive relative to some norm on R", then
there is a finite product of the Hi’s with spectral radius less than 1.

It is well known that a single matrix H is convergent (i.e., limk_. Hkx 0 for all
x) if and only if p(H)< 1, and that this condition in turn implies that the convergence
is exponential. The following theorem (statement B above) generalizes this result to
sets of matrices. (Notice that the ’<’ in the definition of exponential convergence in [1]
should be ’=<’.)

THEOREM 2. A set {Ha, H2, , HN} ofn x n matrices is exponentially convergent
if and only if it is convergent. Moreover, in case of convergence, there is a single periodic
sequence from N which produces exponential convergence for all x.

* This Journal, 18 (1980), pp. 488-497.
t College of William and Mary, Williamsburg, Virginia 23185. This research was supported by

NASA-Langley Research Center under grant NAS1-16042.
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Proof. Clearly exponential convergence implies convergence.
Now suppose {H1, He, , HN} is convergent. By statement A, there are k Z/

and 3’ Fk such that

We now show that (3"(1), 3"(2),..., 3"(k), 3’(1), 3’(2),..., 3"(k),... produces
exponential convergence for all x. Let I1" be a matrix norm such that

Ol He(i) <1,

and let

N

Let/3 satisfy a < flk _<_/3 < 1. Then there exists P Z+ such that

(ff_)P<ilk for p>_p.

Thus a
p <,k+k <=pk+s for p NP and s e . Hence, for p P, s e and any nonzero

x R n,

S(i) x H S(i Hv(i) Ilxllo
i=pk+s 0 i=pk+s i=k

 M   llxtto

where I1" Iio denotes a vector norm subordinate to [[. [[. For ] e {1, 2,..., Pk}, let

B>
Then

for all nonzero x R". Letting B =max {BI, B2,". ,Bpk, Mk}, we obtain, for all
nonzero x R",

for allfeZ+.
[2, Example 4] presents a set of matrices which is convergent but not contractive

relative to any norm. In view of Theorem 2, 1, question (1)] is answered in the negative.
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ERRATUM:
ON THE ADJOINT PROCESS FOR OPTIMAL CONTROL

OF DIFFUSION PROCESSES*

U. G. HAUSSMANN*

Theorem 5.5 should read"
Assume A 1, A5-A7. Then

(5.6)

-p(t, x)= V,(t, x)

Etx([C,(’, x(’))+ l<t(w)/3 (-, x(’))n(x(’))](’, t)

+ I, Ix(s, x(s), (s, x(s)))(s, t) ds

where (t, x)=[Vx(t, x)-cx(t, x)]n(x) and n(x) is a unit normal to oG at x.
The proof is correct as it stands, except that at the end it should be observed that for

< T only the tangential component of V converges to the tangential component of cx.
The correction should also be made in (5.7) and (5.8). Now (5.6) is analogous to the
deterministic case" n represents the gradient of the function describing the target set,
i.e., 0"O for < T.

* This journal, 19 (1981), pp. 221-243.
? Department of Mathematics, 2075 Wesbrook Mall, University of British Columbia, Vancouver, B.C.,

Canada V6T 1W5.
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CONTROL CANONICAL FORMS AND EIGENVALUE ASSIGNMENT BY
FEEDBACK FOR A CLASS OF LINEAR

HYPERBOLIC SYSTEMS*

B. M. N. CLARKEt AND D. WILLIAMSON

Abstract. Canonical forms are developed for a class of linear hyperbolic systems. They are then applied
to solve the problem of eigenvalue assignment by distributed feedback and boundary control. The duality of
this problem is demonstrated to one of eigenvalue assignment by boundary feedback of an adjoint system
subject to distributed control. For both systems it is shown that by feedback, the set {Pi}, J 7/, can be assigned
as eigenvalues of the closed loop system, subject to an asymptotic condition on the set {Pi}. The feedback
control is explicitly characterized.

Analogous results are obtained for the problem of eigenvalue assignment by distributed feedback and
distributed control.

1. Introduction. We study the class of systems which can be described by a linear
hyperbolic system in two dependent variables y (y l, y2)T,

Ot- xx +A (x)y’

where x [0,/], 6 [0, 0o) and A(x) is a continuous 2 2 matrix. It can be shown [5] that
a wide class of interesting processes are described by an equation of the form (1.1). We
impose initial and boundary conditions:

(1.2) y(x, 0) yo(x),

(1.3 a (Co +/30, ao -/3o)y(0, t) u(t),

(1.3b) (11 +/31, a1-/31)y(/, t)=0,

where yo L2[0, l], u L2[0, T], T > 0, i and/i are scalars (complex in general).
Under the stated conditions it is known [1], [4] that the initial-boundary

value problem (IBVP) (1.1), (1.2), (1.3), is well posed and has a unique solution
y(., t) L2[0, l] which satisfies the inequality

T

(1.4) IlY( t)ll = < c( 2 I (s)[ 2 as), [0 T].lyollzfo,/ + luL2[0,/]

In our treatment of (1.1), (1.2), (1.3) we allow Y0 C[0, l] and u C[0, T],
which involves no loss of generality, since each solution y(., t) L2[0, l] is the limit of
smooth solutions resulting from such smooth data [9].

When u(t)=-O, a necessary condition for there to exist solutions of (1.1), (1.3) of
the form

At,y(x,t) e (x) 0

* Received by the editors December 12, 1979, and in revised form June 3, 1980.
? School of Mathematics and Physics, Macquarie University, North Ryde, N.S.W. 2113, Australia.
Systems and Control Department, University of New South Wales, Kensington, N.S.W. 2033, Australia.
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is that $(x) satisfy

l.J

(1.6) (ao +/3o, ao-/3o)$(0) 0, (O -[- 1, O 1)$(1) 0.

The values of h for which (1.5), (1.6) has a nontrivial solution are the eigenvalues of the
system (1.1), (1.3). The corresponding functions (x) are the eigenfunctions. It is
known that the eigenvalues {hi} are countable and the eigenfunctions {ti(x)} form a
basis in L2[0,/], [5]. We will call the {hi} and {ti(x)}, the open loop system eigenvalues
and eigenfunctions.

The system adjoint to (1.1), (1.3) is

0z* 0z__*[ 1 01] z,A(x),(1.7) O---=Ox 0

(1.8) z*(0 t)(a-/3) 0,
a0+/3o

z*(1, t)(al--l) 0,

where * denotes conjugate transpose. If h is an eigenvalue of (1.1), (1.3), then -h is an
eigenvalue of (1.7), (1.8), that is, z*(x, t)= e-Xt*(x) is a solution. The adjoint open
loop system eigenfunctions {i(x)} also form a basis for L2[0,/], the dual basis
biorthogonal to the basis of open loop eigenfunctions {ti(x)}. That is,

(1.9) fo (x )g, (x ax ($,, ,;>
The eigenfunctions {t.(x)}, {.(x)} are said to form Riesz bases for L2[0, 1].

Consider a control u(t) in (1.3a) which is a linear function of the state y(x, t),

(1.10) u(t)-- IO g* (:)y(:, t) d: (y(., t), g),

for some g e L2[0, I]. Thus, we consider the effect of a distributed feedback control
applied at the boundary x -0. The system is then described by (1.1), (1.2), (1.3b) and

(1.11) (ao+flo, ao-flo)y(0, t)= fo g*(sC)Y(:’ t) dsc,

and we refer to it as the closed loop system. If we now again seek solutions of the form
y(x, t)= e ttb(x) we find it necessary that tb(x) satisfy,

(1.12)
1

(1.13) (ao+/3o, ao-/3o)+(0) Io g*(:)+(:) d:, (O1-- 1., O1 d’-/1)+(1) 0.

There exists a countable set {pi} for which (1.12), (1.13) has a nontrivial solution. The
{pi} and corresponding solutions {+i(x)} we refer to as closed loop system eigenvalues
and eigenfunctions.

The question now arises as to what values {pi} can be assigned as closed loop
eigenvalues by appropriate choice of g.
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The problem of eigenvalue assignment by feedback has been studied by Russell [-6]
for the case of distributed control, that is, where the system is described by

(114) O__y_[lot0 -O1] OY--x+a(x)y+h(x)u(t), h L2[0, 1],

(1.15) (a0 +/3o, a0-fl0)y(0, t)=0, (1-b/1, 1-/1)y(/, t)=0.

Russell expands y(x, t) in an eigenfunction series

(1.16) y(x, t)= E wg(t)(x),
k7/

where {,(x)} are the open loop system eigenfunctions and {wg(t)} are solutions of

dw (t) hkWk(t)+ hkU(t), k(1.17)
dt

where {h} are the coefficients of h relative to the basis {.(x)}. It is necessary for the
analysis in [6] that the controllability condition

(1.18) hk =-- Io ’(x)h(x) dx

be satisfied. The expansion (1.16) in terms of open loop eigenfunctions is inappropriate
for the boundary control system (1.1), (1.3), since only homogeneous boundary
conditions (1.15) can be accommOdated. We also feel that our treatment is more natural
than that of Russell. In particular, our canonical form is merely another way of
describing solutions of (1.1), (1.2), (1.3). The methods we develop are amenable to
generalization to systems in more than two dependent variables.

An important difference between our methods and those of Russell [5], [6], is that
we make no explicit use of the fact that the functions { hit} form a Riesz basis in
L2[0, 2/]. This property is a crucial part of the treatment in [6]. Essentially, our
canonical form operates in the space domain whereas Russell’s operates in the time
domain and makes crucial use of the minimal interval for controllability.

We also give an explicit characterization of the required feedback function
g L2[0, l].

Consider the closed loop system (1.1), (1.3b), (1.11), and z(x, t) a sufficiently
smooth function. Then integration by parts is justified in,

x=l

x=0

+ z*A(x) y dx dt
Ot Ox 0

(1.19)

=T T

=0- I0 (1(/, t)y(l, t)--22(1, t)yz(/, t)--2(0, t)yl(0, t)

-[-22(0, t)y2(0, t)) dt

1] )+z*A(x) y dx dt
\ Ot Ox 0
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t=T T

t=0 O1 --1
T

+Io [(Ceo-/3o)Zx(0 t)+(Ceo+Cto)Y2(O, t)]
yl(O’ t)
OO 0
dt

foT 2(O, t) fot foT Io; ( OZ* 0z*[1Co-/3o
g*y dx dt

ot Ox 0

dt

?1] + z*A(x))y dx dt,

where we have used the boundary conditions for y, (1.11), (1.3b), and assume
a0-/30, c0+/30, c1 +/31, c1-/31 are nonzero and finite.

From (1.19) we obtain the system adjoint to the closed loop system (1.1), (1.3b),
(1.11),

(1.20)
Oz* Oz*[ 01] 2(0, t)

+z*A(x)+g*(x)=O,
at Ox co-o

(1.21) z*(0, t)(a-/3]Co +/3o/= 0,

Notice that the system (1.20), (1.21) adjoint to our closed loop control system is a
system of the type (1.14), (1.15) subject to boundary-value feedback. That is,

(1.22)
0z* 0z*[1Ot Ox 0 01] +z*A(x) + t (t)g*(x)=0,

where

(1.23) u(t)
z2(0, t)
c o --o

If the closed loop system (1.1), (1.3b), (1.11) has a solution y(x, t)= et+(x), then
the adjoint system (1.20), (1.21) has a solution z*(x, t) e -’O*(x). Thus the eigenvalue
assignment problem could be just as easily posed for the adjoint closed loop system
(1.20), (1.21). This is what, in fact, we do, since it turns out be slightly more convenient
to treat the adjoint problem.

The eigenfunctions of the adjoint closed loop system satisfy

(1.24) **’0 a0-/3(------ g*(x) +p** 0,

(1.25) **(0)(c-/3)= 0, *(/)( i[1) 0.
O0 -- 0 -I- 1

Let +(x) be a closed loop eigenfunction corresponding to an eigenvalue pi and +(x) be
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an adjoint closed loop eigenfunction corresponding to an eigenvalue Pi # pi. Then,

1 x=l

x=0

1

where we have used the boundary conditions for +, (1.3b), (1.11) and the differential
equation (1.24). Finally we obtain

(Pi Pi) fO II* dx O,

since Pi # Pi, Ilo d,J* dx 0. When j we scale the eigenfunctions so that

lll*i+ dx 1.

In what follows we assume that the eigenvalues are of multiplicity one. Thus we
have shown that the closed loop eigenfunctions {4)i(x)} and closed loop adjoint
eigenfunctions {q.(x)} form a biorthogonal set of functions such that

(+i, I")--- all"

It can be shown that as for the open loop case, the functions {+i}, {tllj} form Riesz
bases for L2[0, l], and 0 < c < 142/(0)1 < C < o for real constants c, C.

2. The control canonical form. For the moment we consider the system

1
(2.1)

ay [0 0110Y + f(x’ t)’
Ot Ox

subject to (1.2), (1.3), where, as before, Y0, u, f are sufficiently smooth. Then we may
assume a solution y(x, t) sufficiently smooth to justify use of the method of Laplace
transforms in the variable [4]. We use capital letters to denote the transformed
variables. Then (2.1) implies that

(2.2) s Y(x, s yo(x [ x(X,S)+v(x,s)
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where Y(x, s) 5{y(x,t)} and F(x, s) {f(x, t)}. Transforming the boundary condi-
tions (1.3), we obtain

(2.3a)

(2.3b)

(ao + rio, Co- flo)Y(O, s) U(s),

(o1 --1, al-/3)Y(I, s)=O.

Equation (2.2) has a solution,

(2.4) Y(x,s)=
e 0

Y(0, s)-
0 e 0 -e

where ’(x, s) F(x, s) + yo(x).
Substituting into the boundary conditions (2.3a, b) we obtain

Y(0, S
(,, + l)e (.-) e

es(l-)
(+.a-)

0

0
-s(l-)-e

Solving for Y(0, s), we obtain

(0. s)

(Cl --/1) e

--(o1 -k- 1) e
st

Oo o J
-sl sl(Cr,, + ,))(Cr --/31) e

U(s)

(t-)/1 -s(t-O[(al - ill) e (, S)-- (l--fll) e F2(:, s)] de

We define

(2.5) 3’

which is neither zero or infinite since i -- i, Cgi--i are not zero and are finite for

i-0, 1. Then,
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On substituting into (2.4), we obtain

(1--Te-2ls)y(x,s)

3"U(s) s(x-21) s(x-) s(x--21)le + e P(, s) d + 3" e (, s) d
ao + flo

U(s)

s(x+e-2)(, s) d

(OlOAf-)fol Ix --s(x--+21)2(e e-(x+e)ff(, s) d + 3" e s) d
Olo

Io /+ e-’(-P(, sl cl

An inverse Laplace transformation gives

y(x, t) 3"y(x, 21)H(t 2/)

(2.6)

u(t + x 21)H(t + x 21)
ao + flo

1
u(t-x)H(t-x)
Ogoo

/fx fl(’, t+x-’)H(t+x-’)d’+3"Io fl(’,t+x-’-21)H(t+x-’-21)d’t
ioo +o 3" f(, + x +- 21)H(t + x +- 2/) d:

fl(, t-x-)H(t-x-)

+ 3" f f2(, x + 21)H(t x + 2/) d:

+ &(; t-x +,)H(t-x +)

6(t + x )yOl() d + 3" 6(t + x - 2/)yo(:) d:

o +o 3" (t + x + ’- 2/)yo(:) d

8(t-x -)Ya() d’tJ+3" Ix 8(t-x + :- 2/)yo2() d

+ 6(t-x + )Yo2(:) d

where H(.), 6(.) are the Heaviside and Dirac distributions respectively.
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(2.7)

We define the 2 2 matrix distribution k(x, , t) where

klx(x, , t) 6(t + x ) + [y6(t + x - 2/)- 6(t + x )]H(x ),

12(X, , t)= -(.ao- [3o ya(t + x +- 2/),k
\ ao+/3o

k21(x, , t) (a + fl) 6 (t x ),
Ogom[O

k22(x, , t) y3(t- x + ) + [6(t- x + ) y6(t- x +-2l)]H(x ).

k (x, sc, t) has support [0, 2/] for (x, ) [0, l] [0, 1]. Then after obvious changes of
variable in (2.6),

y(x, t) yy(x, 2l)H(t 2/)

(2.8)

-y
u(t + x 21)H(t + x 21)ao+o
1

ao_oU(t-x)H(t-x)
t+x --l \It fl(t--T-X’T)H("I’)dT--(--) f

+x--l 00 -[- 0
e at+x--21f2(21- + " x, z)H(z) dt

t+x--21

+yf fl(t-z+x-21, z)H(z)dz,
at-21

+

f(t-z-x, r)H(r) dt+y f(x-t+z+21, r)H(r) dr
Olo iO -x-l -21

+ fo k (x, , t)yo() ds

It h(x, t-z)U(z)H(z)dr+ ft IO--21 --21
k(x, , t- z)f(sc, z)H(z) ddz

+ Io k(x, , t)yo(:) d,

where

(2.9)
h(x, )=

-Y 6(z+x-21)ao+o
1

(z-x)
Oon[O

Note that the support of h(x, z) is z s [0, 21] for x s [0, 1].
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(2.10)

Now we let f(x, t)= A (x)y(x, t) and arrive at the canonical form

y(x, t)-yy(x, t-21)H(t-21)= ft-21 fo k(x, so, t- r)A(sC)y(sc, r)H(r) ddr

+ I, h(x, t-r)u(r)H(r) dr
-21

+ Jo k (x, sc, t)yo() dsc.

One thing immediately apparent from (2.10) is the natural way the interval (0.2/]
arises in the canonical form. As is well known 21 is the minimal time interval for
boundary value controllability [2], [5-1, [6]. The canonical form (2.10) may present a way
of proving results about boundary controllability independent of the properties of the
functions {eX’t}, but we leave such questions aside here.

For O<=t21, (2.10) reduces to

y(x, t): [ ] k(x, ,, t-z)A(sC)y(sc, r) ddr
30 .o

(2.11)

and for => 21

(2.12)

+ fO h(x, t-z)u(r) dZ + fo k(x, , t)yo(:) dsc,

t)- yy(x, t-2/)= | | k(x, , t-r)A (sC)y(sc, z)d dry(x,
at-21 a0

+ [ h(x, t-r)u(r) dr.
-21

In the special case when A(x)0, (2.11), (2.12) define explicitly the solution of
the IBVP (1.1), (1.2), (1.3),

[ t)ro( ) I o=t 2/,
y(x, t)

go go

yy(x, t-2/)+[ h(x, t-r)u(r) dr, 21.
at-21

Certain properties of the distribution k(x, , t) are quite straightforward to est-
ablish. It is the unique solution of

at 0 =0,
for (x, t)e [0, l] x [0, 2/], subject to

(o + #o, o- #o)k(o, a, t)= (o, o),

( +, -#,)g(t, , t)= (o, o),
and

k (x, , 0) a (x ).

Thus k is a certain fundamental solution of the principal part of the differential
operator

0- 0 --x A (x )"
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3. Eigenvalue assignment by boundary control. Since solutions of the form
y(x, t)= etdo(x) of our closed loop system are essentially steady state solutions, the
initial time interval [0, 2/] is of no consequence. Henceforth we deal with the canonical
form for .->_ 2l.

When we substitute the feedback control

u(t) I, g*()y(C, t) d,

into (2.12) we arrive at (after a change of variable of integration)
21

(3.1) y(x, t)-yy(x, t-2/)= Io Io {k(x, , r)A(:)+h(x, r)g*(sC)Iy(sc, t-r) ddr.

On substituting y(x, t) et(x) we find that it is necessary that (x) satisfy

(3.2) (e2l--T)dp(x) f, [g(x, c, p)A(C) + H(x, p)g*(c)]+(() dC,

where
21

(3.3) K(x, , p) J, k(x, , r) e (2t-,) dr

o(x_6)[e2,o + (Y e2tO)H(x )], (ao- flo] o(x

(3.4)
e2,Oe e IT+( -y)H(x-()

]K0 0
and

-Y eOX\
(3.5) H(x, 19): h(x, "r)e (2t-) dr eO(2t_x) ].
It is important that K (.,., p) L2([0, I] [0, I]) for each p, which is clearly the case. In
fact K is continuous in the square (x, () [0, 1] [0, 1] except on the diagonal line x (,
where it has a simple jump. Also we note H(., p) L2[0, 1].

Comparing the system (1.12), (1.13) for the closed loop eigenfunctions {+i (x)} with
that for the closed loop adjoint eigenfunctions {i(x)}, (1.24), (1.25) we arrive at the
corresponding equation

(3.6) (e TM y)O*(x)- fo /]2 (0)
00--0

g*(sC)]K(, x, p) d 0.

Thus the closed loop system eigenfunctions and adjoint eigenfunctions are solu-
tions of Fredholm integral equations of the second kind. These Fredholm equations are
not of the standard type treated in most textbooks since the kernel depends on p in a
nonstandard way. However, it has been shown [3a, hi, [7], [8-] that most of the usual
results, including an alternative theorem, continue to hold for such equations.

We are now in a position to state our eigenvalue assignment problem definitively"
Given a countable set of complex numbers {Pi}, 77, find g L2[0, I] such that the
integral equations (3.2) and (3.6) have nontrivial solutions if and only if p pi, 77.
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Henceforth all integrations are over the interval [0, l] unless otherwise indicated.
We make the following assumption concerning the set {pi}.

Assumption A.

(a) {e 2t’ y} e 12.
(b) e 2t’ y 0 if and only if pi Ai for some j 7/.
(c) p Pi for j.

We will show that part (b) of Assumption A is equivalent to the invariance of
controllability of the system (1.1), (1.3) (resp. (’1.22), (1.21)) under the action of linear
feedback (1.10) (resp. (1.23)). Subject to Assumption A we will show that the
eigenvalues {p} can be chosen at will.

At this point we will prove certain results which are of use in the sequel.
LEMMA 3.1. Relative to the sesquilinear form

[d, ,]=- f O*(x)A(x)d(x) dx,

the adjoint of the open loop eigenfunction equation

(e21 ,y)tl(x f K(x, sc, p)A()$() d 0,

(e2lo y)q*(x)- J *()A()K(:, x, p) dsC=0.

Proof.

I *(x)a(x){(e2l-Y)d(x)-f K(x, , p)a()d(sc) d} dx

,)**(x) ()A()K(, x, o) d}A(x)+(x) dx.

THEOREM 3.1. If p is not an open loop eigenvalue, then the unique solution of

f x,

is given by

(3.7)

where D(, x, O) satisfies

0*(x) f fg*(:)D(:, x, p) d,

(3.8) (e21--v)D(,x,o)- j D(, i,p)A(rl)K(n,x,p) d=K(,x,p).

Proof. The existence and uniqueness are proved by standard methods, of which
there are good treatments in [7], [8]. Direct substitution of (3.7) using (3.8) confirms the
form of the solution. 71

LEMMA 3.2. Ifp is not an open loop eigenvalue then D(, x, p) satisfies, in addition
to (3.8),

(3.9) (e2l-’y)D(, x, p)- f K(, rl, p)A(l)D(l, x, p) drl K(, x, p).
3
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Proof. It only remains to show that

D(s rh p)A(rl)K(rl, x, p) dr/= I K(sC’ "r/, p)A(rl)D(rl, x, p) d’o.

We temporarily suppress the dependence of D and K on p for reasons of clarity.
Multiply (3.8) on the left by K (z, sC)A (sc) and integrate with respect to s,

y)f K(z, ,)A()D(, x)d,-ff K(z, )A(C)D(, rl)a(rl)K(rl, x)d d
(3.10)

J K(z, )A()K(,x) d O.

Similarly multiply (3.8) on the right by A(x)K(x, z) and integrate with respect to x.

-r) O(, x)A(x)K(x, z) dx- D(, )A()K(, x)A(x)K(x, z) d dx

K(, x)A(x)K (x, z) dx O.

Replacing (, x, z) in the above equation by (z, , x), we get

(eO-)
(3.11)

[ K (z, )A()K(,x) d 0.
J

Subtracting (3.10) from (3.11) and defining the matrix

M(:, x)= f D(s, )A(/)K(, x)d- f K(s, q)A()D(,x)d,
J J

we obtain

(3.12) (e 21 -y)M(z, x)- I M(z, )A(()K(,x) d: O.

Thus for fixed z, the rows of M(z, x) satisfy

y)$*(x) I$*()A(:)K (:, x, p) dsC 0

and are identically zero for each z, since p is not an open loop eigenvalue.
Thus

M(s, x) 0, (sc, x) e [0, l] [0, l]. F1

THEOREM 3.2. If p is an open loop eigenvalue, then a necessary condition for the
equation

(3.13) (eZl-y)$*(x)- I $*(sC)A(sC)K(sc, x, p) dsC f*(x),

to have a solution is that

(3.14) f*(x)A (x)$(x) dx 0,
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for all solutions of

(e2t -’y)(x)- I K(x, ,f, p)A()() d’ O.

Proof. Let O(x) and $(x) be solutions of (3.13) and (3.15) respectively. Then,

I f*(x)A(x)(x) dx I[(e 2to

I *()A()K(, x, p) d]A(x)(x) d

I **(x)A(x)[(e21-’Y)*(x)-I K(x, , p)A()*()d] dx

=0.

It can be shown that the condition (3.14) is also sufficient for the existence of a
solution of (3.13) when p is an open loop eigenvalue, [3a, b], [7], [8].

COROLLARY 3.1.A necessary condition for the closed loop system adfoint equation

e 210 -y)**(x)- **(’)A(’)K(, x, p) d d
to have a solution when p is an open loop eigenvalue is

e 210 -v)I g*(x)+x)dx =o,

for all solutions of (3.15).
Proof. From the above theorem a necessary condition is

O= If*(x)A(x)$(x) dx

ff g*(s)K(s, x, p)J (x)(x ddx

f g,(x)f K(x, , p)A()*()ddx
(e21 -’Y)I g*(x)(x) dx.

The following theorem is central to the analysis.
THEOREM 3.3. If O(X) is a closed loop adjoint eigenfunction corresponding to a

closed loop eigenvalue p, then it is necessary that

02(0) [eZto
00--/0

-5’- f g*(x)H(x, p) dx] I O*(x)A(x)n(x, p) dx.

Proof. There are a number of ways of obtaining this result and we choose the one
which seems most direct. We return for the moment to the description of +(x) as a
solution of the BVP (1.24), (1.25). It is easily seen that solutions of (1.24) also satisfy a
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Volterra integral equation

0*(x) 0*(0lie 0

At x l,

+ O*()A () +
,2(0)

g,(()
ex ao o

Ie -p(x--)

0 -e(x-)
d"

0=0"(1)(c1-31)c1 +31

=O,(o)[e
-l 0 ](1--31)0 et 1 +31

(3.16)
o-o 0 -e

(0 e-’(- + G(0 e( +

+ / O*()A()[ e-o(’-e) 0 ].(1-31) d

+

From the boundary condition at x 0 we obtain

0(1-)
O + 31

1(0) -(a+fl,,- 3o
G(o),

and on substituting into (3.16),

,Co_ flo/4,2(0) e (1-31) + 2(0) cOl(oil +31)

+ IO,()A()(e-(’-e)(ol 31)
d-eO--( +)/

2(0)
o- [(()e -3)-:() +3)]d(.

We multiply throughout by e/( + 3) and use the definition of y, (2.5) to obtain

1
0*(:)A() d.

o +/3 -e(2-t(a +/3)

Again using (2.5) and the definition of H(x, p), (3.5), we finally obtain

0 (e 2l ’)2(0)-- 2(0)I .*(%)I( p)d- (o- 3o)I **()A()H(:, O)d,
from which the theorem follows.
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Under Assumption A, we obtain from Theorems 3.1, 3.3 the condition

(3.17)

21e

0)A(:)H(, O) d} x.

LEMMA 3.3. The function dO(x, p) defined by

(3.18) dO(x, pl= H(x, pl+ f D(x, ,pla(()H(,p) d,

satisfies the Fredholm integral equation

2 lo ff(3.19) (e -y)dO(x, p)- K(x, , p)a()+(, O) d(= (e 2’ y)H(x, p).

ooL

K(x, , p)A ()dO(, p) d,

I K(x,j, p)A()[H(, p)+ f D(, ’0, p)A(rt)H(’rt, p)d’rt] d
I[K(x,e,p)+ f K(x, rl, p)A(rI)D(I, , p)dnlA()H(e, p)d (using (3.9))

I (e2t -y)D(x, , p)A()H(, 0) d (using (3.18))

(e 2to -y)(+(x,p)-H(x,p)). 7]

We remark that Lemma 3.3 shows that the function (3.18) is a closed loop system
eigenfunction scaled so that

2 lo(3.20) g*(:)4)(, P) d e y,

as can be seen by comparing (3.19) with (3.2).
When p is equal to an open loop eigenvalue, it is easy to show that the correspond-

ing open loop eigenfunction is also unchanged and we set

(3.21) +(x, o) =O(x, o).

Now given a countable set {0i} satisfying Assumption A, the functions {+(x, pi)}
form a Riesz basis for L2[0, I] with biorthogonal basis {(x, pi)}. We expand g in terms of
the dual basis

where

g(x)= 2 g;,(x, 0;),

g; ] g*(x)+(x, dx
(3.22) d

e 21oi

from (3.20). We finally state the following theorem.
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THEOREM 3.4. Let {pi} be a countable sequence of complex numbers satisfying
Assumption A. Then there exists a g L2[0, l] such that the eigenvalues of the closed loop
system (3.2) and of the closed loop adoint system (3.6) are precisely the set {pi}. The
unique feedback vector is

(3.23) g(x) (e 2t’ /)O(x, Pi),

where {(x, p.)} is the unique biorthogonal basis to {+(x, pi)}.
Proof. The only point left to check is that g L2[0, I], which is trivial since

from Assumption A. 71
It is probably an opportune time to discuss the implications of our Assumption A.

The first part (a) is necessary in order that g should lie in L2[0, l]. Part (b) of Assumption
A ensures the invariance of controllability of the system (1.1), (1.3) (resp. (1.22), (1.21))
under the action of linear feedback

(3.24)

or respectively,

u(t) I g*(sC)Y(sC’ t) d + v(t),

z2(0, t)
u(t)=+v(t).

Ogo--O

In the special case A (x) 0, e 21 3" 0 is a necessary and sufficient condition for p to
be an open loop eigenvalue.

It has previously been observed [6], that the complex number 3" may be changed at
will by the inclusion of boundary feedback in the boundary control (1.3a), which
thereupon assumes the form

(ao + flo, ao- flo)y(0, t) f g*(x)y(x, t) dx + (c2, 2)y(0, t),

or,

(3.25) (ao + flo-a2, ao-flo-/32)y(0, t)= J g*(x)y(x, t) dx.

Thus 3’ is replaced by

(o+-)(-)
which may be given any value by appropriate choice of (az, f12).

For any finite set of distinct complex numbers {p }, it is possible to determine y by
boundary feedback, such that the finite set {p } satisfies (b), (c) of assumption A. We
augment the set {p} such that the augmented set {pg} satisfies assumption A. Then by
the above reasoning, we can assign the set {pg} as closed loop eigenvalues by distributed
feedback.

We have proved the following corollary.
COROLLARY TO THEOREM 3.4. Let { p } be any finite set of complex numbers.

Then there exists a vector (a2, flz) and a function g 6 L2[0, l] such that the closed loop
system (1.1), (1.3a), (3.25), has the set {p} as eigenvalues.
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4. Eigenvalue assignment by distributed control. In this section we obtain results
analogous to those of the previous section for the system (1.14), (1.15) considered by
Russell [6]. These results are obtained with very little extra effort, from the results of 2’
and 3.

Consider the closed loop system (1.14), (1.15) resulting from the distributed
feedback control,

(4.1) u(t) I g*()Y(:’ t) d.

Then the closed loop system is

(4.2) 0__y_[10t0 -01]0Yx+a(x)y+h(x) g*(()y(:, t) d:,

(4.3) (Co +/3o, ao-/o)y(0, t) 0, (c +/, c -/)y(/, t) 0.

The system adjoint to the closed loop system (4.2), (4.3) is

(4.4)
Ot Ox 0

+z*A(x)+ .*(, t)h() dg*(x)=O,

(aa:-/3) 0, z*(/, t)(al -/31)=0,(4.5) z*(0, t)
+/30 a +/31

which is of the same type as (4.1), (4.3).
We can immediately obtain the canonical form of (4.2), (4.3) from (2.8) by putting

u =0 and f(:, z) A(:)y(sc, z) +h() g*(r/)y(r/, z) dr/there.
We arrive at

y(x, t) yy(x, 21)H(t 21)
(4.6)

21

=fo fok(X’"r){A()Y(’t-’r)+h(()Io g*(’q)y(’t-’r)dl}dd’r"

The eigenfunctions of (4.2), (4.3) satisfy

[10_l],,+A(x),+h(x)Ig.(),()d_p,=O,(4.7)
0

(4.8) (ao +/3o, ao-/3o) +(0) 0, (t -- 1, -/1)+(1) 0,

and the eigenfunctions of the adjoint closed loop system (4.4), (4.5) satisfy

1
(4.9) **’[00-l]-**A(x)-I**()h()dg*(x)+P**=O’
(4.10) **(0)(a-/3)= 0,

ao+/3o

The canonical form of the eigenfunction equation for (4.2), (4.3) can be obtained
either by substituting y(x, t) et+(x) in (4.6) for ->_ 21 or by comparing (4.7), (4.8) with
the corresponding system for the boundary control case (1.1), (1.3b), (1.11) and its
canonical form (3.2). In either case the equation which results is

(4.11) (e21--y)t(x)-- I [K(x,,p)A()+H(x,p)g*()]t()d=O,



728 B. M. N. CLARKE AND D. WILLIAMSON

where now

(4.12) H(x, p) I K(x, r/, p)h(r/) dr/.

We note that (4.1 1) is formally identical to the corresponding equation for the case of
boundary control (3.2), except for the different definition of H(x, O).

By our previous comment concerning the similarity of the adjoint system (4.9),
(4.10) to (4.7), (4.8) we obtain the canonical form of (4.9), (4.10) as

(4.13)

where

(e21 T)l[/*(x)- I 0*(:)[A(:)K((, x, p)+h()G*(x, p)] d: 0,

(4.14) G*(x, ) J g*(n)K(n, x, ) dn.

Again we note the similarity between the boundary control case (3.6) and (4.13). The
constant 452(0)/(c0-/30) is replaced by the constant +*()h() d:.

We require the following counterpart of Theorem 3.3.
THEOREM 4.1. If (X) is a closed loop adjoint eigenfunction corresponding to a

closed loop eigenvalue p, then

(4.15) f *(r/)h(r/) dr/[e2-y-l g*(x)H(x,p) dx]= I *(x)A(x)H(x,p) dx.

Proof. Exactly as in Theorem 3.3, replacing f2(0)/(Co-/3o) by +*()h() d. 71
Applying Theorem 3.1 to (4.13) and substituting in (4.15) we obtain

f **(r/)h(r/) dr/[e2-y- f g*(x)H(x,p) dx]

f *(r/)h(r/)dr II g*(x)D(x,,,p)A()H(, p)d, dx.

Using the condition that *(n)h(rt) dr/= 0, if and only if p is an open loop eigenvalue,

-y= I g*(x){H(/, p)+ f D(I, tj, o)A()H(j, p)dj} dxe21O

I g* (x)+(x, p) dx.

The analysis now proceeds in an identical manner to that of the boundary control case
and we conclude with the following theorem.

THEOREM 4.2. The results of Theorem 3.4 apply unchanged to the case of the
distributed control system (4.2), (4.3).

5. Concluding remarks. The first results on eigenvalue assignment for linear
hyperbolic systems were obtained by Russell [5], who showed that a combination of
distributed and boundary feedback could remove the perturbation in the eigenvalue
positions due to the presence of A (x). The later work [6] considered the class of systems
treated here in 4. Our Assumption A part (b) is absent from Russell’s work. In the
special case A(x)= 0 it is redundant.

A decided advantage of the present results are that the required feedback is
determined in terms of the original system state whereas in [6], the eigenvalues of a
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system isomorphic to the original system are assigned and the computation of the
corresponding feedback for the original system is nontrivial.
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(Translated by L. F. Ho)

Abstract. This paper is concerned with the placement of the spectrum of the closed-loop operator
A +BK resulting from use of a linear feedback control law u Kx in the infinite dimensional linear control
system x’ Ax + Bu. For a class of systems in Hilbert space with certain assumptions on the spectrum of the
operator A, a complete characterization of the achievable spectra is obtained. The proofs are carried out in an
operator-theoretic context.

1. Statement of the problem and main results. For the n-dimensional autonomous
linear system

dx
(1.1) Ax(t) + Bu(t), x(O) Xo,

dt

where x(. )e Rn, u(. )e Rr, A, B are, respectively, n n, n r constant matrices and
Rn, Rr being n and r dimensional Euclidean spaces, we have the following familiar
results [1]" in order that, given any n complex numbers h 1, , An, there should always
exist an r x n complex matrix C such that the spectrum r(A +BC)= {hi,.’", An}, a
necessary and sufficient .condition is that

Rank {B, AB, , A 1B} n,

or in other words that the system be completely controllable.
Does a property analogous to the one above hold for infinite dimensional spaces?

Is it true that for an autonomous completely controllable linear system we can always
choose a suitable feedback so that the closed-loop system has any preassigned spec-
trum.9 It seems impossible to answer the above question in general. In this paper, we will
answer it in some special cases of practical importance.

We look at the autonomous linear control system in a Hilbert space H:

dx
(1.2) Ax + bu(t), x(O) Xo,

dt

and take the linear feedback

(1.3) u(t)=(x(t),g)

where b, g e H and , denotes the inner product in H. Then the closed-loop system
would be

dx
Ax + (x, g)b, x(O) Xo.dt
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We say that the linear operator A satisfies condition F if

(F1) A is an unbounded spectral operator with discrete spectrum, its spectral de-
composition being

A= E
k=l

where hk hi (for all k ]) and dim E(h) 1 (k >= 1). Without loss of generality [3], we
may assume that the E(hk), (k -> 1) are self-adjoint operators in H. The normalized
eigenvector of A corresponding to E(h) will be denoted by (k ->_ 1),

(F2) inf [h --/j]--" > O,
ij

1
2=r<O0"sup Y"

la;-a
(F3)

lk<m i=1

Our main results are
THEOREM 1.1. Suppose that the operatorA satisfies condition F and b H. Then for

a given sequence ofcomplex numbers A ___a {Vl, v2, , v,, }, in order that there should
exist g 6H such that the spectrum of the operator A +{., g)b satisfies (see remark 1):

cr(A +(., g)b)=crp(A +(’, g)b)= A,

a necessary and sufficient condition is that

(i) (&, b} # 0 (k -> !),

(ii) y /k --/."k < oo (see remark 2).
k=l bk

Remarks.
1) In this paper, we always look at the point spectrum crp(. of ". as a suitably

ordered complex sequence. The number of times that any complex number appears in
the sequence is equal to the geometric multiplicity of that complex number in the
spectrum of the operator ". ".

2) The precise meaning of condition (ii) is that there exists at least one re-
arrangement of the complex sequence A (still denoted by vl, ’2,""", u,,’" ’) such
that the inequality in (ii) holds.

THEOREM 1.2. If the operatorA satisfies condition F and there exists an index set J
such that

Re hk >0, k J,
Vk__>l,

Re hk 0, k,gJ,

then in order that there should exist g, b H such that the system (1.2), under feedback
(1.3), is stable, a necessary and sufficient condition is that

Re hk < oe.
kJ

2. Perturbation of spectral operatol’s.
LEMMA 2.1. Suppose the operator A satisfies condition F. Set G (., g)b where

g,bH. Then when h/get(A) and 1-(R(.h;A)b,g)O, we must have , p(A +G).
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Also

(i) R(A;A+G)-R(A;A)=

(ii)

1 (R (A A)b, g)
R(A;A)GR(A;A),

R(A; A + G)-R (A; A)-R (A; A)GR(A; A)

1-(R(A
A)b’ g)g)R(A" A)GR(A"

where p( denotes the resolvent set of the operator , and R (A;.) (I- )-.
The proof follows from [4] and [5].
THEOREM 2.1. Suppose that the operator A satisfies condition F, g, b H, then the

operator A +(., g)b is a spectral operator with discrete spectrum. If o’p(A +(., g)b)=
{Ul, u2, , un, } then them must exist a positive integer no such that

(2.1) Ih 1 6lbg l, k e no.

Proof. The proof is divided into several steps.
Step 1. Denote bk (&k, b), gk (Ok, g). Set

(2.2) el when => 1
e [bgl-- 0,

where e’l is an arbitrary but fixed positive number less than 6/2. SupposeM is a positive
number. Form the set

(2.3)

and denote its complementary set by SM. We claim that there exists a constant Mo
independent of the choice of e (as long as e’l < 6/2) such that

(2.4) SMC p(a +(’, g)b), (M >-Mo).

First, by definition, for anyM > 0 we have SM to (A). Second, because g, b e H, we can
choose ko sufficiently large, such that

2 1
E Ibgl<(2.5)

6 k=ko+l

Once the above k0 is chosen, we could, by condition (F3), always choose a positive
number Mo so that

o Ibgl 1
(2.6) < (M>Mo).

So for A SM, (M >-Mo) we have

I(R(Z A)b, g)l bgg.
k=l A--Ak

(2.7)



COMPLETELY CONTROLLABLE LINEAR SYSTEMS 733

here l(,) is determined by the equation

A --//(A)I inf ]A Ak I.
k>ko

Equation (2.4) follows from Lemma 2.1 and inequality (2.7).
Step 2. Denote CI={A IIA-,1] el}, (/-> 1). From (2.4), (2.7)and condition (F3)

we know that when is sufficiently large

(2.8) CI c p(A) fq p(A +(., g)b).

Let C/, {All-/ll 8/2}. From the proof of (2.7) it is easy to see that there exists
no so that

(2.7’) sup I(R(,;A)b,g)l<, l>--no

and by (2.5) we have el < 8/2, > ko. Also it is not hard to prove that

(R (, A)b, g)
1 -(R (,; A)b, g)

R(A A)GR(, A)

is analytic in the annulus {el < I All < 6/2}, (l > max {no, ko}). Therefore

(2.9)

a 1 c (R (h A)b, g)
Ol

1 (R (/ A)b, g)
R (, A GR (, A d,

1 (R(,;A)b, g)
2zri ’ct. 1-(R (A A)b, g)

R(A A)GR(A A) dA.

So by (2.7’) we have

(R( A)b, g)
sup
xc,, 1-(R(A;A)b, g)

R (, A)GR (& A)

(2.10)

_-<6 sup IIR(;A)GR(,;A)II

bk 2) 1/2

2 /Ig/I2 gk .12) 1/2

X \- Jr- kl l--/k’ (I > max {no, ko}).
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Hence

(2.11)

E
/>max (no, ko)

E
/>max {no,ko}

{Ig/I2

>max {no, ko}

(
/>max {no,ko}

+ bk 12) 1/2([b-ll12 Zllll__lk
2) 1/2

bk 2)) 1/2

_-<4a --+ Z
=1 l>max {no,ko} Al

kl

k />max {no,ko} ’l Ak
kl

2) 1/2

1/2

Similarly, one has

t a 1 C-i R A A GR A A dA

(2.12) E(AI)GR(AI A) + R(A/; A)GE(AI)

(, g) E(Ak)b
k=l ,l--/kE(Ak) ", E(AI)b+<E(AI)’,g) k=lE i_/k
kl kl

Also,

(2.13) y [lfl/ll < o.
/>max {no,ko}

Now we denote by E the sum inside CI of the spectral measures E’(A) of the
operator A + , g)b. From the proof of [4, Thm. 1 and Lemma 4], we know that when
is sufficiently large, El is a one-dimensional operator. In other words, there exists /l

such that

(2.14) El E’(vl) and [Al-/ll < el when is sufficiently large.

Step 3. For an arbitrary M >0, it is easy to see that 1 -(R(A A)b, g) 0 has only
finitely many singularities v1,’", Vr, in IAI=<M and the algebraic multiplicities
pl, , pr, are also finite. So from Lemma 2.1 we know that

tr(A + (., g)b f"l {A IIA I_-< M}
(2.15) {/1,’’’, t,,1, 12rM, Vr}U(o’(A)f"I{AIIA[<=M}).

Pl
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Hence tr(A)+(., g)b)f’){A[IAI M} has only finitely many points, and it is easy to see
that all these points belong to trp(A +(., g)b).

Now by (2.14), (2.15) and an argument similar to the proof of [4, Thm. 1], one
knows that A +(., g)b is a spectral operator with discrete spectrum and all but finitely
many spectral points are simple. So there exists a positive integer mo such that

(2.16) A +(., g)b E vE’(v)+N,
k=l

where E’(. is the resolution of identity associated with A + (., g)b, N commutes with
E’(uk), (k >= 1); E’(uk)N 0, (k > too); dim E’(uk)H 1, (k > rno); and N is a nilpotent

E’operator on Y’. (uk)H.
Step 4. Let M> max <__j<__ ,,o [u.[ be a sufficiently large positive number. Construct

the contour CM as follows" CM is formed by joining the circular arcs on M that do
not intersect U = CI and the circular arcs curving inwards of those CI that intersect
I; 1 M; i.e., CM is as shown in Fig. 1. Here 1.3 =a Cl intersects I;tl M on Ckl,’’’, Ck,.
It is easy to see that for M sufficiently large the number of Ckl, ", Ck, must be finite
and CM is a piecewise smooth simple closed contour.

FIG.

When M is sufficiently large, noting (2.11) and (2.13) it is easy to prove that

(2.17)

1 (R (A A)b, g)

Hence from [8, p. 29] one has

(2.18) , dimE’(v)H=
inside C .j inside C

where nM is the number of Ai’s inside

R (A; A)GR (A; A) dA]l < 1.

dim E(Aj)H riM,

From (2.14) and (2.18) it follows immediately that we can suitably rearrange the
spectrum vl, v2,’ of A + (., g)b (still denoted by ul, u2," ") and change the asso-
ciated resolution of identity to a family of one-dimensional projections (still denoted by
E’(Vk)), such that

A +(., g)b E v,E’(v,)+N,
k=l

where dim E’(vk) 1 (k >= 1), and when is sufficiently large one has

(2.19) IAl vii < el, (l sufficiently large).
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Since the e in (2.2) is arbitrary, it follows from (2.14) (or (2.19)) that (2.1) is true.
In this way the proof of Theorem 2.1 is completed.
COROLLARY 2.1. Under the conditions of Theorem 2.1, if bk O, k >= 1, then we

have
2

(2.20) k k-/]k
00.

bk

Proof. This is a direct consequence of (2.1).

3. Proof of Theorem 1.1.
Necessity. By Corollary 2.1 we need only prove b 0 (k _>-1). We prove by

contradiction. Without loss of generality assume b 0. By Theorem 2.1A + (., g)b is a
spectral operator for any given gH and it is easy to prove that (A+(.,g)b)*=
A*+(. b)g. So(A+(.,g)b)*cbx=A*c XlCl, 10"p"i.e X e ((A+(.,g))*).Hencelle
o-,(A +(., g)b). That is, for any complex sequence A {ul, u2," ", u,,...}, as long as
Uk 11, (k=>l), there does not exist g eH such that o-,(A+(.,g)b)=A. This
contradicts the hypothesis of the theorem. So we must have bl 0, and hence the proof
of the necessity part of Theorem 1.1 is complete.

Sufficiency. We prove sufficiency for the following three cases.
Case 1. A ={ul, u2,’’ ", u,,...} satisfies the conditions of the theorem and (1)

ui u.(Vi i), (2) A f3 { 1, 2, , ,," "} .
Denote ak (Ak- Uk/bk), k >= 1. By assumption

(3.1) I1 11 x I kl=<oo,
k=l

Now we find g k=l gkCk in the following way:

(Xk’g)=--l’ }(3.2)
Xk (A vkI)-lb (k >- 1).

That is

big
(3.3) E =-1, k->l,

or equivalently

(3 3’) gk + a’b"-----2-i
j=l Aj-- Pk

gj

Now we consider the infinite matrix

(3.4) T (t/i), tii ]h v’ #/’,

O, i=L

k>=l.

i,j>-l.

One has

(3.5)
E E It, l2=E 2
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where y (infk#. [hi-/2k12)-1. In virtue of assumption (2) and condition (F2) one has
3’ <. The infinite equation (3.3’) now becomes

(3.6)

gl o1

g2 O2

i(I + T)
gn

In order to solve (3.6) we need
LEMMA 3.1. For arbitrary 2n distinct complex numbers Pl, ln i 1, An we

always have

(3.7) det ( 1 ) _-H=- I-I=,+. (v-v.)(A,-A)
lk li nxn Hk,j=X (Pk

Proof. Think of ul, ’, un A 1, , An as 2n complex variables. Then

(3.8) f(Pl,’’’,l]n’ll,’’’,ln) --- I (v-h.)det( 1 )),,k,j= 11k 1 nXn

is a polynomial in Pl, /22,""", Pn, /1,""", An. According to the properties of deter-
minants det (1/(Uk hi))nn is zero when uk u., k # f. So f(Ul," , un h 1, , An) has
a factor (h.- hk) in it. Hence

f(Pl," ",Pn;A1,’" ",An)

(3.9)
I(Pl, ", Pn / 1," ", /n) H

j=l k=j+l
(v vi)(&-,),

where Q(vl, , vn ,
1, .n) is a polynomial in/.,’1, Pn ,.

1, ’.n. By (3.8),
f(vl, , vn ;A 1, ", ,n) is a polynomial of degree n n n n(n 1), and the power of

n--1

1-Ii=l 1-Ik=i+l (Vk v’)(h’- hk)is 2 EI (n --])= n(n 1). So O const. It is not hard to
show that Q-= 1. That is

(3.10) (Vk --,) det
1

1-I (Vk v)(,--,k),
k,]=l 12k ’ nXn j=l k=j+l

and this is just (3.7).
Now we prove that (3.6) has a unique solution g e H, i.e., the unique solution
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Denote by In the identity matrix of dimension n n, Tn (ti/.)l=<U=<n. By (3.7) we
have

(3.11)

(3.12)

n--1

II II (-;)(-)
/’=1

1-I b;
’=

( )(;-)VI ;, )(; )"/=1 k=/+l

Now consider the infinite product

(v, v;)(-,,)
=xin [I

( )(j= k =/+1

(X,-v)(X-v,)

Because
(u v)(Ai-A) (1_

(3.13) =1+ Ak 1,’/. Pk + Aj abb--k--
( v)(v

(,, v;)(,,, )"
Therefore

(3.14) Y’. Y’.
]= k =/.+1

=1+

where y is the constant in (3.5). Therefore by familiar results (see for example [6, p. 17])
we have

(-;)(-) o(3.15) n-lim det (In + Tn)=
/.= k =/.+IH (h k /}/.)(h/. l/k)

#

Now by [7, Chapt. 9, 17] we know that (3.9) has a unique solution

2 12, i.e Igk <oo
k=l

or g Y,k--1 gk4’k H. And the g found in such a way obviously satisfies (3.2), and from
(3.2) we have

(3.2’) (A +(., g)b)xk vxk, k >- 1.

Since l]k 7 1,Q(Vk i) (3.2’) says that

(3.16) o-p(A +(., g)b) A.
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We must have

(3.17) tr,(A +(., g)b)= A,

because otherwise there would exist complex numbers {:1, , :z} where the positive
E<-m, {:1,"’, s%}f-qA= ; and

(3.18) trp(A +(., g)b)= A U{sl, s%}.

Denote A U {sc,. , s%} Atz. It follows from Theorem 2.1, the conditions in Theorem
1.1 and (3.16) that for g e H satisfying (3.16) there cannot exist {s, , sctz}, ( A) such
that both A and Az satisfy (2.1). Hence {sc, seE} ; i.e., (3.17) holds.

In this way, we have finished the proof of the sufficiency part of Theorem 1.1 in
Case 1.

Case 2. A ={t,, t,:,..., t,,,...} satisfies the conditions of the theorem and (1)
t,g ui, for all ]; (2) there exists a set J of positive integers such that

,k, kJ,
,k k>=l.

lk, k eJ,
Now we let

(3.19) g= , gk&k;
kJ

gk(k J) is determined as follows:

(3.20)
(Xk, g)=--1,

Xk (A uk)b -1,
It is easy to see that this becomes, like (3.3),

(3.21) _, bg
1,

ieJ A 12k

(3.23) u u., ], Vi, ] > no.

Now suppose

(3.24) Af"l{hx, h2,...,h,,...}= U {hk},
keJ

where J is a set of integers.

The complex sequence Aj Ukj {Uk} and o’s(A) a-- Uk {hk} appearing in (3.21)
satisfies the conditions on A and or(A) in Case 1. Therefore (3.21) has a unique solution
gk, (k J), Y’.kej[gk[2< o0. From (3.19), (3.20) and (3.21) we obviously have

(3.21’)
(A +(., g)b)Xk UkXk, k J,

(A +(., g)b)ck =/kCk, kJ.

This says that

(3.22) trp(A +(., g)b) A.

Similarly, we have trp(A +(., g)b) A. This finishes the proof for Case 2.
Case 3. A {Ul,’’’, u,,...} is any complex sequence which satisfies the condi-

tion in Theorem 1.1.
First, it follows from condition (ii) in the theorem that there exists a positive integer

no such that
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Now form the complex sequence Aj {u, b’2,’ /n," "} as follows:

(3.25)
() .. .. kj. Vk, i,

(2) u, uk, k>no.

It is easy to see not only that such a complex sequence exists, but also the choice of
u,(k =< no) is rather arbitrary. Hence A belongs to Case 2 and there exists g’ H such
that

(3.26) trp (A + (., g’)b) Aj.

By Theorem 2.1 A + (., g’)b is a spectral operator with discrete spectrum, so it has [3] a
bounded inverse linear operator V such that VE’(u,)V-1 (denoted by Fk) is a self-
adjoint operator in H. Here, E’(.) is the resolution of identity associated with
A + (., g’)b. Then

(3.27) V(A +(., g’)b)V-1= u,Fk.
k=l

Because u, u (k /’), we have dim E’(uk)H dim F,H 1, k _-> 1. Let 0k be a vector
in FkH of modulus 1. It is easy to see that Ok, k _-> 1 form an orthonormal basis in H and

a V(A + (., g’)b)V-1 Denoteare the eigenvectors belonging to u , of the operator A--b’ Vb. We claim that

(3.28) (k, b’) 0, k _-> 1.

Indeed, let us assume that (3.28) is not true; then there must exist k0 such that

(3.29) (0o, 6’) 0.

It follows from the proof of the sufficiency part of Theorem 1.1 (because it is not hard to
show that A still satisfies condition F) that no matter how we choose the g H, we must
have

(3.30)

(3.31)

(A +(., g)b’)l ko O’p Vg H.

Uko 6crp(A +(’, g’+V*g)b)

trp(V(A +(’, g’ + V*g)b)V-a)
=trp(ax+(’,g)b’), fgH.

Because (hence V*) has a bounded inverse, (3.31) reduces to Case 1 which we have
already proved. This is because when we are given any A satisfying the conditions in
Case 1 and such that Uo A, there must exist gA H such that

(3.32) Uko A o’o(A +(’, gA)b).

If we let g=V*-(gA--g’), then (3.32)contradicts (3.31).
This says that (3.28) is true.
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Now let g" Enk=l g/lk. Then A1 +(’, g")b’ has, with respect to the basis Ok, k -->_ 1,
the matrix representation

(3.33)

Al+(’,g")b"
l/no

no+l

gb’l g.ob

g,o.b

Here P,o="k=l Fk, b’ =Ek=l bOk. It follows from (3.33) that the spectrum of AI+
(.,g")b" is composed of the spectrum of P,oAiP,o+(.,g")P,ob’ in P,oH and the
spectrum of (I P,o)A 1(I P,o) in (I P,o)H.

On the other hand, from (3.28) and the simplicity (i.e., l/, # l/, (’i #])) of the
spectrum of A it follows immediately that

(3.34) Rank (P.ob’, P.oA 1P.ob’, ", (P.oA 1P.o)’-lp.ob’} no.

Hence by familiar results [1], we have that for any given complex numbers ul, , U.o,
there exists g" PoH such that in P.oH we have

(3.35) trt,(P.oA 1Vn "[" (’, g’)Vnobt) {Pl," ", 1

Hence for the g" "/k=lVn g/Ok(G P,,oH) determined from above we have

(3.36) o’p(A1 +(’, g")b’)= {l/1,""", l/.o, l/no+l,’" ’}-" A.

Let g g’+ V*g", we immediately get

(3.37)
o-,(A +(., g)b)= or,(V(A +(., g)bV -1)

=o-p(A, +(., g")b’)= A,

and (3.37) is exactly the proof for Case 3 of the sufficiency part of Theorem 1.1.
Hence the proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2.
Proof of sufficiency. Let b Y’,k= bk&k where

(4.1)
/Re h,

b
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Obviously b H and bk 0, (k => 1). Let

(4.2)
ag-2 Re

Ak 2k,

We have

(4.3) Re uk < 0, k -> 1,

and

(4.4) Ak--Uk __< +4 ReAk<.
k=l bk j kJ

So by Theorem 1.1 there exists g e H such that

(4.5) o-p(A +(., g)b)={Ul, u2,’", u,,...}.

From (4.3), (4.5) and using an argument similar to that in [4], it follows that system
(1.2) is stable under feedback (1.3).

Proof of necessity. Suppose that there exist g, b H such that the system (1.2) is
stable under feedback (1.3). By Theorem 2.1, A +(., g)b is an operator with a discrete
spectrum. Let

(4.6) o-p(A +(., g)b)= {t/l, u2,"’’, un," "}.

According to the stability condition, we must have

(4.7) Re/k 0, k _-> 1.

So by (2.1) and (4.7) we have (without loss of generality we assume that (2.1) holds for
all k J)"

kJ kJ

(4.8) _-<6 [bkgk]
kJ

--< 61[bll I[gll.

Thus we get the proof of Theorem 1.2.

5. Some remarks on complete controllability and the distribution of the
spectrum. We know that as long as bk G0, k_-> 1 the system (1.2) is completely
controllable [2], [5] under condition F. However, Theorem I.I asserts that it is not
possible that for any arbitrary complex sequence A {u, u2, , u,,.. } (as long as it
does not satisfy condition (ii) of Theorem i. I) there exists g H satisfying

trp(A +(., g)b)= A.

This is intrinsically different from the case of finite dimensional spaces. When the space
is finite dimensional for an autonomous completely controllable linear system, there
must exist a suitable linear feedback such that the operator associated with the
closed-loop system has any spectrum we have preassigned.
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FINITE ELEMENTS AND TERMINAL PENALIZATION FOR
QUADRATIC COST OPTIMAL CONTROL PROBLEMS

GOVERNED BY ORDINARY DIFFERENTIAL EQUATIONS*

GOONG CHEN? AND WENDELL H. MILLS, JR.

Abstract. We use the finite element method to compute optimal controls of systems governed by linear
ordinary differential equations with a quadratic performance index. As an application we use the penalty
technique to solve terminal state optimal controllability problems. Numerical instabilities, which are common
in the use of penalty, are minimized when the finite element method is applied to solve this problem.
Convergence theorems are given and error and penalty parameter estimates are presented. Concrete
examples for various situations are given to illustrate the theory.

Introduction. Given a finite dimensional linear control system

where

(LC)

dx(t; u)
dt

=A(t)x(t; u)+f(t)+B(t)u(t), O<_t<_T,

x(O; u)= xo,

x(t) is the state of the system at time Rn,
Xo is the initial state,

u Uad is an admissible control, u(t) Rm,

A(t)=--(aij(t))nn, B(t)(bpq(t))nm are n n, n m time-varying matrices,

f L(O, T),

the quadratic cost optimal control problem is to minimize
T

(0.1) J(xo, u)- f [ICl(t)x(t; u)-zl(t)12+(X(t)u(t), u(t))]dt+ylC2x(r; u)-z2
30

with

Cl(t)--(Cii(t))lln, ZlLl(O T), 3,_->0,

C2 is a constant 12 n matrix, z2 12,

(0.2)

N(t) is a symmetric m m time-varying matrix satisfying

ull(o,), > O.(Nu, U)(O,T) > u[I 2

In the early 1960’s, Kalman and Bucy [12], [13] introduced the quadratic per-
formance criteria which became a standard design technique for finite-dimensional
linear systems. Consider the unconstrained case Uad--= L(0, T). The existence and
uniqueness of the optimal control minimizing (0.1) follows from [14]. In (LC), let u t
denote the optimal control. One introduces the Lagrange multiplier p(t)( It) which

* Received by the editors December 26, 1979, and in revised form December 18, 1980.
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.

The work of this author was supported in part by the National Science Foundation under grant MCS 7822830
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t Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
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satisfies the adjoint system

(0.3)

dp(t)
dt
=-A*(t)p(t)-C (t)Cl(t)[x(t; t)- zl(t)],

p(T) TC*2 [C2x(T; t)- z2].

This leads to a coupled system (LC), (0.3), which becomes a two-point boundary value
problem. One may use an iterative shooting method, direct differencing, or decoupling
into Riccati equations to solve for (x, p). The optimal control is then obtained as

(0.4) t(t) -N- (t)B*(t)p(t), 0 <- <-_ T.

This is perhaps the most often quoted numerical method in control literature.
The first mathematical study on computing the optimal control by another method

using finite elements seems to be done by Bosarge and Johnson [3]. This and similar
methods have been closely examined and used by many control theorists and numerical
analysts to compute optimal controls for more complex problems--those with state and
control constraints, nonlinear dynamics, etc. We mention [7], [8], [9], [11], [16] for a
few such references on controlled ODE’s. Comparatively much less literature has dealt
with controlled PDE’s; cf. [22].

Though the study of finite element applications to controlled ODE’s has been
carried out in many forms, many interesting questions still remain. The first main
question in this paper deals with an important control system problem--that of terminal
state controllability at a specified time T. In system design, attaining a prescribed target
is often as important as the minimization of some cost functional. In this study, we wish
to attain a given target while also minimizing an integral quadratic cost. Another
question, which is perhaps more of numerical analysis in nature, is about the feasibility
of a penalty technique applied to this terminal state problem. If one were to compute
such a penalized problem via Riccati synthesis, the resulting equations can be seen (cf.
(2.35, (2.36)) to be ill-conditioned. We find that using finite elements minimizes the
effect of such instabilities while predicting quite accurate results.

In [3], Bosarge and Johnson’s finite element algorithms are based upon Ritz-
Trefftz’s, a dual method. Minimization of a quadratic functional is reduced to the
familiar form [14, Chap. 1] of solving

(0.5) a(t, v) O(v) Vv Vh,

in a finite dimensional approximation space Vh. In 1 of this paper, we also reduce our
minimization problem to an equivalent one of this form, but without relying on a dual
state. We proceed by a primal approach; a and 0 in (1.4), (1.5) are very different from
their counterparts in [3]. We prove a regularity theorem and derive optimal error
estimates for the problem.

In 2 we present the penalized problem (cf. (PQCCP)) as an application of 1. We
first prove the basic convergence Theorem 2.1 and then proceed to derive rates of
convergence and error bounds for uncontrollable and controllable cases. The main
results of this paper are Theorems 2.5, 2.6 and 2.7. The error bounds given in Theorem
2.7 are optimal.

In 3 we apply our method to various examples. The stability and accuracy of the
solutions comply exactly with the main error estimates and indicate that the technique is
quite successful in producing accurate states and optimal controls.
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1. Computations by the finite element method. Throughout this section we
assume that the quadratic performance index J(xo, u) takes the form (0.1) and
Ud L(0, T). Other variants of J(xo, u) such as those in [4], [19] can also be treated
without difficulty.

We let (t, s) denote the (n n) fundamental matrix solution satisfying

d
-dP(t, sl=A(t)dP(t,s), O<-s<-t<- T,

(s, s) =/,,.

For simplicity, (t, O) is denoted by (t). We also use F(t) to denote

V(t) | dp(t, s)f(s) ds.
3o

Define a linear operator

by

(1.1) (,lU)(t) J0 (t, s)B(s)u(s) ds.

Then, for any given u e L(0, T), the solution x(t) of (LC) can be written as

(1.2) x(t; u)=d(t)xo+F(t)+(S1u)(t), O<-t<- T.

Substituting (1.2) into (0.1) and using the calculus of variations, we know that in the
unconstrained case the optimal control t is characterized by the variational equation

(1.3) 1/2Y’(t). v--a(t,v)-O(v)=O forallveL(0, T),

where a(., is a symmetric bilinear form on L(0, T) x L(0, T) defined by

a(vl, vz)=(Nvl, /)2)L2m(0, T)’[- (CI(IO1), CI(.lV2))L2(O,T
(1.4)

+ "y(Cz(xv)(T), C2(v2)(T))R.,2

and 0 is a linear functional on L(0, T) defined by

0(/2) (Z1- C1[(I)( )Xo q- F], CI(.ll.)))La(O,T
(t.5)

+ y(z2-C2[d(T)xo+F(T)], C2(av)(T))u’,..

LEMMA 1.1. LetA e Lnn(O, T) andB e L,,,,(0, T). If C1, N z1 are L2-functions,
then there exist KI, K2, K3, K4 > 0 independent of u, v, y such that

a(u, u) >- t, llnll2&(o,r) (u as in (0.2)),

la(u, v)[ <_-[Ka + K2]llullllvll,

Proof. Since the operator

a v(" )- fo dO(t, s)B(s)v(s) ds

is Hilbert-Schmidt in L(0, T), the result follows.
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THEOREM 1.2. The equation

(1.6) a(a,v)=O(v) (cf. (1.3)) Vv L2(0, T)

has a unique solution which is the optimal control minimizing (0.1) subject to (LC).
Furthermore,

Ila __<g3 + K4T.
Proof. This follows directly from Lemma 1.1 and the Lax-Milgram theorem

[].
From (1.6), the application of the finite element method is quite straightforward.

We let :h
___
L2(0, T) be a finite dimensional approximating subspace and we pose (1.6)

on this subspace:

(1.7) find/h 1 gh such that a(h, V) O(V) VV h.
Let {q31, q32," , q3M} be a basis for dh. Then (1.7) is equivalent to the matrix equation

(1,8) Khqh h,

where Kh [(Kh)ij] [a(4i, q3j)] is an M xM symmetric positive definite matrix, 1 _-< i,

[(h)i] [0(q3i)], 1 _--< _--<M,
M

qh [q], 1 --<_ _<-- M, with/h qq3i.
i=1

The linear matrix equation (1.8) can be solved by standard large order system solvers
with iterative improvement. The only inputs are A(t), B(t), f(t), dp(t, s), Cl(t), zl(t),
N(t), C2 and z2. A finite difference ODE solver may be used to obtain (t, s), and high
order quadrature to calculate Kh and ’h. Examples in 3 show that our computations
produce extremely accurate results as compared with exact solutions.

THEOREM 1.3 (regularity). Let kl, k2, k3, k4 7/+ be such that

(-) klA L(O, T; Rnxn),

-) k2B L(O, T; ’"),

kaN-1 L(O, T; ""),

d) k4
LOO- C1 e (0, T; tl),

and let zlH?(O, T) and f Hkn6(O, T). Then the solution (x,p) of (LC), (0.3) and
(0.4) is inH/1 (0, T)H/ (0, T) with Sl min__<i__<6,i3 {ki} and the optimal control
a is inH (0, T) with s2 min {k2, k3, sl + 1}.

Proof. The two-point boundary value problem

__dIx(t)] =[ A(t)
dtlp(t)J -C’ (t)Cl(t) -B(t)N-(t)B*(t)] x(t)]

-A*(t) [p(t)J + [ f(t) ]C(t)zl(t)

(1.9) x (0) Xo,

p(T) yC [C2x(T)- z2]
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has a solution (x, p) Hln (0, T)Hln (0, T), provided that A(t), B(t), Cl(t) and N-(t)
are inL(0, T) for f n n, n m, n 11 and m m, respectively. Differentiating both
sides of (1.9), one obtains higher regularity results for (x, p). The regularity of t follows
from (0.4).

Following [1, Chap. 4]we assume h
___
L2(0, T) to be an (r, 0)-system. That is, for

u H/ (0, T), there exists v h such that

(1.1o) Ilu v[[c <-K. h"llUllHl,

where r > 0,/x min (r, l) and K is a positive constant independent of u and h.
From now on throughout the rest of this paper, all of our error estimates are based

upon a tacit assumption that the fundamental matrix solution (t, s) (cf. (1.1)) is exact,
thereby enabling the bilinear and linear forms a and 0 to be exact.
THEOREM 1.4 (error estimates). Let gh _L(O, T) be an (r, O)-system. Assume
HS (0, T) is the optimal control solving (LC), (0.1) with s > O. Let h be the finite

element solution (1.7). Then for lz =min (r, s) and some Ks>0 (independent of h, % ),

1/2

(1.11) Ila allEgrO,T, <= (KI + K2y)
1/2

(1.12) sup Ix(t;
[O,T]

where K, K2 are the constants in Lemma 1.1.
Proof. Since a is symmetric, we can apply [15, p. 51] and Lemma 1.1 to get

[[h tllL2(O,T) < (KI + K2T)-u-
1/2

inf [Iv
t

(1.11) then follows from (1.10). (1.12) follows from (1.11) and the estimate

1/2

--< Ks (gl + g2y)
2. Penalization and finite element approximation of an optimal controllability

problem with terminal condition. In this section, we apply the penalty method and 1
to study a quadratic cost controllability problem

(QCCP). For given xx , find an optimal control t L(0, T) such that x(t; )
solves (LC),

(2.1) x(T;)=x

and t minimizes the integral quadratic cost

T

(2.2) J(xo, u)- fo []C(t)x(t; u)-z(t)12+(N(t)u(t), u(t))] dt

over LZm(0, T).
We can regard (2.1) as a constraint, augment (2.2) with a penalty term

(1 / e )Ix (T; u) x 11 z, and study the resulting unconstrained penalized problem:
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(PQCCP). Find an optimal control t L2,,(0, T) such that x(t; (t) solves (LC) and
the penalized cost

J(xo, u)= Ior[lC(t)x(t;u)-z(t)12+(N(t)u(t), u(t))] dt+l--Ix(T;e u)-x’[2

-J(xo, u)+llx(T; u)-xl, e >0

is minimized by t over Lm(0, T). This functional J is the J in 1 with Cl(t) C(t),
zl(t) z(t), 3’ i/e, C2 Inn, Z2 x(la l, 12 n). This idea has been briefly
mentioned in [2, p. 29], [6, p. 208]. It also falls into the category of [21, Algorithm 6.1]
"pure increased" penalty technique. It is known that with the ordinary finite difference
technique numerical instabilities will result when e becomes small [9]. Here we show
that by using our algorithm in 1, we can analyze the parameters e, h in such a way that
such computations become feasible and errors can be minimized.

It is to be understood that this section (and this paper) is not intended as an
exposition of general penalty techniques and their most abstract possible outcomes.
Rather, our objectives are strictly those as outlined in the Introduction. Some con-
vergence arguments presented here are standard proofs involving penalty and can
probably be found under a more general setting elsewhere; see, e.g., [21]. We
nevertheless present detailed proofs in the subsequent theorems so that rates of
convergence can be carefully examined and error analysis can be made. This seems to be
new and is the main thrust of this paper.

We first give two fundamental theorems of this paper, Theorems 2.1 and 2.2.
THEOREM 2.1. Let denote the optimal control obtained from the penalized

problem (PQCCP). Then there exists a unique L2m(O, T) such that

strongly in L2(0, T).

The control (t has the property that

with

J(x0, t) inf J(Xo, v)
vW

W=(veL(O, T)IIx(T; v)-x[= inf I (T; u)-xll}.
L2m

That is to say, is the unique control which makes Ix(T; u)-xll the smallest while
making J small.

Proof. From now on, we write J(u), J(u) instead of J,(xo, u), J(xo, u) when no
ambiguity occurs.

Since t minimizes J, it is also the unique solution to

inf eL(u)= inf [eJ(u)+lx(T; u)-xx[2].
uL ,L&

Choose a fixed element v0e W. It steers x(t) to the point x(T; Vo) (unique!) closest
possible to x x, i.e.,

Ix(T; Vo)-xll =inf Ix(T; u)-xxl_->O.

Such a v0 is obviously nonunique.
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Then we have

:> eJ,(a,)= eJ(Xo, a)+lx(T" () xll2eJ(vo)+lx(T; Vo)-Xl

>-_lx(T;vo)-xl.
Letting e $0, we conclude that

Since

and Ix(T;a)-xllx(r;vo)-xll,

y(vo)>-_y(a),

we obtain a weakly convergent subsequence

t, t weakly inL
for some weak limit t. It is not difficult to see that this weak convergence is also strong,
and that since every subsequence t, converges strongly to t in L(0, T), we conclude
t strongly. 71

Remarks. (1) The above theorem indicates that the methods of this paper .will
produce, as an application, a stable scheme for solving infuL Ix(T, u)- xl[. Note that
a direct solution to this problem by a gradient or conjugate gradient method will be
unstable since its solution is nonunique.

(2) If (LC) is not controllable from x0 to x, then

2inf[x(T;u)-x =M>0,

so J (t) grows unbounded: J()>-M/e oo as e $ 0. Nevertheless, the convergence- t strongly inL
always holds for some t LZ,,.

If the system (LC) is controllable from x0 to x l, for a given pair (Xo, x1), then we
have the following stronger result.

THEOREM 2.2. The system (LC) is controllable from.xo to x for some Xo, x if and
only ifJ (xo, is bounded from above by someM>0 (depending on Xo, x). If (LC) is
controllable from Xo to x, then the solution to the penalized problem (PQCCP), t,
converges strongly to a control (as e - O) which solves (QCCP). Furthermore,

(2.4) [x(T; a)-Xl[ o(e) as e0.
Pro@ If there is a control i steering Xo to xl, then

(2.5)

J(a) J(a) / l--Ix( T; a) x,[=
E

L(tT) _->min L(u) J (t).

Thus J (t) is bounded from above for all e e R+ by M J(ti).
Conversely, assume that J (t,) is bounded from above by some M> 0. Then

Hence

(2.6)

J(a)+llx(T; a)-xll: <-M.

Ix(T; a)-x,[44-0 aseO.
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Because {t} is bounded in LZm(0, T), it contains a subsequence t,.-)t weakly
convergent. From (2.6), we see that

T

x(T; t)= lim {(P(T)xo+F(T)+ Io di)(T, s)B(s).(s) ds}
lim x(T; ,)= x.

So t accomplishes controllability. (LC) is controllable from Xo to x.
From (2.5), we have

On the other hand, weak convergence of a. --)

for every subsequence t.. Also, for any 5 steering Xo to Xl, we have

J(5) =>lim sup ,l(a,)

Hence t solves (QCCP).
From the fact that J(t) --) J(t), we conclude

l[x(T;a)-Xl[2-)O,
so (2.4) follows.

Theorem 2.2 formulates an equivalent condition for controllability depending on
initial and terminal conditions only. In the next theorem we will formulate an equivalent
condition for global controllability.

We first note [5] that the system (LC) is controllable from any initial state x0 to an
arbitrarily prescribed terminal state x if and only if the system (LO)

dy
A*(t)y(t)

dt
(LO)

w(t)-B(t)*y(t)

is observable. (LO) is observable if and only if

T

(2.7) ZN(T)-- Jo (T, s)B(s)N(s)-IB*(s)*(T, s) ds

is a positive definite matrix. For any Xo, x l, the control

(2.8) t(t)=N(t)-lB*(t)*(T, t)Zv[x-(T)xo-F(T)], O<-_t<-_ T

steers (LC) from Xo to x such that (Nu, u)co,r is minimal. This exact solution will be
used for comparison in 3, Example 1.

THEOREM 2.3 (Global uniform bounds). The system (LC) is controllable from xo to
x for arbitrarily given Xo, x ifand only if there exists a positive constantMindependent of
Xo, x such that

2 2J (Xo, u) < M[xo di)(T)xx F(T)I2 + 41iCIIIlcP( )xo + F(. )lit.. (o.r) + 2 Ilz g(o,),

for all e > O.
Proof. By (2.8), the control

5(t)=N(t)-B*(t)*(T, t)Zr [x-(T)xo-F(T)]
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steers (LC) from Xo to xl. Therefore

But

for e R+.

r

J(x, t7)= Io (IC(t)x(t; a)-z(t)[Z+(N(t)a(t), ti(t))) dt

<- [2[C(t)x(t" ) +2[z(t)12+(N(t)a(t), a(t))]dt.

It is clear that

with

(Nu, u)gllxo-(T)xo-F(T)l2

T

Also, from (1 2),
T T

2fo [C(t)x(t,.)12dt<=4{Io []C(t)((t)xo+F(t))[2

+ [C(t) Io (t, s)B(s)N-a(s)B*(s)*(t, s)

Zv (Xl-*(r)xo-V(r))[2 ds] dt}
_-< 4[Icl[=ll( )xo / F(. )[[2(0.T + g2llxo-(T)xo-F(T)ll,

where K can be similarly defined.
Let M K+K2, and the proof is complete.
The proofs of Theorems 2.1 and 2.2 do not indicate the raw of convergence of. Indeed, such a rate of convergence is unknown to us if (LC) is not controllable

from xo to Xl as in the general case of Theorem 2.1. For Theorem 2.2, however, the
following theorem gives the sharpest possible estimates.

THeOReM 2.4. Assume the system (LC) is controllable for some given Xo, x
Let be the optimal control solving (QCCP) and let be the control obtained from the
penalization (PQCCP). Then

(2.9) [la aIIL&(O.TNK6Ix(T;
for some K6 depending on f, z only. Consequently,

(2.10) Ix(T; a)-xxl O() as e0,

(2.11) Ila all(o,= o() as 0,

(2.1) sup Ix(t; a)-x(t; a)l o() as 0.
[0,r]

Pro@ For any Xo, x N, f in (LC) and z in (2.2), the mapping

s. n x x(0, r)x(0, r)(0, r),

Se (Xo, X1, Z)- ae, lle solves (PQCCP)
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is linear and continuous. This can be verified from the corresponding variational
equation. Since

(2.13) lim S (Xo, x, f, z)= ,
$0

is the strong limit of in Theorem 2.1. By the Banach-Steinhaus theorem, we have

S S pointwise, S(xo, x, f, z)=- ,
and S is a bounded linear operator from x R L2(0, T) L2 (0, T) into L2(0, T).

On the other hand, assuming (LC) is controllable from Xo to x for some given
(Xo, x), for any e > 0, we claim that

(2.14) S(xo, x(r; a), f, z)= t
i.e., the optimal control steering Xo to x(T; t) minimizing (2.2) is t. This can be seen as
follows. Let t3(y) be the solution to

inf [J(xo, v)+l--[y-xll2] y Nn is given,
vL2m(O,T)

(P1)
v steers (LC) from Xo to y.

Then (y) also solves
inf J(xo, v),

(P2)
v steers (LC) from Xo to y,

because in (P1) there is no variation in (1/e)ly-xl Hence t(y)=S(x0, y,f, z).
Choosing y x(T; ), from (P2) we easily see that (2.14) holds.

Therefore, by the linear continuity of S,

Ila all  O,T)- IIS(xo, x(r; a), f, z)- S(xo, x, f,

<-g61x(T; a )-x l forsome K6>0dependingonf, z only.

So (2.9) is proven. From (2.5), using an identity due to Hager [10], we have

llx(T; a)-x[
E

=()-J(a)
(2.15)

=Y’(t). (t- t)+ a(t- t, - t)

2[a (t, t t)- 0( t)] + a(t -t, t t).

Refer to (1.4), (1.5) for a, 0 derived from the J of (2.2). The three terms on the right of
(2.15) grow with an order of magnitude first order) when IIt t[I is small
and of magnitude []t t]]z (i.e., quadratic order) when ]]t tl] is large. But it has been
proven that ]]t- t]]- 0. So, for e sufficiently small, and K7 independent of e,

x(T;a,)-x
E

<=g6gTIX(T; le)-Xll (cf. (2.9)).

Hence

Ix(T; a)-xx[<=K6KTe for e sufficiently small.
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So (2.10) is proven. (2.11) follows from (2.9) and (2.10). (2.12) follows from (1.2) and

Remarks. (1) In the paper by B. T. Polyak [17] the convergence rates (2.10), (2.11)
have been obtained for a more general nonlinear (equality) constraint. Thus Theorem
2.4 becomes a special case of 17]. Because our proof will be used later in Theorem 2.7,
we present it in a complete fashion as above. (2) By Theorem 1.2, the (PQCCP) solution
u is characterized by the variational equation

(2.16) a(a, v)= G(v) for all v L2m,
with a and 0, as in (1.4) and (1.5) and y 1/e. From the Lax-Milgram theorem we
have

a(a, v) (Tt, V)L G(V) (g, V)L VV L2,,,,

where T is a (symmetric, positive) invertible Fredholm integral operator and g
depends linearly on (Xo, x 1, f, z). Thus

Ta=g,
(2.17)

T-lg S (Xo, x 1, f, z).

In the case that the system (LC) is globally controllable, we have the following
asymptotic expansion which is an even stronger result than Theorem 2.4.

THZORZM 2.5 (Asymptotic expansion). Assume that the system (LC) is controllable
from Xo to x ]:or arbitrarily given Xo, x l. Let be the optimal control obtained [rom
(PQCCP). Then we have the following asymptotic expansion

2u=+eul+e uz+ +e u,+ ’’’, e>0,

where is the optimal control solving (QCCP).
Proof. We let *1 be defined as in (1.1) and define"L(0, T) --> " by

T

.u | O(T, s)B(s)u(s) ds.
Jo

Then one has

L’*"L(0, T) -L(0, T),
T

(*x x)(t) B*(t) ft *(s, t)x(s) ds,

From (2.17), we see that t is the solution of

(2.18)

where

We let

(’z)(t) B*(t)*(T, t)z.

1
*(N +,,l)u + x] * h,

E

h (t) =- C*(t){zl (t) C(t)[rb(t)Xo + F(t)]}.

(2.19) po--lim 1--[x(T;/e)--Xl].
e,l,O E

This limit can be easily shown to exist because of (2.10). It is determinable from one of
the transversality conditions [6].
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Let Uo lime,o te as guaranteed by Theorem 2.2. Letting e$0 in (2.18), we get

(2.20) (N +*a)Uo +z*po *h.

Furthermore, Uo is the unique solution to (2.20) because N+1 has a bounded
inverse.

Next, let (ua, pa) solve

(N + o’l*’a)u + ogfz*pa 0,

2u =P0.

This system has a unique pair of solutions

(2.21)
pl -[z(N +’a)-’]-’Po,

Note here that the bracketed term in (2.21) has an inverse because the ZN(T) in (2.7) is
invertible, i.e., because of global controllability.

We proceed inductively as follows: let (uj, pj) solve

(N +-t*a)ui + ’z*Pi 0,
(2.22) j => 1,

2ui pi-,

and let
AN N
Re Uo -- SU -- "4-8 UN.

Multiplying (2.22) by e and summing over f from 1 to N, we get
N- u2,pu"(N+’)aT+*(po+ep+... +e pu_l)=h e

Using Pi zui+a from the second relation in (2.22), we get

(N+1) .N N-1u +2(ux+eu2+’" "+e UN)=h--eNpu.
Equivalently, since x(T; Uo)-X =0 (Uo solves (QCCP)),

(N +..*x.a)t Ne +lo’z*[(x(T, Uo) X a) + e2(u + eu2 + + e lv-a ] .97*, h NLpl.Ul,---..o-e

Subtracting (2.18) from the above, and using x(T; Uo)-x(T; te) =(Uo-te), we
obtain

(N+’a)(aN /e)+l--Lt’2(/ ae) *e 2

Forming the inner product of the above with tY-te, we get

N N
-e (P2v, CP2(te

1 E
2N+l

-<--IIz(a- a)ll / IIp,,ll=,
-2e 2

implying
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Therefore, for each N,
1/2

Ila -all--< <N(t-u), a’ =-/=/z2-/=llp,,ll-,o as e $0

proving the validity of the asymptotic expansion.
Remark. The procedures in the above expansion are standard; cf. [20, pp. 152-

154], for example. The distinction between [20] and the work here seems to be that the
operator in the bracketed term in (2.21) is not invertible in the nonglobally controllable
case. It is not clear whether the asymptotic expansion is still possible in that case.

Now, we assume that A(t), B(t), N-l(t), C(t), z(t) and f(t) are sufficiently smooth
functions so that the regularity Theorem 1.3 can be applied to give positive s and s2
which are sufficiently large. We may now apply the finite element method (1.7) to
approximate (PQCCP)’s variational equivalent (2.16).

THEOREM 2.6. Let h be an (r, O)-system. Assume that s" 0 < s <= min (sl, s2) for
some positive sl, s2 as mentioned above. Let H (0, T) be the solution to the penalty

L,-hmtt of(t as in Theorem 2.1. Let U,h h be the finiteproblem (PQCCP) and (t be the
element approximation (1.7) of the penalized problem: i.e.,

and

J (Xo, t)= inf J (x0, v), t lim
vLm $0

J (Xo, t,h) inf J (Xo, v).

Then there exist K8, K9 > 0 independent of e, h such that for/x min (r, s),

K8

(2.24) sup ix(t; U.h)--x(t; a)l 2(e)+
[0,T] )

where gx(e)0, 2(e)+0 as e+O depending on Xo, xa.
Proof. By standard procedures we find

a, ,.h ,, V)=0 VVh

Hence, by Theorem 1.4, using y l/e, we get

( "llall..

Therefore, from Theorem 2.1 and

liar,, all liar,, all + I[a all,
(2.23) follows. (2.24) is immediate from (2.23).

If (LC) is controllable from Xo to xa, we have the following sharp asymptotic
estimates"

THEOREM 2.7. Assume that for given (Xo, x), (LC) is controllable from Xo w X x.
Then the control in Theorem 2.4 also belongs toH (0, T) and we have, for some Kxo
independent of e,

(z.25 lla a llz(0, ro,
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and there exist constants KI 1, K12 > 0 independent of e, h such that ]:or/x min (r, s)

(2.26)
sup Ix(i)(t; le,h)- X(i)(t; l)l K12(E - h" Ilt II.g.(O.T)).
[0,T]

O<__j<-s,

for e sufficiently small.
Proof. In order to consider (2.25), we first return to the proof of Theorem 1.3. As in

that proof, we differentiate both sides of (1.9) k times, where k is an integer greater than
s, keeping in mind that

p(T)=p(T)=I[x(T; /e) Xl],
E

Cx(t)=-C(t),

Zl(t)=Z(t),

(2.27)

for the current case. Since the k-times differentiated ordinary differential equation is
still well-posed, the solution (x, p) is continuous with respect to initial and boundary
data. From the estimate (2.10), we see that p (T) is continuous with respect to e _-> 0,
and from (2.19)

lim p(T)= liml[x(T; t)-Xl]=po=p(T; t).
e$O e$O E

Therefore (x (t), p(t)) converges in the H-norm to (x(t; t), p(t; t)). Therefore (2.25)
follows from (2.27) and (2.10).

Next, let W={x(T;v)nlvL2(O, T)}, an affine subspace of [n. Note Xl W.
Since [" is finite dimensional, W {x(T, Vh) lVh h} for all h sufficiently small.
Define

S," " " x L(0, T) xL(0, T) o

by S. (x0, x, f, z) , which solves the finite element approximation (PQCCP) over. Following the proof of Theorem 2.4, S. is linear, continuous, and

lim S,h(xo, Xl, f, z)= lh Sh(Xo, Xl, f, Z)
e$o

is a bounded linear operator on L2 L. Also, Xl W implies th solves
(QCCP) over h(x(T;h)= Xl) and Sh(Xo, x(T;,h), f, z)= t,h. Hence

(2.28) Ila,h ahll<=llShll Ix(T; le,h)--Xll,
and the same previous argument gives

]x(T;a,h)--xll <=K. IlShll .
Next, let h(t) and po be as defined in (2.19). Letting e$0 in (2.16), we get

(2.29) a(t, V)’+- I(U) O’2(U),

where a(.,. is as defined in (1.4) with y 0, and

ffl U -(h, 1o ), 0-2 -(Po, L2U ).

Let rh be the unique element in h satisfying

(2.30) a(t th, vh) 0 /vh 6 h.
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Then /h has the property [15, p. 51] that

(2.31)

and hence

(2.32) I[x(T; t)- x(T; th)[I [lf2(t th)[[ <- Ch"[la[[a.

From (2.29), (2.30), we conclude that th satisfies the variational equation

a (th, Vh) q" l(Vh)= O-2(l.)h) VI)h E h

in h. Thus a(fflh, Vh)"-l(t)h)’-’0 for all l)h satisfying ,’2Vh "-’0. But this means that
J’(fflh)" Vh 0 for all Vh satisfying 2Vh 0; i.e., J(ffth q-Vh)>=J(fflh) for all ah + Vh such
that

dP(T)xo + F(T) +.2((Ih + Vh) (T)xo +F(T) +..2(Ih x(T; ah).

In other words, we have Sh (Xo, x(T; lh), Z) fflh. Therefore

Ilah thll- IISh(Xo, xa, f, z)-- Sh(XO, x(T; 6h), f, z)ll

[ISh IIx X (r; /h)ll
<= Ch"llShll Ilall,

and

Therefore, if S is the operator in the proof of Theorem 2.4, Sh S pointwise as
h - 0. By the uniform boundedness principle, IlShll--<M independent of h. Combining
this fact with (2.28) gives

(2.34) Ila,h--ahllg,

Combining (2.31) and (2.34) gives the conclusion of the theorem. [
Remarks. (1) Numerical experiments completely agree with the error estimates in

Theorem 2.6. Existing examples of exact solutions of t and t indicate that Theorem
2.6 gives the best possible estimates. (2) If one were to solve (PQCCP) by Riccati
feedback synthesis, one would have the decoupled Riccati equations

(2.35)

(2.36)

P’+PA +A*P -PBN-1B*[P -C*C on[0, T],

lP (T) 1I,,,,,
r’ +A*r-PBN-IB*r -Pd+ C’z,

1
re(T) --xl.

Both are very ill-conditioned because of the terminal conditions.

3. Examples. We present three examples to illustrate the theory in 2. Naturally,
they are also examples for 1. We let h__ 1-IS h where Sh are continuous piecewise
cubics, a (4, 0)-system. We choose h T/10 and e 10-4.
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1. Comparison with an exact solution. Here we solve a 2 2 system (n m 2)
with only control cost minimized"

rr/2

12J(xo, u)= lu(t) dt,

A=
-1

B= N=

x(0)= x
-1

C 0, z f 0,

on the interval [0, r/2]. This has the exact (QCCP) solution (by (2.8))

t-1 cost+sin

u(t)=4[cos;]--- Lsin
x(t)=

4-(-t-1) sin t+cos

The finite element solutions are given in Fig. 1. All solutions were found to be correct
pointwise with a relative error of 10-.

2. Example oan uncontrollable problem. We look at a 2 x 1 system (n 2, m 1)
which is not controllable.

A=
0 0’ ’= sin5t

N =/’22,

cos
C I22, z

sin 3t
on [0, 1].

The finite element solutions are given in Fig. 2. We see that the second component
of x does not attain its target of x The finite element problem is a well-posed
approximation to t and t does converge to some t L2(0, 1), but t is not a solution to
(QCCP). Refer to Theorems 2.1 and 2.6.

3. Example of a larger problem with total cost minimized. Here we solve the 4 3
system (n 4, m 3) on [0, 2]:

-t

3 t2 1

A
-1 0 0 0 2

0 1
B-

2t 0
0 0 2

COS 3t 4td

1 -1

x(O) - x(7")

3+t

0

cos 2tl
si5t / [cos 4t]z

Lsin 3t
sin 10td

2
4+t2 0
0 3+t
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n lOXlUOO lmD.do
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n lOalUOO laU.ldo
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n lOJlUOO lU.do
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The finite element solutions are given in Fig. 3. Since all components of x attained
the target, we conclude the problem is controllable with the optimal control as given.

From Fig. 3 one can also find that the control component u2 is less smooth near the
terminal time T. In keeping close to the distributed goal function z(t), the trajectory
must also attain the designated terminal state which may not be close to the terminal
state of this goal function.

Remarks. (1) The program generating the above solutions uses standard Gaussian
quadrature for o (t, s)B(s)(s) ds calculation at equally spaced points t, and a high
order Newton-Cotes formula for

T

calculation. These additional computational errors are built into the finite element
solution and do not decrease the asymptotic errors of Theorem 2.7 provided high order
quadrature is used. The reader is referred to 1, p. 525] for a discussion of such matters.

(2) For each e > 0, let K,h be the matrix Kh in (1.8). In practice, we find that the
condition number of K,h to be O(1/e). For small e this numerical instability will
produce loss of accuracy in the solution. This loss may be completely recovered by
iterative refinement procedures. The fact that we have only O(1/e) conditioning
indicates that our penalty method produces minimized instabilities.

Acknowledgment. We thank Professor T. I. Seidman of the University of Mary-
land-Baltimore County for a discussion which motivated the proof of Theorem 2.4. We
also wish to thank the referees for their suggestions, and particularly for the idea of
sharpening the error estimates of Theorem 2.7.
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EXACT CONTROLLABILITY THEOREMS AND NUMERICAL
SIMULATIONS FOR SOME NONLINEAR DIFFERENTIAL EQUATIONS*

GOONG CHENt, WENDELL H. MILLS, JR., AND GIOVANNI CROSTA

Abstract. We study exact controllability problems for some nonlinear systems with linear controls. Our
tools are contraction fixed point theorems and nonlinear semigroup properties. We show that under the
assumptions of low order nonlinearity, reversibility and the existence of certain feedback controls, the
nonlinear system is exactly controllable. The constructive aspect of the theory allows the application of
numerical simulation. An analog-digital realization diagram is discussed. Accurate numerical schemes are
developed and error estimates are presented with concrete examples to illustrate the theory.

Introduction. In this paper, we are concerned with the controllability problem
of a nonlinear system

(NCS)

where

d
-x(t, u)=A(x(t))+Bu(t), t>-O,

x (0) x0 X,

X a Banach space with norm [1’ II,
x(t)X is the state of the system at time t,
u Uaa is an admissible control, Uaa is the space of admissible controls,

(0.1) A" D(A)
___
X X is a single-valued nonlinear operator with dense domain

D(A), and A is the infinitesimal generator of a nonlinear semigroup,
B is a bounded linear operator from some space U into X.

The controllability problem for the system (NCS) is, for given Xo, X X, to find a
U Uad such that starting from Xo, the system is steered to xl at some tl (tl may be
dependent upon Xo, xt), i.e.,

x(t,u)=x.

The system (NCS) we are studying is autonomous, linear in the control variable and
nonlinear only in the state variable. The most general form of a nonlinear control
system would appear to be

d
(0.2) -x(t, u)= F(x(t), u(t), t),

where the defining relation F is nonautonomous and nonlinear in both state and control
variables. In case (0.2) is a system governed by a nonlinear ODE, the controllability
problem has been well studied by engineers and mathematicians; see, e.g., [2], [7], [10],
[15], [16], [21], to mention a few. In the case of nonlinear PDE’s, there is relatively less
literature on this subject. We refer to [6], [8], [11], [12].

* Received by the editors October 29, 1979, and in revised form September 15, 1980.
f Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.

The work of this author was supported in part by the National Science Foundation under grant MCS 7822830.
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
Via Dupr6 5, 21013 Gallarate, Italy.

765



766 G. CHEN, W. H. MILLS, JR. AND G. CROSTA

In this paper we make a study of the nonlinear controllability problem by a new
approach. The basic tools we will use are some fixed point theorems for nonlinear
mappings and nonlinear semigroup theory. If the system (NCS) is "reversible" and has
some "good" feedback controllers, we can use a Lyapunov-type stability argument to
obtain exact controllability. This is a unified theory for systems governed by nonlinear
ordinary and partial differential equations. Basically, our paper is a generalization of
D. L. Russell’s "controllability via stabilizability" theorem [20] to nonlinear systems.
Our theorems (except Theorem 2.3) are constructive. A realization block diagram (Fig.
1) for analog-digital simulation is discussed in 1.2. Section 3 is devoted to the
development of accurate numerical simulation schemes which are quite important and
an integral part of this study. Examples are presented at the end of the paper.

The controls we obtain in 2 are not unique. They depend on the choice of
feedback controls and the injectivity of the operator B. A penalization technique as in
15] might be applied to achieve a unique optimal control.

1. Linear controllability via stabilizability and realization. In [20], Russell’s
controllability via stabilizability theorem was formulated for an autonomous ODE
system with the terminal state to be controlled to 0. The fact that his proof in [20] can be
immediately generalized to an infinite dimensional system is quite obvious, but here we
present a slightly improved argument with an arbitrary terminal state. This refinement
will be seen ( 2) to be necessary for the controllability study of nonlinear evolution
control systems. We also include a block diagram interpreting the realization of the
mathematical argument. This diagram, with minor modification, also serves as realiza-
tion for the proof of Theorem 2.1.

1.1. Linear controllability via stabilizability theorem of Russell.
THEOREM 1.1. Let

(LCS)

d
-::x(t) Ax(t) + Bu(t), 0 <-_ <- T,

x (0) xo X

be a linear control system in X, where

A" D(A)-->X is the infinitesimal generator of a linear semigroup with dense domain
D(A),

B" Uad--> X is linear and bounded.

If there exist bounded linear operators K+, K-"X Uad such that

generate semigroups e

A+=_A +BK+,
A+t -A-te satisfying

A-=-A +BK-

(1.1) lie A+’II c e-kt, > 0, C, k > 0,

(1.2) Ile-a-tl[ <- C e >-_ O, C, k > O,

then for Tsufficiently large we have the following: for each Xo, x X, them exists a control
u e C([0, T]; U) such that x(t) is steered from Xo to xl at T.
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Proof. Let x/(t) be the (generalized) solution of

d
dtX+(t)=Ax+(t)+BK+x/(t)=-A/x+(t), O<-t <- T,

(1.3)
x +(0) a x,

and let x-(t) be the solution of

d
-x-(t) Ax-(t) + BK-x-(t) =- A-x-(t), 0 <-_ <- T,

(1.4)
x-(T)=Xl-X/(T).

Note that (1.4) is a backward equation. Then x(t)x/(t)+x-(t)satisfies

d
-ff;x(t) Ax(t) + Bu(t), 0 <-_ <-_ T, with u =- K+x+ +K x

(.5)
x(T)=xl

with the initial condition

x(0) x/(0) + x-(0)= a +{eA-(t-T)[Xl--x/(T)]}t=o
(1.6) o + e-A-T [Xl e A+T A+T] (’" x/(T)= e a)

(I e-A-TeA/T)ot + e-A-Tx 1o

Therefore every initial state x(0) of the form (1.6) can be steered to (1.5). Now, choose
T large enough. By (1.1), (1.2)

[le--e+ll < 1.

So (1.6) is always solvable for any given x(O)- Xo, with solution

a (I e-A-:reA/:r)-(Xo e -A-7,x).
Remarks. (1) Theorem 1.1 remains valid if (LCS) contains an inhomogeneous

forcing term f(t)"

d
td
--7x(t) Ax(t) + Bu(t) +f(t).

See [5].
(2) For examples of controllability via stabilizability in an infinite dimensional

space, we refer to [19], [3], [4].

1.2. Analog-digital simulations of Theorem 1.1. The realization of Theorem 1.1
is shown in Fig. 1. The only inputs are x0 and x 1. a is computed via (1.6) and fed into the
main analog-digital integrator circuit. System (1.3) with x/(0)= a as initial condition
must run first for T time units in order to yield x/(T). The data from system (1.3) are
then stacked in an FI/LO (First-In-Last-Out) memory. At time T system (1.4) starts
running. A change of variable T-t is needed to let run from 0 to T. Thus the
backward equation (1.4) becomes a forward equation

(1.4)’

d- x-(z) -A-x-(r), 0 <= " <= T,

A+Tx-(O)=x-e
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As system (1.4)’ is running, the data stored in the memory are read out from the top and
summed at each step with corresponding values of x /. Thus we get a sequence of values
of x starting from x(T). It takes 2T time units for the whole process to be complete.

Due to the memory stack and time delay required, the circuit must be run on a
hybrid computer to obtain the state x(t). The individual flows x

/ and x- may be read off
to compute the control u. We note that it is the linearity of the operator A which enables
the exact computation of a. In the nonlinear case of 2, Fig. 1 must be further coupled
with a digital diagram for iterative computation of a, x(t) and u(t). The nature of this
coupling will be evident and will not appear here. In lieu of such analog-digital
simulation we construct a fully digital numerical scheme in 3.

2. Exact controllability for nonlinear systems. A nonlinear semigroup on a
Banach space X is a function S with domain R/ X and range in X satisfying

(2.)

(2.2)

(2.3)

(2.4)

S(tl, S(t2, x))=S(tl+t2, x) VxeX, tl, t2_>--O,

$(O,x)=x,

for every x X, S (t, x) is continuous in _-> O,

S(t, x) is continuous in x for every _-> O.

We also allow a nonlinear semigroup S to be defined on R-X satisfying
(2.1)-(2.4) with -< 0.

For an autonomous nonlinear ordinary differential equation

d
-x(t) f(x(t)), >-_ 0 or _-< O,

x (0) Xo I’,

f: n - R" is continuous,

with global existence and uniqueness on [0, oo) or (-oo, 0], f is known to generate a
nonlinear semigroup S+(t, x) on R+ x R" or S-(t, x) on - x R" defined by

S+(t, Xo) =- x(t), >- O, S-(t, Xo) =- x(t), <- O,

or

x(0) x0, x(0) =x0.

In the nonlinear evolutionary case

d
dtX(t)=F(x(t)), t>=O,

x (0) x0 X, X infinite dimensional,

F:D(F)
_
X-X a single-valued nonlinear operator with dense domain,

it becomes much more difficult to prove the existence of such nonlinear semigroups
generated by the Banach space-valued function F. Indeed, for many nonlinear evolu-
tion equations we only know [14] the existence and uniqueness of generalized solutions
x(t) which are in L(0, T; X), i.e., the solution x(t) may not be defined pointwise in
even after any modification on a set of measure zero in [0, T]. For such nonlinear
equations, the study of exact controllability is impossible (or, must be defined in a
different sense) since the state of the system at ti’me is not well defined. In the theorems
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that follow we will require the existence of these semigroups for the F’s under
consideration.

Actually, the nonlinear operatorF may be allowed to be multiple-valued. We refer
the readers to [1], 19] for generation theorems for such maximal dissipative nonlinear
operators.

We now consider the problem (NCS) with UadL2(0, o0; U) or Uad=
L(0, co; U). The following assumptions require that the nonlinear operatorA has only
low order nonlinearity.

(HI) The nonlinear mapping AC’D(A) D(A)-->X defined by

dV(vl, v2)=A(vl + v2)-(Av +Av2)
can be extended uniquely into a continuous mapping on X X; i.e., for any v, v2 X
and any sequences {v")}, {vn)} D(A)such that v"* --> v, v" --> v2 inX, there exists a
unique z X such that

lim [A(v") +v"))-(Av") +Ave2"))] z--AC(v, v2).

The assumption (H1) is trivial if X is finite dimensional.
We also need
(H2) For any Vl, v2 X, there exists a w (may be nonunique) U such that

dC(v, v) Bw

and w can be chosen to be continuously dependent upon vl, v2.

2.1. Exact controllability (I): global contractions at fixed time. The following
theorem is a straightforward generalization of Theorem 1.1.

THEOREM 2.1. Let the operatorsA andB of (NCS) satisfy (HI) and (H2). Assume
that there exists T > 0 and two bounded linear operators K/, K-"X --> U such that

(i) A +BK/
generates a nonlinear semigroup p on R/xX such that p(T, is a

strict contraction in X;
(ii) A +BK- generates a nonlinear semigroup on - xX such that (- T, is

a strict contraction in X.
Then for each Xo, x X, there exists a control u Uad C([0, T]; U) such that

x(t), u(t) satisfy (NCS) and x(t) is steered to x at T. IfB is in/ective, then such u is
unique.

Remark. The above is still a fixed time (T) controllability theorem.
Proof. It goes almost the same as that of Theorem 1.1, except that the linear

semigroups eA/t, e -A-t are replaced by the nonlinear semigroups (t,. and (-t,. ).
Let x/(t) be the solution of

d
dt

x (t)=A(x+(t))+BK+x/(t) (=-(A +BK+)(x+(t))), O<-t <- T,

+x (0)=a sX.
Then

x+(t)=d(t, a), O<-t<- T.

Let x-(t) be the solution of

d-x-(t) A (x-(t)) + BK-x-(t) (=-- (A + BK-)(x-(t))), O<__t<-T,

x T X CYp r, ce ).
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Then

x-(t) (t T, x-(T)), 0 <- <-_ T.

+(Therefore x(t)=- x t)+ x-(t) satisfies

where

d
d-- x (t) [A (x+(t)) + BK+x+(t)] + [A (x-(t)) + BK-x-(t)]

=A(x(t))+Bu(t),

u(t) =- K+x+(t) + K-x-(t)- w(t),

with w(t) satisfying

Bw(t) N(x+(t), x-(t)) by (HI), (H2),

and the terminal condition for x is

(2.5) +(x(T)=x T)+x-(T)=Xl.

The initial condition is

(2.6) x(O) x+(O)+ x-(O)= + ,,(-T, x-(T, )).

So every initial state of the form (2.6) can be steered to X at T. Note that if B is
injective, w and hence u is unique. We want to show that initial states of the form (2.6)
consist of all X.

For any x0 e X, consider the nonlinear mapping

We get

Y(v)=-Xo-’I’(-T, x-(T, v)).

[l’kI(-- T Xl--(( T, Ol)) %I/’(-- T Xl-((T,

<-cll[xl-O(T, vl)]-[Xl-(I)(T, v=)]ll O_--<c < 1
<-_ cecl]]Vl veil, 0 =< Ce < 1 (by assumption (i)).

(by assumption (ii))

So - is a strict contraction in X. By Banach’s contraction mapping theorem, has a
unique fixed point a, a (a). Thus

(2.7) Xo Og -- "kll’(- T, X (j T, og

is always solvable. So u steers the nonlinear system (NCS) from Xo to X at T. From
the way u was chosen, we easily see that u e C([0, T]; U). I-I

Example 1.

my"(t) + ky(t) +f(y(t)) + L u(t),

where m, k > 0, L is a real constant, and

(2.8) f: [11 -’ :1 continuously differentiable such that ]f’(t)]-< c, with c < k.
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It can be written as a system

d-lX2(t Xl(t)_lf(xl(t))_ + u(t)
m

=A([xl(t)Lx2(t)]) + Bu(t),

with

We choose K/= [0,-my] and K-= [0, my]. We want to show that A +BK/ and
A +BK- generate semigroups satisfying the assumptions of Theorem 2.1.

Consider the semigroup generated by A+BK/. Let (x11(t),x21(t)) and
(x12(t), x22(t)) be the solutions of

d-Lx2i(t)_l =(A +BK/)
x2i(t)-I (kxli(t)+yx2i(t)+f(xli(t))+L

with initial conditions

i=1,2

al

respectively. We want to show that there exists T > 0 such that

[ xll(T)- xl(T) < cl for some cl, 0 <_- cl < 1 independent of a, b.
Lx21(T)- x2:z(T) ba b2

Define z(t) Xxl(t)-XxE(t). Then z’(t)= XEl(t)-XEE(t) and z(t) satisfies

mz"(t) + Vz’(t)+ kz(t)+ [f(x x(t))-/(XxE(t))] 0,
(2.9)

z(O)] -az

Using z’(t)+ Iz(t) (I > 0) as multiplier to (2.9), we obtain

d 1
{mz, + ( + k)z + 2mz’z}

dt 2
(.0

+{[-m]z’ +kz + [z’+z][(x (t))-(x(t))]} 0.

But (x(t))-(x(t))=’(O(t))z(t), O(t) lying between x(t) and x(t), so (2.10) can
be written as

d
P(t)+O(t)=O,

with

P(t) =-1/2{mz ’2 + (Ay + k)z 2 + 2Amz’z},

Q(t)[y-Am]z’2 + A [k +f’(O(t))]z2 +f’(O(t))z’z.
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Now, we choose A, y such that

y-Am >-c, A(k-c)>-_c, Ay+k =>4A2m.
Then for some constants D1, DE > 0 (independent of (al, bl), (a2, bE)) we have

Dl{zE(t) + [z’(t)]2} _-> P(t) >- D2{zE(t) + [z’(t)]2},
Dl{z2(t) + [z’(t)]2} _-> Q(t) _-> D.{z2(t) + [z’(t)]2}.

Hence

Thus

{z2(t) + [z’(t)]2} <= exp --- {z2(O) + [z’(O)]}.

Choosing T large enough such that

D1 (D2T)C1=2 exp --- <1,

we are done.
By reversing the sense of time -> T- t, the proof above also works for A /BK-.
One easily verifies that (H2) is satisfied. (H1) is trivial. So Example 1 is exactly

controllable provided that T is large enough.
Example 2. A PDE version of Example 1 is the nonlinear wave equation

02w(x, t)
-Aw(x,t)+f(w(x,t))=u(x,t) x12, t>O,(2.11)

Ot2

where f: -> satisfies

(i) f(w(. )) e L2(fD for all w e L2(fD,
(ii) If(w1)-f(w2)]2 dx <= k 2 ]wl- w212 dx, for all wl, w2 e L2(I), for some k < tz 1,

where/z is the first eigenvalue of (-A).
The state space is X =-Ho (fD 03 H(fD with II a bounded domain in R" with

regular boundary. (2.11) can be written as a system

v(,t) Aw(.,t)-f(w(.,t))
+ u(.,t)

=-a([ w(’’

D(A) [n2(I)Clno (f)] 0) no
We choose K/ [0, -y] and K- [0, y] for some 3’ > 0.

The fact that A +BK/ and A +BK- generate nonlinear semigroups follows from
[18, Thm. 4.4.2], since the mapping induced by f is globally Lipschitzian in L2(12). The
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semigroup property (2.1) follows from the uniqueness of solutions and the autonomy of
A +BK4" and A +BK-.

The rest of the discussion is similar to that of Example 1. We use Oz/Ot + hz as
4.4. (x, t)- w- (x, t), where w and w2 are solutions ofmultiplier: let z (x, t) w

ow(x, t) ow(x, t)
Ot2

Aw(x, t) + 3’ Ot -f(w(x, t)) 0

with initial states (ox, 1) and (02, 4t2), respectively. Then z satisfies

Multiplying the above by Oz/Ot + Az, integrating by parts and simplifying, we obtain

d
t) + Q(t) O,-P(

where

P(t) + -- + hyz 2 + 2hz-- dz,

2

Then, since,

and

[f(Wl)-f(w:)]- dx <=-- z dx +-e - dx

I [f(w)-f(w:)]Xz dx

by choosing e, 3’ and h appropriately and using Poincar6’s inequality we again find two
positive constants Dx, D2 such that

2 2

nl I [[zI2q-(tt) ] dx -P(t)n2 I I[z[2-[-(tt)]dx
2 2

One then obtains
2

IV(w1 2 + (w- (x, t)- w2 (x, t)) dx

D Dz
<_---0. exp (- t){If [l’((l- (2)[2-I-[ltl- I//212] dx}

So assumption (i) of Theorem 2.1 is verified. Assumption (ii) of Theorem 2.1 can be
verified in a similar manner. Assumptions (HI) and (H2) are obviously satisfied in this
case. So exact controllability is proved. [3

2.2. Exact controllability (II): local contractions at nonfixed time. For many
nonlinear evolution control systems, it is impossible to find feedback operators which
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produce global contractions. However, for any given ball with arbitrary radius, it may
still be possible to find feedback operators which produce strict contractions in that ball.
In this case, exact controllability still holds according to the next theorem. The feedback
gain becomes larger and control time becomes longer as the initial and terminal states
are farther apart.

THEOREM 2.2. Let the operatorsA andB of (NCS) satisfy (HI) and (H2). Assume
that there is a constant c, 0 < c < 1 such that for any R > 0 there are feedback operators
K/, K- and some T > 0 (K/, K- and T in general depend on R) such that

(i) A +BK/
generates a nonlinear semigroup d on R+ X such that (T, is a

strict contraction in the ball ={x  xlllxll<-R} with Lipschitz constant c<l
independent of R.

(ii) A +BK- generates a nonlinear semigroup on - xXsuch that (-T, is a
strict contraction in BR with Lipschitz constant c < 1.

(iii) (t, 0) 0, (-t, 0) 0 for 4.
Then for any Xo, xl X, there exists T (depending on Xo, xl) such thatx(t) is steered to

Xl att=T.
Proof. For any given x0, x X, let R R/ be a number such that

R _-> (1- c)- max {llx011, IIxll}.
For this R, choose K/, K- and T>0 satisfying the given assumptions. Then the
argument follows along the same line as that in the proof of Theorem 2, except that for
the nonlinear mapping

r X- X,

we have
er(v)=_ Xo-q,(-T, x-(T, v))

’: BR -- R,a strict contraction with Lipschitz constant c 2, because
lie(T, v)ll- lie(T, v) (T, o)11-< cR,

II(- T, X (T, v))ll <-- c[llx + II ’(T, v)ll] <-- c[(1 c)R + cR cR,

Iler(v )ll <- Ilxoll / cR <-_ R =),

and

So gr has a unique fixed point in R.
Example 3 (A nonlinear hard spring).

d
(2.12) dt2y(t)+[ay(t)+a2y3(t)+ + any2n-l(t)] u(t),

We have

with

al>O, Otk O, 2 <=k <=n.

d
Tx(t) A(x(t)) + Bu(t)
at

x(t)= tx2(t)j, x2 aixi_
B=

i=1
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Without the control u(t), solutions of (2.12) are known to have (periodic) closed orbits
in the phase space (x l, x2) with period

dy
T 4

/h Z=I (Olk/k)y2k’
where a is the spring’s maximum displacement and h is twice the total energy of the
spring.

(2.12) can be written as

d2

dtZY(t)+[al +f(y(t))]y(t)= u(t),

2i-2f(y)= Y. aiy >=0.
i=2

Let K/=[0, y], y >0. Then by limiting all the initial states (a, b) to be in BR
{(a, b)la2+ b 2 <-R2}, f’ can be bounded by a positive constant uniformly for all initial
states in BR. One then applies the same Lyapunoff stability type argument to show that
A +BK+ is a strict contraction in R. Since the argument is similar to that in Example 4,
we leave the details to the reader. [3

Example 4. Consider the following nonlinear controlled PDE"

ow(x, t)
Ot2

Aw (x, t) + ce W (X, t) +ce2(If w2(x, t)dx)w(x, t) u (x, t),

x 1"", t_>O, alO, a2>0,

w (x, O) Wo(X) Ho (f),

OW
(x, O) Vo(X) L2(f).

Ot
The nonlinear mapping U"L2() L2(),) defined by

can be verified to be locally Lipschitzian as follows’

+ll(f  x)w=ll,.
--< IlwxllZllwx- w211 / Ilwzll IIw / w211 Ilwx-

[llwll= / IIw21111wx / wzlllllw- wll

provided that

IlwllIL R, IIw=ll----< R
Again, we let K/ [0, -y] and K- [0, 3/] for some y > 0. We want to show that

A +BK/ and A +BK- with

A AW-alW-a2(Iw2dx)w
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indeed generate nonlinear semigroups on /X and -X, respectively. If one
applies [18, Theorem 4.4.3], one can only obtain the local existence and uniqueness of
solutions of

(2.13) d-- v(,t)
=(A +BK/) w(., t)

v(.,t)
t>-O"

Fortunately, we can do much better here. We prove the global existence, unique-
ness and continuity of solutions as follows. We rewrite (2.13) as

(2.14)
02W
Ot

Aw -" "’- q- O! W -- O2 W MX w O.

We find that

So if we use the Ritz-Galerkin method

(2.15)

w, . gi(t)i,
i=1

where {(0i} is a basis for Ho (ll),-W AW "- y-- "Jr- Ol W "- 0l 2 w dx W (
L2(I"l)

=0, i= 1,... ,n,

and take in (2.15) the combination of 0i corresponding to (dwn/dt), we obtain

This gives

bounded set of L(0, T; Ho (lq)),

dwn
dt

bounded set of L(0, T; L2()).

Then one applies the compactness lemma of Lions [14], [23] and extracts a strongly
convergent sequence w, -> w in LP(0, T; L2(fl)) for any p > 1. For the nonlinearity in
(2.14), the convergence of w,-> w is easily shown by its local Lipschitzian property.
Hence a solution w of (2.14) exists in the sense that

(2.16)
w L(O, T; Ho ()),

Ow
L(O, T; L(nl)

Ot

for initial state (Wo, Vo) s Ho (fl) @ L2(I’I).
But for this w, the function f(t) defined by

f(t)-- I w2(x’ t) dx
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is a continuous scalar function. So any solution o (of the linear equation)

0(x, t) 0 (x, t)
t2 Ao(x, t) + v Ot

+aq(x, t)+af(t)o(x, t)=0,

# (x, 0) Co(X) H (f),

O---(x, 0)= g,o(X) LZ(f)
Ot

satisfies (q, O/Ot) C([0, T]; Ho (f) H(fU), and in particular for (qo, 4,0)
(Wo, Vo). So (2.16) is improved to C([0, T]; Ho () H()). Thus (2.1)-(2.4) follows.

To show that the assumptions of Theorem 2.2 are satisfied, we proceed as follows.
From the same procedures in Example 2 we obtain

d
t)+Q(t) O,

where

P(t) + + (a + Ay)zZ + 2Az- dx

O(t)= (y-A) - +AlVzlZ+AaxzZ+az[U(Wl)-U(wz)](Wl-W2)

z}+.[U(w) U(w)]7 ax.

Since

[U(w1)-- U(w2)](Wl- w2) dx 20,

and if we choose 3’, h such that 3’ > A and y is so large that

ffl t2[U(W1)- U(w2)] dx --< 3R2cr2 Z dx

2 11 2j

then we have

O(t)>-D)P(t) for someD >0 (depending on R)

for all initial states (tpx, /1), (q)2, 2) ]R, Thus again we have

IV(w (x, t)- w (x, t))l = + (
2

+ (x, t)- w2 (x, dxW1

D exp (-D)t){In []’r((01- (02)[2-[/1- 1/t2[2]} dx
for some constant D)> 0 depending on R. Therefore, one easily verifies that the
assumptions in Theorem 2.2 are satisfied. 1
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Another PDE version of Example 3 is

a:w(x, t)
Ot2

---Vw(x, t)+,w(x, t)+a:w(x, t)= u(x, t),

x 1___ R" (n =2 or 3), t_->0

which is a controlled wave equation of the Klein-Gordon type. The state space is
X [n ([) (’] t4()] no([’). Unfortunately, our theorems do not apply to this
equation. It is not clear whether this equation is exactly controllable or not.

2.3. Exact controllability (III): stabilization. We give our last theorem of exact
controllability below. This theorem works only in a finite dimensional space. The proof
does not seem to be constructive.

THEOREM 2.3. Let (NCS) be a finite dimensional system with X and B an
n m constant matrix. Assume that for any R > 0 there are m x n matrices K+, K- and
some T> 0 (K+, K-, T depend on R) such that

(i) A +BK+ generates a nonlinear semigroup dp on + such that

(2.17) (T, ): 0-< c < 1 (c independent of R).

(ii) A +BK- generates a nonlinear semigroup on - " such that

(2.18)

Then ]’or any Xo, xl , there exist T > 0 and a control u C([0, T]; R") such that x(t) is
steered from Xo to x at T.

Proof. The nonlinear operator :" R" defined by

(v)=-Xo-(-T, xl-dP(T, v))

maps [BR into [BR by (2.17), (2.18) if R is chosen such that

R >-(l-c)-1 max {Ixol, Ixx[},
By Brouwer’s fixed point theorem, has at least one fixed point v (v) v.

Example 5. In Example 1, if L 0 and f(0) 0, then Theorem 2.3 can be applied
to give exact controllability. The result is also weaker" control time T varies with
different Xo’S and x l’s.

Theorem 2.3 is also applicable to Example 3.

3. Numerical techniques and applications. We develop an accurate numerical
method (Algorithm 3.1) to solve the control problem (NCS) for a control u(t) and state
x (t; u) such that x (T) x1. The technique presented is based on the feedback theory of
Theorems 2.1 and 2.2. In 3.1 we analyze this algorithm for control problems governed
by ordinary differential equations (X "). Applications in 3.2 show such solutions
are obtained with remarkable accuracy. For systems governed by partial differential
equations (X infinite dimensional) the success of the algorithm is unknown. We
comment on the delicacy of such problems in 3.1.

We assume we have the existence of feedback operators K/ and K- as specified in
Theorems 2.1 and 2.2. Thus, if the semigroups (t, and (t, on R+ X and-X
generated by A +BK+ and A +BK- are strictly contractive on a ball B

_
X, then the

continuous operator :X -->X defined by

(3.1) ’(v) Xo-qt(-T, xl-dP(T, v))



780 G. CHEN, W. H. MILLS, JR. AND G. CROSTA

has a unique fixed point, a BR. The state x(t) and control u(t) then satisfy

(3.2) x(t) x (t) + x-(t), 0 <- <= T,

with x+(t)=(t, a) and x-(t)= (t- T, xx-d(T, or)), and

(3.3) u(t) K/x/(t) + K-x-(t) w(t), 0 <- <- T,

with Bw =A(x/ +x-)-(Ax / +Ax-). Under the hypotheses of Theorem 2.1 or 2.2,
(3.2) and (3.3) solve (NCS) with x(T)= Xl.

Our goal is to approximate (3.2) and (3.3) by using an iteration scheme to solve
(3.1) for a. One such iteration scheme is

(3.4) ao given, an+l

which is quite useful (indeed necessary) if X is an infinite dimensional Banach space.
However ifX N then there are standard schemes available which may converge]’aster
than (3.4). These are generally patterned [17] after

(3.5)
ao " given,

.+1 . J-(.) (’(.) .).

For example, if F(x)= x-x and J(a,)=(DF)(an) then (3.5) is a second order
Newton’s method to solve F(x)= 0 [17].

Each of (3.4) and (3.5) (and all other one-point iteration schemes) are of the form
an+l G(an, 3r), where G is an iteration function for solving gra a. Since G(cn, ’)
requires the calculation of the semigroups and , we must approximate these
semigroups to make the iteration computationally feasible. Specifically, x/(t)

(t, vl) e X and x-(t) (t- T, v2) e X are the solutions to

dx / dx
(A +BK+)x+ (A + BK-)x-

dt dt

/
x (0)= Vl, x-(T) v2,

for 0_-< t_-< T, respectively. We approximate these solutions by an O(h p) differential
equation solver. We make the following assumption which is valid for most numerical
schemes to solve ordinary differential initial value problems.

(H3) Let 0 to < tl <" < tk T be a partition of [0, T] and h max Iti/l til. If
y(t) X is the exact solution to dy/dt f(y (t)), y(to) yo X, to <= <- T, and Yh (ti) is an
approximate solution with yh(t0) Y0, then Ily(t)- yh(t,)ll <- Cah, for 0< h <= ha, where
Ca is independent of ha, y, y0 and depends on ]’, T and to.

For partial differential equation solvers, Ca above depends on y and y0 as well, and
h is a mesh length for a partition of [0, T] x 11.

If this approximation is used in the iteration, then 37"(an) becomes approximated by
a perturbation, Th (an.h). Taking all the above into account, we formulate the following
iteration scheme.

ALGORITHM 3.1. Let K/, K-, T, Xo, xl be given, and B be injective.
(1) Let OtO,h X.
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(2) For n =0, 1,... ,N
(1) Solve

dx: (A + BK+)(x + ),
dt
+

XO (0) Oln,h

+for Xn,h(ti), 0,. ., k by the differential solver.
(2) Solve

dx -fi (A + BK-)(x- ),
dt

x,(T)=x-x,.(T)

for x,-.(t), 0, 1,. ., k by the differential solver.
(3) Let ,.’h(Oln,h) Xo--Xn-,h(O).
(4) Otn+l,h G(on,h, ’h).

(3) XN, h(ti) + (ti)+Xh(ti) i=0,..’ k.XN,h
(4) Solve B(ti)=A(xr,h(ti)+X,h(ti))--[A(xr,h(ti)+A(xr.h(ti))] for (ti),

i=0,’’’ ,k.
+ (t,)+K- (t,)- if(t,)(5) Let UN,h (ti) K XN,h XN,h

If each G(ce,,,h, 7"h) is defined, then Algorithm 3.1 is well defined and compu-
tationally performable. To allow for package differential solvers, we note that h may be
allowed to vary from step to step. Also, note that the iteration step 2.4 must use the
perturbed operator, -h.

It remains to show under what conditions the algorithm is defined and successful.

3.1. Error estimates and convergence o| Algorithm 3.1. Our main goal is to show
the errors in Ilx,h(t,)-x(t)ll and Ilu,,h(t)-u(t)ll, where XN.h, UN,h are the iterates of
Algorithm 3.1 and x, u are the exact solutions of Theorems 2.1 or 2.2. To do this we
must formulate a theory for the iteration mapping G based on its application to the
perturbed operator ’h Of Algorithm 3.1. This theory will include the iterations (3.4)
and (3.5).

Let -"X -> X such that -a a, D be an open set c X with a D, and -(X) be
the set of all functions on X. Let G" D x -(X) ->X be a mapping satisfying

(A1) G(a, :Y) c.

(A2) The iterates,

oeD, ,+ G(,, ’)

converge to a for/3/0 sufficiently close to a.

(A3) There exist an e-neighborhood, D c D, of a and a constant C>0
depending on D such that [[G(x, if)-G(x2, )[I_-< C[[x-x:[[ for all x, x eD.

(A4) There exist an e2-neighborhood, D2 cD, of a and a constant C2>0
depending on Dg. such that, for all x e Dz and (X), fiG(x, ;g’)-G(x, )II_-<
c=llgx erx II.

The iteration mapping for (3.4) is

(3.6) G(x, fiE)= x with D X.

The following lemma applies to the operator ff and fixed point a of Theorems 2.1 and
2.2.
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LEMMA 3.2. LetXbe any Banach space and let 3r.X Xbe strictly contractive on
R --X with 3ra R. Then the iteration mapping (3.6) satisfies (A1)-(A4) with the
constant C1 < 1 in (A3). Furthermore, i]’ R X, (i.e., R ) then DI D2 Xin (A3)
and (A4).

Proofi (A1) is G(a,’)=ffa =a. (A2) is classical with /30SBR. For (A3) let
D1 --ball about a with radius R -lal e. (If R =X, D =X.) Then DCR and for
any xx, X2 D, IIG(x, )- G(x, r)ll IIrx- erx=ll-<_ Cllx- xzl[. For (A4) let D2 X.
For x D2, IIG(x, er)-G(x, :)ll- IlS’x- xll.

The iteration mapping for (3.5) is as follows. Let D be a neighborhood of a and
J" D --) "" be a linear function such that J and J- exist and are bounded on D. Then
(3.5) is

(3.7) G(x, )= x-J-X(x). (x-x) for x D, (X).

LEMMA 3.3. Let 3r" g" - g" be contractive on R -- R", ’a a R, and " be
continuous at a. Assume J is a Lipschitz continuous on D and (3.7) satisfies (A2). Then
(3.7) satisfies (A1)-(A4).

Proof. (A1) is simply G(a, )= a-J-(a). (a-a) a, since J-(a) exists. To
show (A3) and (A4) we note that, for Xl, x2 D and yl, Y2 [n,

J-(xi)" yl-J-l(x2) y2 =J-(x) y-J-l(Xl)’ y2 +J-(Xl)" yE-J-(x2) y2

=/-x(Xl)(y- y2)-J-(Xl)[J(x2)-J(x)] J-l(x2) Y2.

Hence, since Xl, x2 D,

(3.8) II/-(x) yl-J-X(x=) y211<--fxlly-y211/c=llJ(x=)-J(xx)ll Ily=ll.

To show (A3), let D cDR such that a Dx and " is continuous on D1, y
Xl-Xl and y2 5rx2-x2 in (3.8). Then, for Xl, x2D, (3.8) and continuity of give

-<-IIx-x=ll / Clllrx- erx=ll / cllxl-
+ cllx=-xll. IITx=-

<- CllZxl- Zx=ll/ Cllx-
the last term coming from the Lipschitz continuity of J. Finally, since " is contractive
on ,, IIrx-erx=ll<-IIx-x=ll, giving (A3).

To show (A4), let D2cDfqR, Xl =x2=x D, yx fix-x, y2 x-x in (3.8).
Then IIG(x, S’)-G(x, )ll--IIJ-(x) y-j-l(x), y.ll_-< CIIS’x-xII.

We now apply Lemmas 3.2-3.3 to Algorithm 3.1 for differential solvers satisfying
(H3) and iteration mappings satisfying (A1)-(A4). We begin with a technical lemma
which gives an estimate for the iterate a., in Algorithm 3.1. It covers the situation in
either Theorem 2.1 or 2.2.

LEMMA 3.4. LetR >0, Xo, x, K+, K-, Tsatis]’y the hypotheses o/Theorems 2.1 or
2.2. (R in Theorem 2.1.) Let a be the fixed point of, G"D x (X)-Xsatisfy
(A1)-(A4), and the differential solver satisfy (H3). I]’ ao, is chosen sufficiently close to
then there exists h. > 0 (depending on n) such that, ]’or n >-O,

(1) each iterate a.,h 0]’ Algorithm 3.1 is defined and cr.,h f-I D, and
(2) II.,h-ll<--_2CC=((1-C)/(1-Ci))h / 0(11. -11), :or 0<h <=h=, where C1

is the Lipschitz constant]or G in (A3), C the constant in (A4), and a. are the iterates
(A2).
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Furthermore, if Sr is contractive on all ofX (as in Theorem 2.1) andD D1 DE
X in (A3) and (A4), then h, is independent of n.

Proof. Let BR be the ball of contraction of . (R oo if BR X.)
Let D =D be the ca-neighborhood and Dz D the ez-neighborhood of a from

(A3), (A4), where D is the domain of G. Let e3 min {ca, ez, R- [a]}/2 and D3=
neighborhood of a. By (A2), fl,+a G(,, ff) a for 0 sufficiently close to a. Hence,
there exists N such that [B,-al[ e3/2, for n N. Choose aO.h aoBusD3. Then
ll.-llx e3/2 for all n 0.

Now we claim that for each n 0, 1, 2,.. there exists h, > 0 such that a,.h D3
and II,h-.[l2fzfa((1-fT)/(1-f))h for 0<h h,. (Cz the constant in (A4)
and Ca the constant in (H3).)

The claim is true for n 0 since IIO.h 01 0. Assume the claim true for k n.
Then, since a,.h D3 = D, 0 < h < h,, G(an,h, i8 defined. Hence, for 0 < h < h,,

(3.9) llG(.,h, h)--G(.,h, )II + llG(.,h, )--G(., )II

by (A4) and (A3). Next,

(3.10) llX,,h(O)--(--T,
+ I(- T, x x(T)) (-T, x (T, ,h))li,

The first term is Cah, 0 h ha by (H3). Next, IIx (T, ,h)ll IIx 11 + cll,hll e
by Theorem 2.2 where c < 1 is the semigroup contraction constant for . So, x--
(T,,.h). Also, since ,.hD3, II,-II<(R-1I)/2 giving I1,11
(R +II)/2 (<R). So

+llx, x., (T)II llx,ll + llx. ()II

(1-c)R +Cah" +c((R + Il)12)
R +[Cah" -c((R I I)/2)3.

Cah,+x <c(R-ll)/2 gives Xl--Xn,h(T) GR, 0<hhoosing h+>0 such that "" +

h,+l. Thus, since contracts R, (H3) gives

I1(- T, x--Xh(T))--(-- x-(T, .h))ll

n,h (T) O(T, n,h)ll Cdh o, 0 h ,
+.

Hence, (3.10)is ll.,h--.,hll2Ch’, Oh+. Therefore, by (3.9) and the
induction hypotheses,

II.,h-+ll2CCh +c 2CC _C]h
(3.

2CCa[1-C+ ]1 Ca hV’ 0 < h min {h,,

Now choose ,+a such that 2C2Q [(1-C+x )/(1- Cx)]ff+a < e3/2. Then (3.11) holds
for 0<h h,+a min {h,, ,+, ,+a} and ,+a.h D3. By induction, the claim is true.
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Note if BR D Dx D2--X, then the claim is true for h. independent of n. This
completes the proof

THEOREM 3.5. Let R, Xo, xl, T, K+, and K- satisfy the hypotheses of Theorem 2.1
or 2.2, and x(t), u(t) be the exactsolutions to (NCS) with x(T) xl. Letx.,h(ti), U.,h(ti) be
the nth iterates ofAlgorithm 3.1 with G satisfying (A1)-(A4), and the differential solver
satisfying (H3). Then, for aO,h sufficiently close to a, them exists C3, C4 > 0 independent of
h, n and h. > 0 such that

(3.12) Ilx (t,)- Xn,h (t,)ll-<- Ch + C4 \ 1 C1 ]
h p + 0 (ll. ll)

and

Ilu(ti)-U,,h(t,)ll <=c3hp +C4
_Cl1

h

/o(11 -,11) / O([l(x+,h (t,), X-.h (ti))--ag’(x+(ti), x-(t))ll)

[or 0 < h <= h,, where N is as given in (H1) and C1 the constant in (A3).
Furthermore, if" is contractive on all o[XandD D1 D2 X in (A3) and (A4),

then h, is independent o" n.
+(Proofi Let h,, be as in the conclusion of Lemma 3.4. Note x(ti) x ti) + x (t) and

+ (ti) +X- (ti). Hence,by Algorithm 3.1 Xn,h(ti)=Xn,h n,h Otn,h n.h(ti)--x+(ti)ll<=
IIX n+,h (ti) f(ti, Oln,h )[I / II(t, ,h) ,I,(t,, )11-<- Cah p + I1, I1, by (H3) and the
contraction . By Lemma 3.4, it follows that for 0 < h -< hn,

(3 3) IIx + (t,) x+(t)ll<fdhp/2faf2(1-fT)h/0(11-11)..,h 1 C
Similar results hold for Xn-,h- X-- giving the conclusion.

For the u(t) estimate we have, by Algorithm 3.1 steps 4 and 5,

(3 14) U,h(ti)--u(ti)=K+(x + + (ti) x-(ti))+w(ti)--ff(ti)n,h(ti)/X (ti))+K-(Xn,h

where, by the injectivity of B and (H2),

(t,)- w(t,) B-l[(XLh(t), X-,h(ti))--/’(Xn+,h(ti), X-(ti))].

The desired result follows from (3.13) and (3.14).
COROLLARY 3.6. Under the hypotheses o" Theorem 3.5, /]" C’h- 0 as n- c,

h, O, then

Xn,h(ti)"X(ti) and Un,h(ti)’-)U(ti)

as n -, hn 0.
Proof. The x convergence is clear. Since (., is continuous, the u convergence

follows.
An interesting corollary of the above is the following error estimate and con-

vergence result concerning the iteration scheme (3.4).
THEOREM 3.7. Let the hypotheses of Theorem 3.5 hold with the iteration function

(3.6) in Algorithm 3.1. Then there exists an h, > 0 such that

IIx t Xn,h ti )ll --< Ch p
/ 0(11. c II)

[or any 0< h <-h,. If " is strictly contractive on X, then X,,h ti x ti ), U,.h ti u ti as
n - c and h - 0 (independent of n).
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Proof. By Lemma 3.2 the constant C1 ( 1 in (A3). Hence, for 0 < h <_- hn,

(al- c7) h . + o(ll. 11) Ch + o(ll. 2c II)[Ix(t,)-X,.h(t,)ll<-C3h+C4
-ca]

by Theorem 3.5. Next, by Lemma 3.2, if ff contracts all of X, D1 D2 X in (A3) and
(A4). Hence by Theorem 3.5 hn is independent of n, so the result holds. 71

Remarks.
(1) The term (1 C)/(1 C1)h p appearing in Theorem 3.5 is not surprising since

the errors created by the differential solver are propagated by the iteration mapping G.
The local Lipschitz constant Ca for G in (A3) is usually not < 1 in a neighborhood of a
fixed point a. It will be < 1 in some cone with vertex a, but there is no guarantee that the
iterates of Algorithm 3.1 will lie in this cone. In any event, Ca is close to 1, and hence the
error in x and u will be dominated by h P. Therefore, as Theorem 3.5 shows, the mesh h
should be decreased as the iterations of Algorithm 3.1 proceed. This will counter the
possible effects of this error term.

(2) The term o(11  -  11)in Theorem 3.5 is the error in the exact iteration (A2),
and is a function of the choice of G.

(3) The success or failure of Algorithm 3.1 applied to control problems governed
by partial differential equations is unknown. Assumption (H3) must be modified to
allow Ca to depend on the exact solution y and the initial conditions y0. In this case the
error in the differential solver is usually of the form

Ily(t,)- yh(t)llx C(T)h(llYl[x, + IlY0llx)

where Xa and X2 are higher order Sobolev spaces. Revisiting the proof of Lemma 3.4
will reveal a further error due to the propagation of initial condition errors. Further-
more, the partial differential equations are solved in pairs (forward and backward) with
the final time solution of the first used in the initial conditions of the second. According
to (3.15) this final time solution must be smooth enough to achieve the h accuracy.
Otherwise accuracy will be lost. From these comments we conjecture the algorithm to
be successful if the finite element method with smooth splines is used as the differential
solver. This analysis will require further assumptions on the control problem and will
not be discussed here.

3.2. Application of Algorithm 3.1. We apply our algorithm to two examples
covered by the theory of Theorems 2.1 and 2.2. Both examples are differential control
problems (NCS) with X " and A:"--> ". We choose an iteration scheme of type
(3.7) with J(x) DT(x), (Jacobian of if). Since the coefficients of the problem will be
smooth, gr will be twice Fr6chet differentiable and hence D will be locally Lipschitz
around a. Thus, by [17] the iteration (3.5) is second order convergent for a0 sufficiently
close to a. Hence, by Lemma 3.3 the results of Theorem 3.5 apply.

The differential scheme used is the automatic package DVERK 13] which is based
on O(h 5) and O(h 6) Runge-Kutta schemes and satisfies (H3). In both examples the
mesh h was decreased with increasing n automatically by DVERK to control local
errors. Hence, an attempt was made to stay within the upper bounds in Theorem 3.5.
The computing was performed on an IBM 370 Mod 3033.

Numerical example 1. We solve

y"(t)+y(t)+sin(5y)+5=u(t) on [0, 1]
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(Example 1 of 2). This converts to

-xx- sin (5xl)- 5

By 2, the choice of T 1, K+=[0,-1], K-=[0, 1] satisfies the hypotheses of
Theorem 2.1.

The results of Algorithm 3.1 appear in Fig. 2. The initial and ending conditions
were obtained with a relative error of 10-13 with the control as given, a very accurate
result. The CPU time involved was extremely small (3 seconds).

Numerical example 2. We couple together Examples 1 and 3 of 2 into

X2 0

dx -xl- sin (5x3)- 3
dt X4

3
--X3 --Xl --X1

0

[ Ul]U2

0
0.4

x(0)
0 3

x(2)

-011

0.2
0

0.1
0.2

According to the theory of Examples 1 and 3 of 2, T 2, Xo, xl as given andK/, K- of
the form

0 0 0 -3’ 0 0 0 y

will satisfy the hypotheses of Theorem 2.2 for 3’ large enough.
Algorithm 3.1 was performed for two cases, 3’ 2 (Fig. 3) and 3" 10 (Fig. 4).

Relative accuracy was achieved to 10-12. The 3’ 2 case required 5 seconds and 3’ 10
50 seconds.

Remarks.
(1) The remarkable accuracy of the solutions of the above examples indicate

Algorithm 3.1 to be a highly successful technique for solving nonlinear control
problems covered by Theorems 2.1 and 2.2. In applying this algorithm the mesh should
be controlled keeping in mind the error estimates of Theorem 3.5. As always, a measure
of success is the accuracy attained in the end condition, Xn.h(T) xl.

(2) The storage required for Algorithm 3.1 is no more than that of solving two
systems of differential equations. For most automatic system solvers, this is minimal.
Hence, large order (NCS) problems may be solved.

(3) The time (operations) involved in Algorithm 3.1 is directly related to the
choice ofK/ and K-. If the linearization of dx/dt (A +BK)x is stiff ("large" K’s), the
time is increased in accordance with stiff ODE solvers. For moderate K/, K- (e.g.,
3" 2 in numerical example 2) the solution is obtained quickly. In either case, the
solution is obtained accurately.

Acknowledgment. We wish to thank the referee for valuable comments concern-
ing the application of Algorithm 3.1 to partial differential control problems.
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PARAMETER ESTIMATION AND IDENTIFICATION FOR SYSTEMS WITH
DELAYS*

H. T. BANKS,+ J. A. BURNS$ AND E. M. CLIFF

Abstract. Parameter identification problems for delay systems motivated by examples from aerody-
namics and biochemistry are considered. The problem of estimation of the delays is included. Using
approximation results from semigroup theory, a class of theoretical approximation schemes is developed and
two specific cases ("averaging" and "spline" methods) are shown to be included in this treatment.
Convergence results, error estimates, and a sample of numerical findings are given.

1. Introduction. The estimation of parameters in dynamical systems is an
important scientific problem on which a number of contributions have been made in the
engineering and mathematical literature (e.g., see 1 ], [23]). However, for systems with
delays very little on identification is found in the engineering literature and essentially
no theoretical convergence results are available for algorithms dealing with estimation
of the delays themselves. One obvious difficulty (from both a practical and theoretical
viewpoint) with such procedures is that solutions of delay systems are not in general
differentiable with respect to the delays, and thus many common identification tech-
niques (e.g., least squares gradient, maximum likelihood estimator, etc.) are not directly
applicable.

In this paper we discuss a class of methods based on general approximation
techniques for systems with delays. These approximation ideas have been considered
earlier in the context of optimal control problems ([3], [4], [5], [6], [7], [9], [12], [18]),
where they have proved quite useful. The use of such approximation ideas in connection
with parameter estimation procedures was apparently first suggested in [11 ], and some
preliminary theoretical results were stated in [7-1 and [13]. However, our presentation
here is the first (to our knowledge) rigorous treatment of general theoretical aspects of
these ideas.

While we do in 7 below give a small sample of related numerical findings, the
primary purpose of this paper is to present a theoreticai foundation for the schemes we
propose. A much more extensive discussion and a wider selection of numerical
examples is presented in [8]. Our sample of numerical results in 7 is included mainly to
indicate that the procedures based on the schemes discussed are actually feasible.

The approximation ideas developed earlier in [5] and employed here are based on
approximation results (the so-called Trotter-Kato theorem) from linear semigroup
theory. In 2 we formulate a class of identification problems for delay systems and show
that they can be reformulated in an abstract setting so as to make use of the semigroup
approximation theorem. A version of the Trotter-Kato results needed is given in 3,
while in 4 we show how to use this theorem to insure convergence for a class of
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identification schemes. We turn to the detailed development of particular schemes
based on "averaging" (see [5]) and "spline" (see [10]) approximations in the
subsequent two sections. Finally, a brief indication of numerical findings for these two
particular schemes is given in 7.

Notation used throughout the paper is completely standard. For example,
L’(a, b) L,([a, b], R’) denotes the usual Lebesgue spaces of R"-valued "functions"
on [a, b whose components are integrable when raised to the pth power. When m 1,
we shall suppress its appearance in the notation. L19,oc denotes the usually "locally"
integrable function spaces. We shall use the symbol I. ]to denote the norm of an element
without distinguishing between different norms if the intended meaning is clear from
the context. The space of functions with j continuous derivatives is denoted by C (a, b).
We shall also make use of the Sobolev spaces w(i) (a, b)= w( ([a, b], R’) of R’-
valued absolutely continuous functions possessing f- 1 absolutely continuous deriva-
tives and jth derivatives that are in L19.

In the remaining paragraphs of this introductory section, we turn to a discussion of
examples which motivate the theoretical questions that are the focus of our attention in
this paper.

1.1. Tubular reactor columns and delay system identification and control
problems. Packed bed tubular enzyme reactors are very important in many areas of
industrial and biological applications (potential uses involve purification or clarification
of fruit juices, proteolytic treatment of beer, synthesis of essential amino acids,
enzymatic biosynthesis--i.e., synthesis of antibiotics and steroids, etc:). These are
column reactors (as depicted in Fig. 1.1) containing enzyme pellets (i.e., pellets in which
an enzyme is insolubly bound), the enzyme being specific for a substrate S which is
passed through the column. The substrate diffuses into the pellets where the enzyme
catalyzes a reaction resulting in the product P.

E

FIG. 1.1

We thus have enzymatically active particles or pellets in a convective flow region.
Any model should embody important features of the system including (i) enzyme
catalyzed reaction, (ii) metabolite (S or P) diffusion into, out of and inside of the pellets,
and (iii) metabolite convection (and possibly diffusion) in the flow region in the column
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exterior to the pellets. Extensive studies for both plug-flow (PF) models and diffusion-
convection-reaction (DCR) models for the phenomena involved have been reported in
the literature [15], [16]. These models can be formulated from first principles using
transport equations of the form

Os Os 02s O2s
--+ C-- DI+D2+ V,
Ot Ox OX 2 Oy 2

where D1, D2 are diffusion coefficients, c is the convective flow velocity, x is the column
axial direction, y the perpendicular direction (in a two-dimensional model), and V is a
nonlinear reaction velocity approximation (e.g., V=-ps/(1 + s)). The column in this
case is approximated by a two-compartment (pellet phase and liquid phase) model as
shown in Fig. 1.2.

Pellet phase

Liquid phase

FIG. 1.2

PF models incorporate assumptions that one may ignore diffusion in both the pellet
and solution (flow) regions. Careful investigation of these models reveal that they are of
limited use in actual applications since it is found that certain kinetic constants must
actually be allowed to vary (in an unpredictable manner) with the flow velocity in order
to fit the models to experimental data. On the other hand, the DCR models were found
to perform quite adequately when compared with the data. The main difficulty in
employing the DCR models involves the rather lengthy calculations that must be made
in carrying out identification and control procedures with these models. It is, therefore,
desirable to have a model which in complexity and accuracy (hopefully similar to the
DCR models with respect to the latter) is somewhere between the PF and DCR models
and for which efficient numerical procedures are available.

A candidate for such a model has been proposed by J. P. Kernevez and his
colleagues at Universit de Technologic de Compigne. It consists of n functional
compartments for the column, each containing two subcompartments, one representing
the pellet phase and the other the liquid phase. The two subcompartments in each
compartment are connected by diffusion while the main compartments are connected
via unidirectional transport (convective flow) between the liquid phase subcompart-
ments (see Fig. 1.3).
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Compartment

Liquid phase

Compartment/
Pellet phase

FIG. 1.3

Compartment +

Defining variables as follows (all are scaled and dimensionless):
ri(t) substrate concentration in liquid phase in compartment at time t,
si(t) substrate concentration in pellet phase in compartment at time t,
pi(t) product concentration in liquid phase in compartment at time t,
qi(t) product concentration in pellet phase in compartment at time t,

one can write mass balance equations to obtain a model

drl -ar(t)-{r(t)-s(t-zl)}+ u(t),

dri--=a{ri-l(t-7.)-ri(t)}-fl{ri(t)-si(t-7.1)}, i> 1,
dt

dsi -pF(si(t))+ u3{ri(t)-si(t-7.1)}, >= 1,
dt

dpl

-’v---A’ a {Pi- (t 7.)- pi(t)}- i{pi(t) qi(t 7.2)},
dt

i>1,

dq__ji pV(si(t)) + ,{pi(t) qi(t 7.2)},
dt

Here F is a nonlinear reaction velocity term; the delays r, 7"1, 7"2 are transport times
between compartments i-1 and i, between pellet interior and liquid region for
substrate, and between pellet interior and liquid region for product, respectively. The
term u represents input of substrate to the liquid subcompartment of compartment 1.
The parameters a,/3, p, u,/ are all related to biochemical and physical constants for the
column configuration. For example,/3 NDE/eV where N is the "apparent" number
of pellets per compartment, V volume of liquid per compartment, D, coefficient of
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diffusion for S within the pellet region, e "thickness" of the model pellet region, and
E effective surface area per pellet.

Using data collected from a number of specific experiments performed with tracer,
product and substrate inputs, one wishes to determine values of 7-, 7-1, 7-2,19,/3,/3 so that
the model describes accurately the operation of the column. Once this is done, the
model then must be used to design (optimal) control procedures for the column.

We thus have classical identification and control problems for systems (let xi (ri,
Si, Pi, qi T)

fci(t) Ao(T)xi(t) +A (T)xi(t 7-1) +A2(3/)xi(t 7-z) + f(3/, Xi-l (t 7-), xi(t), u (t)),

where the delays 7-, 7-’/’1, 7"2 and the vector parameter 3’ (involving only coefficients) are to
be identified.

1.2. Identification problems for hereditary systems in unsteady aero-
dynamics. We consider next an interesting class of identification problems which arise
in the study of unsteady aerodynamics (see [2]). Consider a thin, flat airfoil mounted on
springs as shown in Fig. 1.4 in a region where we have fluid (air) flow with undisturbed
stream velocity U (in the x-direction). Flow around the airfoil is disturbed and we

FIG. 1.4

assume it has velocity c (u, w). Laws of conservation of mass and momentum lead to a
system of partial differential equations for the fluid velocity components u and w.
Assuming incompressible flow we have the continuity equation V. c 0. Elementary
hydrodynamics also yield that curl (c)= 0, from which we deduce the existence of a
velocity potential q so that c Vq. The equation of continuity then becomes Aq 0.
We restrict our considerations to small motions of the airfoil so that a linearized theory
may be adopted. We assume that q is given by

q (x, z, t) (x, z, t) + Ux,

where ff is a disturbance potential. It follows that q3 must satisfy

(1.1) Aft =0.

In addition one has the (flow tangency) boundary conditions

(1.2) --(X,oz O, t)= w(x, O, t)= wa(x, t), -1 <- x <= 1,

where W is a given function describing the motion of the airfoil. We here assume that
the airfoil is a thin plate located at z 0, -1 -< x _<- 1 as depicted in Fig. 1.5.
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z

-1 0 +1

FIG. 1.5

After arguments involving a conformal mapping of the airfoil into the unit circle
and the introduction of sources (elementary flows along radial lines) and vortices
(elementary flows along concentric circles), one finds that a solution of (1.1), (1.2) for
the disturbance potential q3 consists of an appropriate collection of sources distributed
along the airfoil and any weighted combination of "compatible" vortex pairs. A
"compatible" pair consists of one vortex on the airfoil at r rl < 1 and an oppositely
rotating one at r 1/rl > 1. Compatible pairs induce a flow with finite angular momen-
tum and with fluid velocity that is tangent to the airfoil. The required distribution of
sources is uniquely defined by the airfoil motion (wa(x, t) in equation (1.2)) but the
distribution of vortices in the wake given by a density function yw(:, t) is as yet
unknown. In lieu of 3’w we introduce a new function F termed the circulation. For
brevity we shall "define" F by

(- 1)
U )

t),

with the boundary condition F(-)= 0. This relationship reveals that vorticity in the
wake at time and position was produced by a change in the circulation at an earlier
time, i.e., an hereditary phenomenon is involved. In integrated form (using F(-) 0)
this becomes

(1.4) F(t)- J rw(, t) d 0.

To determine F (or w) we impose an additional hypothesis, viz., finiteness of the fluid
velocity at the trailing edge of the airfoil. Mathematically this is written

17w(, t) d 0.

Here v is the contribution to the velocity due to the source distribution. Subtracting
(1.5) from (1.4) and using (1.3) we thus obtain

(1.6) F(t)=v(t)+l f()(t-(-l)
where f() (+ 1)/(- 1)- 1. This finally is our model equation (see [28, p. 292]),
the basis of hereditary models in unsteady aerodynamics.

A simple change of variables 1-g in the integral in (1.6) yields the equation
o

(1.7) F(t) v(t) + () + dg,

where f(g)f(1- ). This is essentially a neutral functional differential equation with
infinite memory. Among the numerous approximations made in the derivation of such a
model is the expression for f,

(.8) () 4( + )/(- )- 1.
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It turns out that the transverse velocity component w exhibits a boundary layer
phenomenon as sketched in Fig. 1.6, where r is the horizontal distance from the trailing
edge of the airfoil. Thus, the expression for in (1.8) is valid only for ( >> 1. To better

FIG. 1.6

approximate this phenomenon in (1.7) one might approximate ]by a function g having
the form

g (tr a, iB, l { a’, -t- <- tr <- O,
t), -<<-,

where it is understood that a, fl must be chosen so that g is continuous at -. The
model then is given by

0

(1.9) F(t) v(t)+ g(; , , ) + d.

Assuming smoothness of g, we formally integrate by parts the integral in (1.9) to obtain
0

r(t) v(t)- ()r + d,

or, letting s +/U in the integral and defining G() g(U), we have

(1.10) r(t) v(t)- G(s- t)r(s) ds.

Equation (1.10) is a retarded FDE with infinite memory which, upon differentiation,
yields the more familiar form

P(t) (t)- G(0)F(t) + d(s t)F(s) ds.

In practice, one would often desire to replace the integral term by a finite integral

d(s t)r(s) ds,

in which case one obtains an equation (taking F(t) x(t), observing that G(0) (0)
and identifying (t)= u(t) as the input)

(1.11) (tl =-x(tl + u(u[s-t]; , , .x(s s +
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An important identification problem then consists of making observations correspond-
ing to an input u(t) t(t) and using these to estimate the parameters a,/3, , and z so
that the model yields a sufficiently accurate description of the aerodynamic phenomena
under investigation.

2. The fundamental identification problem for delay systems. We consider in this
paper n-vector systems of the form

(2.1) ic(t) L(q)xt + B(a)u(t), >-O,

with initial data

(2.2) x(0) /, x0 , (/, ) R" x L(-r, O)

and output

(2.3) y(t) C(a)x(t) + D(a)u(t).

We make the following definitions and assumptions about the operators and
parameters in (2.1)-(2.3). There exists a fixed given r>0 and compact convex set
c R, and we define the compact convex set (2 c R g+" by (2 g, where

g={h =(rx, r2,"’’, r)R[O<--rg <-ri+x <-r, i= 1,..., v- 1}.

For a function x we adopt the usual notation xt(O)= x(t + 0). For a given element
q (a, h) in the admissible parameter set Q, we define the operators L(q)" L(-r, 0)-
R" of (2.1) by

0

(2.4) L(q)= Ai(a)6(-r,)+ I K(a,O)O(O)dO,
0 --rv

where r0=0, and for each a , Ai(a), B(a), C(a) and D(a) are n n, n m, k n
and k m matrices respectively. We assume that the n n matrix-valued function
0 K(a, O) is in L:(-r, 0), and that the functions Ai, B, C, D, K( ,. are continuous
in a.

Remark 1. In (2.4) one must give the proper interpretation to point evaluations in
the event is only an L "function". Since in (2.1) we are interested in integrals of the
system, the usual interpretation is intended here (see [10] for a more detailed dis-
cussion).

We further assume that we are given an initial data set 5 c R L(-r, 0) which is
closed, bounded and convex, and we define

F--Sex Q 5xDx t

as our admissible initial data-parameter set. Elements 3’ in F will be denoted in one of
several ways throughout our discussions below:

(n, , q)= (n, , c, )= (n, , c, r,..., r),

where q (a, h) (a, r, , r). For each y (/, &, q) in F we shall denote the output
to (2.1)-(2.3) at time _-> 0 by y y(t; y).

Identification of the system variables 3’ in (2.1)-(2.3) is based on input-output
information. Given a piecewise continuous control input u defined on some time
interval [0, T], one samples the system at times {ti}, 0 <- ta < t. <. < tM <- T, to obtain
observations {}, 3g R , 1, 2,..., M. One can then perform a least squares fit to
data (or seek a maximum likelihood estimator for y). Formally, we may state this as
follows:
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Problem. Given the input u and observations {3g} at times {tg}, find 3"*=
(r/*, b*, q*) in F which minimizes the fit error

ly(t" r)- 1.J(,,,,) = i=1

Remark 2. Whenever r < r, one only needs b* defined on [-r*, 0] in order to
obtain a solution to (2.1)-(2.3) (in practice, this is exactly what we shall obtain).
However, we can view (r/*, b*) as an element of 6 by making a simple (arbitrary but
definite) backward extension of b* to all of I-r, 0].

2.1. An abstract formulation of the I.D. problem. Let r > 0 be fixed and given as
in the previous section and define Z R L(-r, 0). For q (a, h) O and (r/, b) Z,
define for -> 0 the mappings S(t; q)" Z +Z by

S(t; q)(r/, &) (x(t; 3’), x,(3’)),

where x is the solution to (2.1) with u-=0 and xt(O)=x(t+O), -r<-O<-_O. It is easily
verified that for each q, {S(t; q)}t->o is a strongly continuous semigroup of linear
operators on Z. Furthermore, one finds [5] that the infinitesimal generator (q), with
domain

(s4(q)) {(rt, 6) Z [b W(z1)(-r, 0), r/= 6(0)},

is given by

sC(q)(4 (0), 4)= (L(q)&, 6).
We note that, for q Q, @((q)) does not depend on q itself. However, for k > 1,
@(k(q)) does depend on q. For example, @(2(q))
{( (0), &)[& W(22) (-r, 0), 6(0) L(q)b}.

If we define the operators /(a)’R’-Z and (a)’ZR by :(a)u
(B(a)u, 0) and d’(a)(r/, 4,)= C(a)r/, then the delay system (2.1)-(2.3) is formally
equivalent to the abstract ordinary differential equation (ODE) system

(2.6) 2(t)=sC(q)z(t)+J(a)u(t), t>=O,

(2.7)

(2.8)

z(O)=(n,),

y(t) d(a)z(t)+D(a)u(t).
As in the usual theory dealing with semigroups and abstract differential equations,

a mild solution to (2.6)-(2.8) can be given by a variation of parameters formula.
Specifically, (2.6)-(2.7) has the mild solution z(t)= z(t; % u) given by

(2.9) z(t) S(t; q)(*7, c)+ S(t-r; q)l(a)u(tr) dtr.

It is a happy circumstance that (2.9) is actually equivalent to (2.1)-(2.2) in a strong
sense, as we now state precisely (for proof see [4], [5] or [6]).

THEOREM 2.1. Let x(.; % u) denote the solution to (2.1)-(2.2) corresponding to

3’ Z Q and u L2.1oc. Then, for all >- O,

z(t; % u)= (x(t; % u), xt(3",

In view of the above equivalence results, the I.D. problem for (2.1)-(2.3) posed
above can be reformulated in terms of an abstract I.D. problem. That is, given input u
and observations {)3g} at times {ti}, find 3"* (r/*, &*, q*) in F so as to minimize J(3") as
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given in (2.5), where now y(t) is given by (2.8) and (2.9) in place of (2.3). Whether the
problem is formulated in terms of (2.8), (2.9) or (2.1)-(2.3), it is clear that we are dealing
with I.D. problems involving infinite dimensional state systems. Formulation in the
framework of the Hilbert space Z only emphasizes this, and is in no way an essential
factor in the infinite dimensionality (and the associated difficulties) of the problem. Our
main interests here are identification schemes that will result in computationally
efficient algorithms. The approach we take is a classical one of the Ritz type. We shall
choose a sequence of finite dimensional problems, each of which is defined on a finite
dimensional state space XN and approximates the original I.D. problem in Z. By
appropriate choices of the sequence {XN} and the corresponding approximating
problems, we hope to obtain a sequence of more easily solved problems with solutions
N N, N, qN3’ (r/ b which converge to a solution 3/* of our original problem.

Fundamental to this endeavor is the convergence of the underlying approximating
systems to the original system (2.9). Our formulation in a functional analytic framework
will allow us to utilize abstract approximation theorems from semigroup theory (e.g.,
see [5]). The problems here, however, are a little different from the control problems of
1-5] where one chooses a sequence of subspaces ZN c Z on which to solve approximat-
ing control problems. The I.D. problems to be treated below pose some additional
difficulties in that for each value of N, the "state" space changes. That is, the natural
space for (2.9) with qN (a N r, r) is ZN R" L2(- Nr, 0) which, in addition to
varying with N, is not a subspace of the original space Z =R L(-r, 0). The
approximating spaces XN clearly should be chosen so that XN ZN.

There are abstract approximation theorems (motivated by differencing schemes
for partial differential equations and applications from probability theory) available in
the literature in the case where ZNZ. For example,, the original Lax, Trotter, Kato
efforts [20], [26], [17] resulted in such theorems as did the later efforts of Kurtz [19].
However, all of these versions of the approximation results (and all others with which
we are familiar) require the spaces XN to approximate Z in the sense that there exist
projection-like mappings PN’Z-XN which satisfy a norm convergence criterion
]PNZ [xN [z [z as N . For the problems and approximations we shall discuss below
such a criterion is not met (in general, one will not have rNv r, where r is the a priori
chosen upper bound for the hereditary effects in the systems). We shall, therefore be
obligated to state and prove an appropriate version of the abstract approximation
results and this is done in the next section. The arguments used to establish this theorem
are very similar to the standard ones found in the literature. One has a sequence of
approximating infinitesimal generators (i.g.’s) AN which converge in some sense to an
i.g.A. This convergence is sufficient to imply convergence of the resolvents Rx (AN) to

Rx (A). These are the Laplace transforms of the corresponding semigroups SN(t), S(t)
respectively and their convergence is enough to guarantee the desired convergence
SN(t)- S(t). We make this more precise in the next section.

3. An abstract approximation theorem. Let Z and ZN, N 1, 2,..., be Hilbert
spaces with norms[. and I" In respectively. Let XN be a closed subspace of ZN and
rN "ZN XN be the canonical projection of ZN Onto XN along Xv. Suppose N"Z
ZN is a mapping satisfying Im (N)= ZN and laNZIN <= IZ[ for z Z. Finally define
PN" Z XN by PN 7rNN. (In our discussions for the I.D. problem above, Z R
L2(-r, 0), ZN R L2( N-r 0), XN is an approximating space such as the AVE spaces
of [5] or the spline spaces of 10]these will be discussed, ful.ly below. Finally,N is the
operator that takes z -(r/, &) in Z into . (r/, b) where b is the restriction of b to
[-rN, 0]. We note that in this case we would not expect to have IPNZlN IZl for z Z
unless rN- r and rrN itself has certain convergence properties.)
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We adopt the following standard notatioa for the presentation of our fundamental
approximation results. For a Hilbert space X, we write B G(M, fl) to mean B @(B) c
XX is the i.g. of a Co-s.g. {T(t)} satisfying [T(t)[<-Me t. We also denote the
resolvent (hi-B)-1 by R(B) and recall that R(B)x =o e-hT(o’)x dr.

THEOREM 3.1. Let Z, ZN, XN, and PN be given as above. Suppose for some M, we
have AN G(M, fl) on XN and A G(M, ) on Z. Further suppose there exists @
@(A), @ dense in Z such that

(3.1) (i) R (A)@ @ for Re h >/3,
(ii) for every z @, [ANPNZ PNAZ [N -- 0 as N oe.

Then for every z Z

(3.2) [SN(t)PNZ PNS(t)ZlN - 0 as N ee,

and the convergence is uniform in on compact intervals. Here AN is the i.g. for SN (t), A
the i.g. for S(t).

Remark 3.1. Implicit in the statement and proof of Theorem 3.1 is the assumption
that PNz @(AN) for every z Z. In our use of the theorem for I.D. schemes below, XN
will be finite dimensional and @(AN)= XN. Indeed, we shall find AN bounded with
SN(t)=eANt.

Proof. Let h be fixed throughout with Re h >/3, so that Rx (AN), Ra (A) exist. We
first establish that for every y Z

(3.3) ]R (AN)PNy -PNRx (A)yIN<=-M
ReA-fl

](ANPN PNA)R, (A)y IN.

From the definition of the resolvent operator we have for any operator B

In particular,

so that

R, (B)B BR, (B hR, (B L

Rx (AN)ANPN ,Rx (AN)PN PN,

PNARx (A ,PNRx (A PN,

R, (AN)ANPNRx (A)-Rx (AN)PNARx (A Rx (AN)PN --PNR, (A ).

Hence for any y 6 Z we have

IR (AN)PNy --PNRx (A y IN IRa (AN)[ANPN --PNA]Rx (A)y IN
M

<- --I(ANPN PNA)R, (A)y IN,
Re h -fl

the last inequality following from the fact that AN G(M, ).
Next, for given z @ where @ is as in the hypotheses, define

FN(O’) =- SN(O’)PNZ PNS(r)z.

Then from (i), (ii) and (3.3) we conclude that, for Re , > fl,

[,.cx [FN ]IN --) 0 as N

where x is the Laplace transform. We observe that from the bounds on SN, PN, S the
sequence {FN} is uniformly exponentially bounded, i.e.,

[FN(O’)[ <= 2Me[z [.
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Finally, since

d
-rPNS()z PNS()Az

and

d
d-SN(r)PNZ SN(r)ANPNZ,

a simple quadrature reveals

(3.4) FN(tr) [SN(r)ANPNZ -PNS(r)Az] dr,

and it follows that {FN} is a pointwise equicontinuous family on [0, oe). (From the
convergence in (3.1)-(ii) and the bounds on SN and S, one easily verifies that the
integrand in (3.4) is uniformly exponentially bounded.) We are thus in a position to use
a lemma due to Kurtz ([19, Lemma 2.11, p. 359]) to conclude that [FN(r)[N0 as
Noe, uniformly on compact intervals. (Actually, the lemma as stated by Kurtz
requires uniform boundedness of {FN}, but a careful inspection of his proof will
convince the reader that this requirement can be replaced by uniform exponential
boundedness as we have here.)

We thus obtain the desired convergence (3.2) at least for each z @. But then
standard density arguments (the triangle inequality, bounds for SN, PN, and the density
of @ in Z) can be employed to establish the convergence for all z Z.

Remark 3.2. We note that in the above theorem we could have hypothesized
AN G(M, fl) on ZN instead of on XN without altering the proof. However, in the
applications we have in mind we wish to obtain invariancy of SN(t) eANt on XN (the
space where our approximating systems will be defined and used). Thus, if we posit
AN G(M, fl) on Zu we must make the additional hypothesis Im (AN) XN @(AN)
in order to use the approximation result as we desire below.

Remark 3.3. One can clearly choose XN ZN (with 7rN then the identity on ZN or
ZN Z (and s the identity on Z) and obtain other versions of the approximation
results. Again, our choice here is dictated by the application to be discussed below.

Remark 3.4. In the event one has ZN =XN c Z and PN :,Z ZN satisfying
PNz z for z eZ, then the condition (3.1ii) can be replaced by IANPNz-Az[O and
the conclusion (3.2) by [SN(t)PNZ S(t)zl-, O. This then is essentially the version of the
approximation theorem that we employed in previous efforts dealing with control
problems [4], [5].

COROLLARY 3.1. Suppose the convergence in (3.1ii) is O(N-) whenever z has the
form R](A)y, S(t)Rx(A)y, and S(t)R z

x (A)y, A >/3, for a given y Z. Suppose further
that the constants in 0(N-s) are uniform in in the latter two cases. Then the convergence
in (3.2) is also O(N-) whenever z R] (A)y for this y.

Proof. Using rather standard arguments [22, p. 87] one finds that

d
do-
[SN(t tr)Rx (AN)PNS(tr)Rx (A)x

SN (t tr)[PNRx (A) Rx (AN)PN]S(tr)x
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for arbitrary x Z and A > ft. Hence, we have

o
SN(t- O")[PNRa (A) Rx (AN)PN]S(O")x do"

Rx (AN)[PNS(t)- SN(t)PN]Rx (A)x.

Using (3.5) and (3.3) we have, for any y e Z,

I[SN(t)PN PNS(t)]R (A)y [N

<--ISN(t)[PNR (A Rx (AN)PN]Rx (A)y [N

+ IRA (AN)[$N(t)PN PNS(t)]Rx (A)y IN
+ ][Rx (AN)PN PNRx (A)]S(t)Rx (A)y IN

<-- Me’I[PNR (A R(A)PN]R (A y [N

+ fo ISN(t--O")I[{PNR(A)--R(AN)PN}S(O")ylNdo"

+ I{R (AN)PN PNRx (A)}S(t)Rx (A)y IN

<Merit
M

(A)YIN
A

](PNA -ANPN)R 2

q- Io M e 13(t-r) Mx- I(PA AP)S(r)R (A y IN do"

M
+ [(PA AP)S(t)R (A)YlN.

Thus, if y is chosen as in the hypothesis of the corollary, the conclusion follows
immediately.

THEOREM 3.2. Let c @(A2) satisfy the following"
(i) For each z 3 there exists k k(z) such that

k
I(ANPN-PNA)ZIN <----N N 1, 2,....

(ii) There exists 1 ?3 such that z 31 implies

(a) $(t)z Y3, O <= <- T,

(b) S(t)(AI-A)z Y3, A>fl, O<-t<- T,

andfurthermore the constants guaranteed by (i) for (a), (b) can be chosen independent of t.
Then [or z 31 we have that there exists l(z) such that

k(z)
I[SN(t)PN PNS(t)]Z[N<

N

for O<-_t <- T.
2Proof. Let z s 31 and define y (hi A)2z. Then R x (A)y z. Furthermore, by

(ii) we have S(t)R2(A)y Y3 and S(t)Rx(A)y Y3 with the constants in the O(N-)
estimates uniform in t. It follows that the hypotheses of Corollary 3.1 are satisfied and
hence we reach the desired conclusion since z -R 2a(A)y.
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4. Identification schemes for delay systems. Let r r be the coordinate pro-
jections of Z R" x L(-r, O) onto R n, L(-r, O) respectively. We recall that the I.D.
problem of 2 can be written

()" Given input u and observations {f/} at {t/}--1, find T* (*, b*, q*) in F so as
to minimize

1
ly(ti" y)- i]2

i=1

where y is the solution of (2.8), (2.9); that is,

y(t; y)= ’(a)z(t; V, u)+D(a)u(t)
oC(a)rr z(t; % u)+D(c)u(t)

C(cz)x(t; y, u)+D(a)u(t).

Thus the identification problem can be viewed in a state-space Z, parameter-space
F setting. This will lead to a sequence of approximate I.D. problems if we approximate
Z by a sequence of spaces Xu.

Given approximation spaces Xu(q) and semigroups Su(t) with i.g.’s Au(q)s
G(M, ) for q O, let Pu(q): Z --> Xu(q) be the mappings as discussed in 3. We next
define

ru U (Pu(q)5 x {q}).
qQ

NFor y =(Zou, q)FN, we then consider solutions N(t; yN, U) of (2.9) with S(t)(rt, )
replaced by Su(t)z and S(t-o-) replaced by SN(t--o’)Pu(q). The corresponding

N
,/.rONoutputs are defined by )Tu(t; , )= C(a) (t; ,u, u)+D(a)u(t). The approximate

I.D. problems are’

()" Given input u and observations {9}, find z/ F so as to minimize

M

Su (TN) Y’. IN (ti’, 1 N) i
i=1

Under reasonable and rather obvious continuity and compactness conditions
(which will hold for the specific cases to be discussed subsequently under the assump-

-Ntions invoked below), it is not difficult to establish existence of a solution y
(Sou, r to (u).

N NGiven a sequence {r }, 0 < r < r, and closed Xzv Zu R" x L(- ro,u 0), we
define the operator u" Z-> Zu as the operator that truncates r z to the interval

r, 0] and then denote by *u the Moore-Penrose [21] pseudo-inverse’Zu --> Z.
In this case, if z (7, g,)sZu then v(, q) (t, gb), where

Non I-r, -r).
N N N)For, =(zo,q Fu, wedefine

(4.1) zU(t; ys, u)=_Su(t)z + r su(t-r)Pu(aU)u() dr
o

and , u N)
(4.2)

y (t; )=--(a )Z (t;yU, u)+D(a u(t)

Nc(aN)rzN(t; y u) +D(aN)u(t),
where AN(qN) is the i.g. for Su(t) on XN XN(qN).
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THEOREM 4.1. Suppose 7u= (.v, u) is a sequence of solutions to the problems
-N -N +,() and that there exists F such that y in the sense (a) q in R (b)

-NuZo o in Z. Suppose further thatAs AN(N), A A() satisfy the conditions and
hypotheses of Theorem 3.1. Then

Puz(t; , u) zs (t; u, u)]u 0 as N ,
uniformly in on compact intervals, where

o(4.3) z(t; , u)S(t; )o+ S(t-; )B(S)u() d.

Proof. From the hypotheses and Theorem 3.1 we have immediately that
ISu(t)Puz--PNS(t)z[u 0, uniformly on compact intervals, for all z Z. Therefore

ISN(t) PNS(t)o[u ISN(t)PN PS(t)OIN
<-IS,, -"(t)[PNaCuZo --PNeo][N +[SN(t)PNY-o--PuS(t)eoIN

t -NMe IZo ol + IS(t)Po-PS(t)ol.
The first term approaches 0 by (b), as does the second from our preceding remark. Next,
consider

[SN(t--o’)PNJ(aU)u(cr)--PNS(t--o’)J()u(o’)] do"
N

<= fo [Su(t--tr)PN[(au)--(a)]u(r)lNdtr

+ fo I[$N(t--r)PN

The results of Theorem 3.1, the continuity of/, and dominated convergence yield
convergence of these terms to 0, uniformly in t. The desired conclusion follows
immediately from these estimates.

COROLLARY 4.1. Suppose PN Z XN satisfies
0(4.4) (Pz z in R or each z e Z.

Then under the assumptions o Theorem 4.1 we have

y (t; )y(t; ) oreacht.

while

Proof. Recall

y(t; /)= 0(c)z(t; /, u)+D(a)u(t)

C(ffz)rz(t; /, u)+D(ff)u(t),

N N Ny (t;?U)=C(c)rz (t;/,u)+D(ffU)u(t).
The claimed result follows at once from the result of Theorem 4.1,

]TrOzN(t; /u, u)_rrOpuz(t; /, U)IR" 0,
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and (4.4), which yields

IrP,z(t; /, u)-rz(t; /, u)l- - 0.

We observe that in (4.1) we define zN for initial data in XN. However, one can
define an analogue for initial data given in . In particular for fixed y (Zo, q) F

O we define

(4.5) Yu(t; , u)SN(t)PNZo+ Su(t-)PN()u() d,

where AN Au(q), A A(q) are i.g.’s for SN, S. If one then assumes that AN(q), A(q)
satisfy the hypotheses of Theorem 3.1 so that PNS(t)z SN(t)PNZ}u O, one can prove
in almost exactly the same manner as that for Theorem 4.1 above that

I(t; , u)-Puz(t; , u)luO
for yF. Defining u(t; y) as in (4.2) except with Yu(t; y, u) of (4.5) in place of
z (t; y u), we have under hypothesis (4.4) the analogue of the results of Corollary
4.1"

(4.6) u(t;) y(t; )

for each fixed y F.
We make the following standing assumptions on , O and the approxination

operators Pu.
Assumption 4.1. O and are compact and furthermore any sequence {yn},

y Fu is sequentially compact in the following sense: For yu (z, q Fn, {z}
has a limit point in .

THZOZM 4.2. Suppose {n} is a sequence ofsolutions of the approximate problems
() under Assumption 4.1. Then there exist F and a subsequence {} such that

in the sense of Theorem 4.1(a), (b). If Au(u), A() satisfy the hypotheses of
Theorem 3.1, then is a solution for the problem ().

Proof. Since = (e,)Fu, defining ,we have that there exists a
t -Nconvergent subsequence, say {"}, converging to some o in ; i.e., #Zo 0 in .

From the compactness of , we have that {@} possesses a convergent subsequence
with @ @ for some . Defining # (o, @) F x , and reindexing we thus
have a sequence {#} that converges in the sense of Theorem 4. la, b to #. Furthermore,
it follows from Theorem 4.1, Corollary 4.1 and the remarks involving (4.5) and (4.6)
that for any (Zo, q) F one has J() J(). First, we have

J() lim jn(N) (Corollary 4.1 yields yn(t;)y(t; )).

But we find

lim ju(N,) lim JN((PNZo, q))
N N1

But yU(ti; (Pujz0, q)) given by (4.1) is exactly the same as NJ(ti; "y), Y (Zo, q), where
~Ny is defined as in (4.5), (4.6), and hence the last term is the same as

lim E I#v(ti; 3’)-#il2 =J(Y).
Ni

Thus, is a solution for ().
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We turn next to a discussion of particular schemes which fit into the theoretical
framework developed above. Throughout our presentation we shall assume that we are
given a sequence yN (r/L qN, qN) when q/v (a N, h N) (a N, rv, rv/v) Q, with
0 < rv < rv <.. < r <_- r, and q/v (if,/) (if, 1," ’, ) Q. We recall that for
the systems under discussion we have the operator M=M() defined on @=
{(& (0), &)l& W21) (-r, 0)} given by

()(& (0), &) (L(q)&, D&),

where the operator L is defined in (2.4). Hereafter we shall use the notation DO in place
of in contexts where confusion might arise otherwise.

We summarize for future reference the conditions that our approximating schemes
must satisfy:

(4.7) X/v is a closed subspace of ZN R"L2(- Nr, 0), 7rs is the canonical pro-
jection of Z/v onto X/v, PN rs/v and cr(P/vz) rrz for all z Z.

(4.8) There exist constants M and fl such that ds /v(q/v) and () are in
G(M, ) on X/v and Z respectively.

(4.9) There exists @1 c @ @(d()), @1 dense in Z, such that
(i) Rx (d(q))l C 1 for X >/3
(ii) [dNPNZ Pdz ]/v - 0 as N - oo for z @1.

In our discussions below we shall refer to (4.8) as the stability condition while (4.9)
will be called the consistency condition. Our first scheme will be based on the averaging
approximations developed in some detail in [5] while the second scheme utilizes spline
approximations as formulated in [10].

5. The averaging approximation scheme. This identification scheme is defined
using the "averaging" type approximations as discussed in [4], [5], and many of the
arguments to verify that conditions (4.7), (4.8), (4.9) are satisfied are only slight
modifications of those found in [5] Given qS (a, r, /v

", r ), we partition [-r,0]/v
into subintervals ItS, tY_l], where t ./v=--lr/N, ]=0, 1,..., N. Let Xv denote the
characteristic function of [tv, t-l) for ]= 2, 3,... ,N, with gv the characteristic
function for ItS, t] N[-r/N, 0]. Define, for (r/, $) Z,

(5.1) 6=-- ,/
6(s) ds, j= 1, 2,..., N,

=n.
We define the closed subspaces X/v of Z/v by

vi Xi, vi R
j=l

The projection 7rs of Z/v onto X/v is then given by

(5.2) rrN(r/, 6)= r/, 6X

With these definitions it is immediately obvious that (4.7) is satisfied.
For the operator L given by (2.4), we define the approximating operator

L/v q
//v

X/v R by

(5.3) LN(qN) rl, viX mAo(aN)rl + E A,(aN)vx(--rT)+ E K
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where

(5.4) K() f=-- K(oe, O)dO.
Jt

Next, we define DN "XN Lz( Nr,, 0) by

/=1 fu

where v0 . Finally, we define u(qU). Xu Xu by

(.6) ,(q")(n,)(Lu(q")(n, ), Du(n, )).

The proof that u(qU)e G(M, ) on Xu for some M and independent of N is
essentially given in [5] (see pp. 183, 186). One first argues that there is an equivalent
inner product (., .)g on Xu such that (u(qU)z, z)g- N(qU)(z, z)g- for all z Xu.

u u ={la,’",l-l},whereAs in [5] we define, for given r, r2, r the index set ju
is the index such that -r [t,, u

ti_l ), 1, 2, , u 1, and ] N. We next define
numbers a by a= 1 and, for ] =N- 1, N-2,. , 1,

N
N [ai+l + 1 if ]

aj ] N jN.ai+ if ]
Then define the nondecreasing piecewise constant weighting function gU by gU(0)=
a, t N 0 <t_a, ]= 1, 2,.... ,N. Finally, we take Zu(gu) and Xu(gU)as the spaces
Zu, Xu, respectively with equivalent topology generated by the inner product

o

(5.7) ((n, ), ((, )), (n, (). + gu.

If we then consider (n,)=(,2i1ViX)eXN (and define v0n), we find in a
straightforward manner using estimates similar to those in [5, p. 186] that

((qN)(, 0), (., O))g Ino()l+ i=1

N

N)(5.8) +2i=1 i=1

Noting that, for 0
N

ViX

we find

N

"-t" E (V]--I--Vb vi)a]
j=l

N N

12 IE
r

I(, I)12N-- I q-.= l)Jl2,
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Next observe that

i+1 I)] [DN[2 N

Using these estimates in (5.8) we finally obtain

where

(Sgu(qU)(, 4), (’0, &))g" t3(qu)l(w,

1 IAi(aul2 lI[(qN)IAo(aN)I+- + IK(a N, 0)12 dO+
i=1 r

v+l

From the continuity assumptions made in 2 (see (2.4)) and the fact that qU Q, Q
compact, we have the existence of fi such that/3 (qS) d for all N. Finally, since the XN
and XN(gN) norms are equivalent independent of N, one finds (again see p. 186 of [5])
s(qS) G(M, d) on Xs. Since ’() is the i.g. for a C0-semigroup it also satisfies the
requirement () G(M1, a) on Z for some Ma and/31. It follows that the stability
condition (4.8) is satisfied for our averaging approximations.

We next consider the consistency criteria (4.9). We take @1 -= {(b (0), &)l& is C on
I-r, 0]}. Then clearly @1 is dense in Z and @1 c @(sO(q)). Furthermore, Rx(A())@I c
(2()) c @1 (see 2 above) so that (4.9i) is satisfied for this choice of @1.

It remains to establish (4.9ii). Given z -(b (0), &) in @1 we observe that

N

(5.9) PNSC(q)Z (L(q)&, (Dc)NxN),
i=l

where

while

(5.10) sCu(qU)Puz sgu(q) c, 1 4X (LN(qN)pNZ, DNPNZ)

where LN(qN) and DN are given by (5.3) and (5.5). In view of (5.9), (5.10) and (1.4), it
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thus suffices to show

(5.11)

N N

Ao(a)(0)+ Ai(ceN)N N N
’X" (--r)+ K(a)

i=11=1 i=1

R

o

Ao(ff)&(0)+ Ai(ff))(-i)+ f K(ff, o)(o) de
-Fv

and

(5.12) -- (6v-1- ()-(D)Xr /=1 rv

as N (and rY 5).
Consider (5.12) first and write this integral as

o

-r/N

0

N N, 2

rv

’[ E f N(?-1--&--[(t-l)--(tv)])
T +

Using an analogue of [5, (3.18), p. 177] with r replaced by r, estimates similar to those
of [5] yield

2

T -< r sup 2

where as in [5] we define

sup {l(o)- (s)l s, o ItS, t?-i ]}.

Use of the analogue of I-5, (3.18)] in T allows us to write (after arguing in much the
same manner as done in [5, p. 177])

N N, 2

r{1 (-r 1 }T ) +g
Since g+ 0 as N + m, uniformly in ], we conclude that (5.11) obtains.

We remark that if (0)= 0 and & W (-r, 0), then
N

Nand, since is O(r/N)see [5, p. 178] we find that the convergence in (5.12) is
O(1/N) or that the convergence in the second component (L component) of (4.9ii) is
o(/g.

Returning to (5.11) and recalling that A()A(), we see that to establish
(5.11), we only need show

N
N N(5. 2 x (-r(-, i= , ,. ,.

]=1

and

(5.14)
N ioE K(aN)& -+ K (5, o’)& (o’) do-.
i=t
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For & in C on E-r, 0] we have, for 0 [t, t-l),

From this, it follows immediately that

(5.16)
2 N, 2

X" - <_(ll)2 r,.,

L2(--rN,0)

For/i /7 chosen so that -r/ [t.,, sti,_l), we find using (5.15) that

E N N/ N\ N

N

[[+ll[r-/[,
and thus the cohvergence in (5.13) is ensured by the convergence rY ?, with the order
given by 1/N if r ?g is of this order.

Finally, in considering (5.14) we note that

N N t_
E K?(N) :,E K(N, O)& de
j=l Jt

(, 01 2 7(0 0,

and hence

2 7(f (s,(
]= -f

0 0

r
P o

[ K(a, )6() d.

We thus find
0 1/2 0 1/2

(I_ )o-)] d IE N N ex -l
r r

0 0

The first term is O(1/N) by (5.16) while standard estimates on the second term yield
that it 0 since K(, K(, in L and r f,. The order of convergence of the
second term depends on that of these latter two. If r-f]=O(1/N) and if the
convergence K(, .)K(, .) in L is O(1/N), then is O(1/N) also.

In summary, we have established (4.7), (4.8) and (4.9) for the average approxima-
tion I.D. scheme. In doing so we have also shown that under certain circumstances, the
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convergence in (4.9ii) is O(1/N). In particular, if in qU c we have
(a) the convergence Ai(oN) Ai() is O(1/N),
(b) the convergence K(a u, K(if,) in L2(- ur, O)is O(1/N),(5.17) (c) r-*?iisO(1/N),i=l,2,...,,,
(d) z (&(0), &), & e C on E-r, 0], (0) 0,

then du(qU)Pu(&(0), &)-PuM(#)(&(0), &)]u is O(1/N).
Remark 5.1. We remark that the conditions (5.17a-c) clearly are not conditions

that can be verified a priori when using the averaging scheme in practice. These
error estimates merely provide information as to how well the scheme might perform
when applied to specific I.D. problems. Note that the particular method (maximum
likelihood estimator, least squares, etc.) chosen for determining qU will obviously affect
the rates of convergence in (a)-(c) above. Finally, if one drops the condition 4(0)= 0
from (5.17d) but retains all other conditions in (5.17), one finds the order in (4.9ii) is
only 1/x/N.

Remark 5.2. Recalling the order estimates on (3.2) given in Theorem 3.2, we
observe that one can easily find sets Y3 and 31 to satisfy the hypothesis of that theorem
in the case of the averaging based scheme. For example, to insure convergence of order
1/x/, one can choose the sets Y3 (.52()) and 1 (,3(q))__.
{(& (0), &)] 4, W(23) (-r, 0), 4; (0) L(&), (0) L(4)}. Then, under the assumptions
(5.17a-c), one can without difficulty argue the claimed order results.

6. Spline-based approximation schemes. We discuss in this section an
identification scheme based on spline approximations. While we shall present the
details for a scheme based on first order splines, arbitrary order spline approximations
may be utilized in a similar manner with only slight modifications in the arguments
indicated below (see the theory developed in [10], on which all of our discussions here
are based).

Given qN=(aN, rT,..., rY)-> (if, 1,"" ", ?) as we have hypothesized pre-
viously, we partition each of the subintervals [--rr, -r-l], k 1, 2,..., ,, into N
equal subintervals to define the partition {t}7=Ul of [-rY, 0], with

(6.1) N(/" (k 1)N)(r r_l)+rk_l
N

] (k 1)N, , kN, k 1, 2,. , u. We then define the finite dimensional subspace
XN C ZN by

XN {(&(O), &)l& is a first order spline with knots at {t}}.
We define the weighting function gN by

N1, --rN <-- O <--r_x,
2, --rN-x 0 < rN-2,

Ng (0)=
t, -1, -rl <- O <-r,

N, --rl

and, as in 5, denote by Zu(gu) and Xu(gu) the spaces Zu and Xu endowed with the
equivalent topology generated by the weighted inner product (5.7). We then define
zru :ZN -> Xu (equivalently zru :Zu(g) --> XN(gu)) as the orthogonal projection of
Zu(gu) onto Xu(gU). Then (see [10, p. 509]) for in Zu, we have zru u, where u
is the solution of the problem of minimizing [- 4,[z(g,)over s XN. The operator
Pu :Z -> Xu is defined as before by Pu zruu.
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We adopt the following notation. For any function & that is defined pointwise on
[-r, 0], we write (&(O), &) and (&(O), &)where & is the interpolating

NuN Nspline (with knots at {tj }=a) for & on [- r, 0]. For theprojections ru defined above
we shall write r ru(& (0), &)=4= (&U(O), &u).

For any qU Q, we define the operator (qU)’@((qU))ZuZu, where
@(ag(qU)) {(6 (0), &)ZNI& W(21)( -r,N 0)}, by

g(qN)(& (0), &)= (L(qN), D).

More generally, for any q Q, we can define (q)" @ Z - Z by

g(q)(& (0), &)= (L(q)&, DO).

Note that in this latter case D& is defined on [- r, 0], while in the former D& is defined
on N-r, 0]. However, in both cases the operators are essentially the same, and in the
discussions below we shall abuse notation and speak of g as an operator defined either
in Zu or Z, depending on the context. We note that Xu @(g(qU)) so that g(qN) is
defined on all of Xu.

With the definitions above, we have immediately from [10, Lemma 2.3] that
g(qN satisfies

(sg(q)z, z), < o(qN)Izl 2, z e ((qU)),(6.2)

where

0(qN)=_u+l 1 1 I+iAo(a N)[ + [mi(oN N

2 i=1
)12"+" " U

IK(c ,0)1 dO.

We next define MN(qN)’XN XN by

(6.3) Mn(qn) nM(q)n.
In view of (6.2) and the fact that nx x for any x e Xn, we find for every x e Xn

((q)x, x) (r(q)x, x)

As noted in 5, there exists such that w(q) for all N and thus Mn(q)
on Xn(g) and hence Mn(q) G(M, fl) on XN for someM independent of N. Similar
arguments establish that M()e G(M, fl) on Z for M, appropriately chosen and it
thus follows that condition (4.8) is satisfied by the approximations (6.3).

We turn next to the consistency condition (4.9) and define x (M3()). This set
is dense in Z and it follows at once that Rx(M()) so that (4.9)-(i) is satisfied.
For z ((0), ) e we have

(q)Pz r(L(q), D&)
where Pn( (0), )=n((0), ), while

PnM()z nn(L(), D&).

It thus follows that for z e 1

(6.4) IPz-Pzl I(L(q)-L(q),D(-))1,
where we now understand that D(n ) is to be taken as a function on [-r, 0].
Recalling that n is the orthogonal projection of Z(g) onto X(g) and that the
norms of Zn(g) and Z are equivalent (with constants independent of N), i.e.,
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Iruz[ ]z[ <-mlzlu, we see that (6.4) allows us to establish condition (4.9ii) by
verifying

(6.5) ID(,N &)l 0 as N - o
and

(6.6) IL(qN)6N--L(q)IR, +0 as Nc,

where in (6.5) the norm can be that of L2( N Nr, 0) or L2 with the weighting function g
(see (5.7)).

To show (6.5) and (6.6) we shall make use of standard estimates from the theory of
spline approximations. Specifically, from [24, Thm. 2.5] we find, upon considering the
interval [tN, N Nt(k-1)N], k 1, 2," , u, which has mesh size h (r rk-1)/N,

(6.7)

and

t_l
12 14{r1_rl }4f,_, %1=(6.8) f..It.r [ 0

--1 [D
N t

Here is the interpolating spline for C2[ r, 0] with knots at {t}. Denoting by
].N the norm in L2( N--r, 0), we deduce from (6.7) and (6.8) the estimates

(6.9)

and

ID(, d, 7)le,N < 1__ (max Ir r-i l} N1---ID2& I2,N

(6.10)
1 }2 1

Denoting by [2,N,gN the weighted norm in L2( N-r, 0), we easily argue for
(& (0), &)e @1 (using the minimality properties associated with ZrN)

N

From (6.10)we observe that this last quantity is O(1/N2), and hence so is Izr -IN. It
follows immediately that [&N (0)--& (0)JR" is O(1/N2) also.

We remark that we have shown that ]zr [N + 0 whenever e @1. The density
of @1 in Z and the boundedness of {ZrN} thus imply this convergence (]rNZ Z[N + 0) for
all z e Z and the condition 7r(PNZ)- 7rZ for z e Z of (4.7) is satisfied.

We next consider the inequality

(6.11) ID(4N o )I2,N ID(4N 4’7)12,N

and observe that the second term is O(1IN) by (6.9). We employ the Schmidt inequality
[24] to estimate the first term. Since both &N and & are linear on each subinterval
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[t, t?-i ] we have
oI_ ]D(&N br)l [ff-’

1 (tl -t)

i x

--=l[(r--r>l)?2N --&

r + rf.
Using (6.8) we obtain the estimate for T

To obtain the desired estimate on T we need an additional assumption on
(8, f,,. , f). Specifically, we assume"

(6.13) there exists a > 0 such that lf f-l g 8, k 1, 2,.. , v.

With the assumption we find (for N suciently large)

YgN2 0 4YgN2
N 2

’ 2,N.

But our arguments above revealed that[ l. is O(1/N), and thus T, like rY, is
O(1/N). It follows from (6.12) that the first term in (6.11) is O(1/N). We have thus,
under the additional assumption (6.13), established (6.5).

Finally, we observe that, for rY N 0 N 0,
0

4,V(O) 4U(O) + Io D4
o

4,(0) 4(0) + Io D4,

and thus
0

I4’N(O)-d’(O)l<=ld’V(O)-&(O)l+ I_ IDd’V-D4’I

<= I(b v (0) 4, (0)1 + 47" ]D(4, 4
But these last two terms are O(1/N), uniformly in 0. It follows that I&V(-rV)
4(-rV)] is O(1/N). Since is continuous and qN-+g we find that L(qN)ebN-+L(Ft)4)
and thus (6.6) obtains.

Summarizing, we have shown that (4.7), (4.8), (4.9) (where rrr is now the
projection of ZN(gv) onto Xv(gV)) hold for the first order spline-based scheme defined
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by the operators in (6.3) under the assumption (6.13). Furthermore, if one inspects
carefully the estimates given above, one finds that under the hypotheses (5.17a-c), the
convergence in (4.9ii) is O(1/N).

Remark 6.1. In the above estimates we chose @1 --@(43(c)), so that d in (6.4)
(and the subsequent arguments) was in W(z3) (-r, 0). To apply the needed estimates
(e.g., [24, Thm. 2.5] and make the arguments above, it is actually sufficient to have d in
W(2)(-r, 0) (see [25, Thm. 21]). We thus could have just as easily chosen @1
@(s42()) and arrived at the conclusions above, including the convergence rates
obtained.

Remark 6.2. In light of the above remark, we may, in order to obtain that the
approximating semigroups converge like O(1/N) for the scheme developed here,
choose (42(c)) and 1 @(4(c)) in Theorem 3.2. Under assumptions (6.13)
and (5.17a-c), one then can readily verify that the hypotheses of Theorem 3.2 are
satisfied by the spline-based approximations.

7. Numerical results. In this section we present a brief summary of some numeri-
cal results for the identification problem obtained using the approximation schemes
(AVE and SPLINE) outlined in the two previous sections. For a more detailed
discussion of the numerical performance of the AVE and SPLINE schemes in
identification and control problems, the reader can consult [8], where numerous
examples, error analyses, etc. are presented. The summary given here, taken with the
extensive numerical tests reported in [8], support our claims of efficacy and practical
usefulness for these methods.

In order to generate the data for testing the algorithms, we select a "true" set of
parameters 3/* (r/*, b*, a*, r*) (we take u 1 and rl r) and a control u, and use the
method of steps [14] to solve for x on the interval [0, T]. In all of the examples
presented below "data" were generated using r* i and u u, where u is the unit step
at t- defined by

Ul(t)={O, t<l,
1, l<--t

and 0< < 1. The final time of T 2 was used. The observations i---y(ti) were
generated at 101 equally spaced time steps on [0, T]. It is possible to add noise to the
"data" to produce "noisy observations" (t)= y(t)+ ,(t), where, for example, u(t)=
col (ul(t), , u(t)) is a computer-simulated vector of normal random variables ,g(t),
each with zero mean and preset standard variation. This was done for some of the
examples in !-8] (we do not do it here), where one again finds that the algorithms perform
quite well.

For each fixed N, the approximation problem (u) was solved using a maximum
likelihood estimator (MLE). The resulting solutions are denoted z/ and / for the
AVE and SPLINE schemes respectively. Since the MLE is an iterative procedure it is
necessary to supply a startup value (i.e., an initial guess) for the parameters yAu or y. If
/3 denotes an unknown parameter to be estimated (e.g.,/3 a or/3 r), then find will
denote the estimate for/gN obtained after I iterations of the MLE applied to problem
(N). The startup value is denoted by flN.O.

Example 7.1. In this example we seek to estimate the initial data (r/, b)
R Lz(-1, 0) and the coefficient of the delayed term in a simple scalar equation. The
system is described by the equation

A(t) .05x (t) + ax(t- 1) + U.l(t),
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with (unknown) initial data

x(0)

and output

Xo(S) (s), -l<=s<0

y(t)=x(t).

Data were generated as described previously using the true values r/*= 1, b*= 1,
a* =-4.0. For each N 2, 4, 8, 16 and 32, the approximating problem (N) was
formulated as discussed in 4. Thus, for AVE we seek the "parameter"

2 (r/, b, bf,..., b, al),

where (rt, b, b,..., buu) are coordinates of the AVE projection of the initial data.
Similarly, for SPLINE we seek the "parameter"

/ (:oU, :, , al),

where (:, :, ..., :) are coordinates for the SPLINE projection of the initial data.

N 4 Estimate of initial data
8.00

4.80

1.60

:/(t) .05x(t)+a,x(t- 1) + u.,(t)

x(O) , Xo(S) (s)

Time
-0.01

FIG. 7.1.1
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TABLE 7.1.1

N

2
4
8
16
32

AVE

Iz*(O)- (o)1

-4.4103 2.08
-4.9924 4.53
-4.2651 41.76

did not converge
did not converge

SPLINE

N Iz*(O)- (o)1

2 -4.4382 .1595
4 -3.9381 .0867
8 -4.0031 .0287
16 -4.0031 .0201
32 -4.0001 .0386

The "startup" for (r/, b)R L2(-1, 0) was taken as the zero initial data (0, 0),
whereas the "startup" for al was chosen as av’ =-3.0. Table 7.1.1 provides an
overview of the numerical findings. Because the initial data are in R L2(-1, 0) we
have only displayed the Z-norm of the error and the estimated value for ar. The
comparison of the two schemes is quite striking; in particular, note the relative
accuracies in estimating the initial data. Compared in Fig. 7.1.1 are graphs of the true
initial data and the corresponding estimates produced by AVE and SPLINE for N 4.
It is apparent that (at least for the chosen "startup" values) the SPLINE procedure
readily finds good estimates for the parameters, while the AVE scheme has consider-
able difficulty.

It is of some interest to compare the sequence of data fits generated as the MLE
iteration procedure evolves. Figs. 7.1.2, 7.1.3 and 7.1.4 show the data matches from the
AVE algorithm (with N 8) for MLE iterations 0, 4 and 9, respectively. From the
match at iteration 4 (Fig. 7.1.3) it might be deduced that the AVE scheme is in trouble.
However, at iteration 9 the fit is quite good and Fig. 7.1.4 does not give any hint of the
poor values of the parameters indicated in Table 7.1.1.

Figs. 7.1.5, 7.1.6 and 7.1.7 illustrate the SPLINE matches at iterations 0, 4 and 9,
respectively. Again the iteration 4 matches indicate some difficulty while by iteration 9
the match is quite good. It happens that the SPLINE estimates of the parameters are
excellent.

Although one cannot be certain, for the AVE scheme it does appear that the MLE
procedure is converging to a local minimum of jN. We suspect, however, that the
problem (v) suffers a lack of identifiability. (See [8] for a further discussion of this
matter.) The problem (N) for SPLINE seems to be much better behaved.

In order to further investigate identifiability for problems with unknown initial
data, we made additional computations for this example using the same dynamics,
changing only the initial data to

r/=l, b(s) 1 +s, -1-<s<0.

Using the same start-ups as above, we found that SPLINE converged for all N values,
whereas AVE never did. Results are summarized in Table 7.1.2.

Example 7.2. We consider an equation with a continuous (a constant function)
kernel in which we wish to estimate the kernel, a system coefficient, and the time delay.
The model is assumed to be of the form

0

(t)=alx(t-r)+k I_ x(t+s) ds+u.(t),

with initial data
Xo(S)=- 1, -r<=s<=O
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TABLE 7.1.2
Linear initial data

N

2
4
8

16
32

AVE

-N
al Iz*(0)- u(0)l

did not converge

SPLINE

N a
2 -4.5201 .0563
4 -4.0975 .0318
8 -4.0282 .0123

16 -4.0123 .0193
32 -4.0122 .0936

and output

y(t)=x(t).

The true parameters a * -3.0, k* -1.0 and r* 1.0 were estimated using startups
of

,o kU.O r,Oal =-3.5, =-1.5, =1.5.

Runs were made forN 2, 4, 8 and 16. The MLE algorithm for the AVE scheme did not
converge for N 2 and 4. However, for N 8 and 16 the AVE scheme converged but
produced rather poor parameter estimates. The SPLINE scheme converged for each
N 2, 4, 8, 16 and for N >_-4 produced good parameter estimates. The numerical
results for this problem are summarized in Tables 7.2.1 and 7.2.2, where eu / 3’*
is the error.

Figs. 7.2.1 through 7.2.4 compare the N 8 AVE and SPLINE data fits. In
particular, Figs. 7.2.1. and 7.2.2. show the N 8 AVE start-up and converged data fits,
respectively. Figs. 7.2.3 and 7.2.4 show similar results for the SPLINE procedure.

TABLE 7.2.1

AVE

N ? / fiv leul
2 did not converge
4 did not converge
8 .8802 .2182 -4.1641 2.0657

16 .9383 -.3806 -3.5535 1.2346

3’* 1.0000 1.0000 3.0000

TABLE 7.2.2

SPLINE

N ? u fi leul
2 .9100 -.4376 -3.4478 1.1002
4 .9896 -1.0087 -3.0580 .0071
8 1.0018 -1.0390 -2.9953 .0455

16 1.0042 -1.0410 -2.9841 .0611

3’* 1.0000 -1.0000 -3.0000
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Example 7.3. In our final example we consider an oscillator with retarded
damping and retarded restoring forces. We seek to estimate the coefficients of the
delayed terms and the time delay itself. The system is governed by the equation

Y(t) + 16x (t) + ao2(t- r) + alx(t- r) u.(t),
with initial data

and output

Xo(S) 1, 2o(S) =- O, r <- s <- 0

dt x2(t)J -16

with initial condition

y(t)=x(t).

This second order equation is equivalent to the two-dimensional system

Xl(t)] 0 0 (t-r)10] [x2(t)_l + [-al -ao] [:(t-r)] + [01] tg.x(t),

and output
X2 o

y(t) [1 o][Xl(t)lXz(t)J"

The true parameters to be estimated are ao* 10.0, al* =-10.0 and r*= 1.0.
Startup values for each run were

N,0 1N,0 /,N,0ao =11.0 a =-9.0, =1.2.

Convergence results for this example are summarized in Tables 7.3.1 and 7.3.2. At
N= 16 the relative l error (lel/l,*l) for AVE is approximately 3.5%, while the
N 16 SPLINE scheme produced a relative 11 error of less than 1%.

Figs. 7.3.1 and 7.3.2 show the N 4 converged data fits for AVE and SPLINE,
respectively. For N => 8, the data fits are nearly perfect and are not shown.

TABLE 7.3.1

AVE

N ?N eN
2 did notconverge
4 54.5124 -9.1876 2.4190 46.7439
8 19.4941 -9.4927 1.3506 10.3520

16 10.6433 -9.9089 .9998 .7346
y* 10.0000 -10.0000 1.0000

TABLE 7.3.2

SPLINE

-N -N -NN ao al leNI
2 9.2585 -10.5360 1.0908 1.3683
4 10.0927 -10.0619 1.0076 .1622
8 9.9724 -10.0177 1.0010 .0463

16 9.9811 -10.0108 1.0017 .0314
y*= 10.0000 -10.0000 1.0000
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8. Concluding remarks. We close with an addendum of several remarks on
questions and results that have arisen since the preceding part of this paper was written.
First, the methods employed in this paper are also applicable to parameter
identification problems for distributed parameter systems. In subsequent work (see
[29]), both theoretical and numerical results have been obtained for linear and
nonlinear equations of hyperbolic and parabolic type. Standard versions of the Trotter-
Kato type approximation theorems (for example, the version due to Kurtz in [19]) are
adequate for the partial differential equation problems treated to date.

With regard to the Trotter-Kato type theorem of 3, we have subsequently
learned that there is a version of the approximation results (which does not require
IPcz[ [z[) due to Kurtz from which our Theorem 3.1 follows directly. Specifically, [30,
Chapt. 1, Thm. 5.1] yields the results of our Theorem 3.1 in a rather straightforward
manner. We gratefully acknowledge our fruitful conversations with Tom Kurtz and his
willingness to provide us with a preliminary version of material from his forthcoming
book upon learning of our own efforts and interests in these techniques.

Finally, we feel that additional comment might clarify the relationship between our
numerical efforts on the simple examples of 7 and the "real-world" motivating
examples of 1. The methods developed in this paper are applicable to the motivating
e.xamples and work is now in progress on both the column reactor problem (preliminary
numerical results indicate that the methods should perform quite satisfactorily on these
problems) and the unsteady aerodynamics problem where in each case one uses actual
experimental data in computing, estimates for the parameters. The focus of our efforts
reported in this paper was the theoretical development and numerical testing of the
techniques we have proposed. For the testing (both here and in [8]) we chose to use
simple examples of types often encountered in applications for which "true" solutions
could be easily obtained and used in comparing the techniques. Detailed treatments of
the use of these techniques in conjunction with the motivating examples of 1 will
appear in future publications.
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DISCRETE TIME STOCHASTIC ADAPTIVE CONTROL*

GRAHAM C. GOODWIN, PETER J. RAMADGE: AND PETER E. CAINES

Abstract. This paper establishes global convergence of a stochastic adaptive control algorithm for discrete
time linear systems. It is shown that, with probability one, the algorithm will ensure the system inputs and
outputs are sample mean square bounded and the conditional mean square output tracking error achieves its
global minimum possible value for linear feedback control. Thus, asymptotically, the adaptive control
algorithm achieves the same performance as could be achieved if the system parameters were known.

1. Introduction. A key problem in stochastic control is the question of global
convergence of adaptive control algorithms. By global convergence of a stochastic
adaptive control algorithm we mean that for all initial system and algorithm states, the
(conditional) mean square output tracking error is minimized, with probability one, and
that this is achieved with a sample mean square bounded input sequence.

It is only recently that significant progress has been made on the global con-
vergence of adaptive control algorithms. Feuer and Morse [1] and Morse [2] have
treated a continuous time algorithm for deterministic systems. These results appear to
be the most general to date for the single-input single-output continuous time case. In
the discrete time case the present authors [3] have established global convergence for a
class of adaptive control algorithms applied to multi-input multi-output deterministic
linear systems.

Recently progress has alsobeen made on the convergence of recursive algorithms
used for parameter estimation. In [4], which deals with general estimation problems and
[5], which in addition treats the adaptive control problem, Ljung presents general tools
for the analysis of recursive algorithms. In [6] Solo has analyzed several recursive
parameter estimation algorithms using a martingale approach. The works of both Ljung
and Solo are important precursors to our subsequent analysis of stochastic adaptive
algorithms.

To date the most extensive treatment of the problem of global convergence for
stochastic recursive identification algorithms for discrete time linear systems appears in
the recent work of Ljung [4], [5]. In these papers, the asymptotic properties of the
algorithms are associated with the solutions of an ordinary differential equation. The
analysis in [5] indicates that, for certain algorithms, a positive real condition on the
system noise dynamics is required for convergence. However a question that remains
unanswered in the above work concerns the boundedness of the system variables. It has
been argued in [7] that a particular adaptive control algorithm, based on recursive least
squares [8], has a sample mean square boundedness property. However the arguments
in [7] are heuristic and as a result the question of global convergence of stochastic
adaptive control algorithms remained unresolved in this set of papers.

In this paper we shall establish global convergence for a class of adaptive
algorithms for stochastic linear systems. Subject to an inverse stability condition and a
positive real condition (see, e.g. [13]), the system inputs and outputs will be shown to be
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sample mean square bounded and the (conditional) mean square output tracking error
will be shown to converge to its global minimum value with probability one.

We shall first treat an algorithm for single-input single-output systems having
correlated disturbances, since we believe this to be a case of prime interest. In a later
section an analogous result for the multiple-input multiple-output case is presented.

2. Problem statement. In this paper we are concerned with the adaptive control of
linear time-invariant finite dimensional systems which admit autoregressive moving
average representations of the form

(2.1) A(q-a)y(t)=q-a[B(q-1)]u(t)+[C(q-a)]w(t), >- l,

where {y(t)}, {u(t)}, {w(t)} denote s-dimensional output, r-dimensional input and s-
dimensional disturbance sequences respectively. In (2.1) q-a denotes the unit delay
operator, d _-> 1, A (q-a) is a scalar polynomial in q-a and [B (q-a)], [C(q-a)] are matrices
whose ifth entries are the scalar polynomials Bij(q-a), Cij(q -a) respectively. Thus

A(q-a) 1 + a aq -a +.. + anq -n,
Bii(q -a) (Bij)o + (Bii)aq -a +"" + (Bii)mq -m,

1, i=j,
Cij(q -1) (Cij)o q- (Cij)lq -1 q-" + (Cij)lq -l, with (Ci)o

0, otherwise,

Equation (2.1) is taken together with the initial condition x0-a-{y(0),
y(-1),..., y(1-k); u(1-d),...,u(1-k); w(O),...,w(1-k)}, where k=
max {n, m + d, 1}.

As is shown in Appendix B, recursions of the ARMAXform (2.1) are equivalent to
a large class of finite dimensional linear state space systems.

The process {Xo, w(1), w(2),...} is defined on the underlying probability space
(f, , P), and we define ro to be the o--algebra generated by {Xo}. Further, for all _-> 1
t shall denote the tr- algebra generated by {x0, w(1), w(2), , w (t)}. Clearlyo c r c

r for all t=>0. The distributions of the random variables x0," ",

(Xo, w(O),..., w(t),.., are assumed mutually absolutely continuous with respect to
Lebesgue measure.

The following independence and variance assumptions are made on the process w:

(2.2) E{w(t)l,-a}=O a.s., t-> 1,

(2.3) E{w(t)w 7,(t)l,-) Q a.s., => 1,

with trace Q <, and

1 N

(2.4) limN_,sup t2a= IIw(t)ll2 < a.s.

The feedback control actions u(t) are assumed to be measurable with respect to the
tr-algebra generated by {y(1), , y(t)} together with {u(1), , u(t- 1)} for -> 2 and
by {y(1)} for 1. Reasoning inductively, we see that for => 1 u(t) is measurable with
respect to the algelra generated by {y(1),..., y(t)}, and we note that via (2.1) this
algebra is in general smaller than

The control problem we treat is an adaptive one because u(t) is not permitted to be
an explicit function of the coefficients of A(q-a),[B(q-)],[C(q-a)], Q, but only
depends on these quantities through the observations y(1),...,y(t) and
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u(1),..., u(t-1). In other words, the system coefficients are not known to the
controller.

Our objective is to design a feedback control law to make (u(t) and (y (t) sample
mean square bounded and, whenever it exists, to minimize the limit

(2.5) lim
1 s

-,oo- E E{l[Y(t)--Y*(t)[[2l;t-d},
t=d

where {y*(t)} is a bounded reference sequence.

3. Single-input single-output systems. For the single-input single-output case the
system in (2.1) can be described by

(3.1) A(q-)y(t)=q-B(q-)u(t)+C(q-)w(t), t->l,

together with the initial condition Xo, where (y(t), (u(t), (w(t) denote the scalar
output, input and disturbance sequences respectively, and A(q-1), B(q-), C(q-) are
polynomial functions of q- which we write as

A(q-) 1 + alq- +. + aq-,
B(q-) bo + bq- +" + bmq-, bo 0

C(q-) 1 + cq- +. + cq-,
respectively.

We shall make the following assumptions about the information set for the
computation of the control actions and about the system’

(3A) d is known.
(3B) Upper bounds for n, m and are known.
(3C) C(z) and B(z) have all zeros outside the closed unit circle.
In other words, (3A) and (3B) state that u(t) may be an explicit function of d and

integers bounding n, rn and from above. We observe that the assumption on C(z) is
without loss of generality in many circumstances, for instance, in the case where the
noise process w(t) is weakly stationary and the spectral density function of C(q-)w(t)
has no zeros on the unit circle.

Our control objective is to minimize the sample mean of the sequence E{(y(t)-
y*(t))21;t_a}, and we see that this last quantity may be written as

E{(y (t) y*(t))2l;t_d} E{v (t)2l,_d} + (E{y (t)],-d} y * ),
where v(t) denotes y(t)-E{y(t)lt-a}. Let us denote the second term on the right of
this equation as z(t d)2, and let us suppose that the first takes the time-invariant value
3,2. Now we shall show that, ifwe allow u(t-d) to be t-d measurable and to be a
function of the system parameters, then it may be chosen so that yt* E{y(t)lt-d} i.e.
so that z2(t d) 0. Since u(t- d) in our problem is constrained to be measurable with
respect to a sigma algebra contained in t-d, we see that a lower bound for (2.5) is the
constant quantity 3,9. In this paper we demonstrate that our adaptive control algorithm
minimizes (2.5) by showing that the lower bound 3,2 is achieved. This in turn is
performed by showing that our algorithm results in

1 N

lim Z (z(t))2 0
/kr t=O

a,So
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2The fact that E{v(t)2[t_d} =3’ is proven as follows. As in Appendix C, factor
C(q -1) as

C(q-) F(q-1)a(q-) + q-dG(q-),
substitute in (2.1) to obtain

(3.2) C(q-)(y(t)-F(q-a)w(t)) q-dG(q-1)y(t) + q-dV(q-1)B(q-a)u(t

together with the initial condition Xo, and write this in the equivalent form

d-1 t-d t-d

(3.3) y(t)- Y F,w(t-k)= Mt--ky(k)+ Nt-d-kU(k)+Lt.xo,
k =0 k =0 k =0

where the sequences {Mo, M1, "}, {No, N1, "} and {Lo, L1, "} are scalar sequences
in the case under discussion and in all cases are functions of the polynomials appearing
in (2.1). Taking the conditional expectation of both sides of this last equation with
respect to the o--algebra t-d, using (2.2) and recalling that Xo is a generator of t for
=> 0 we obtain

(3.4)
t-d t-d

E{y(t)lt-d} E Mt-d-ky(k)+ E Nt-d-kU(k)+Ltxo
k =0 k =0

for => d.
This shows immediately that

d-1

v(t) a--y(t)-E{y(t)[t_d} Y fw(t-k)
k=0

a.So

for _-> d, where we have replaced F by fk for convenience in this scalar case. Further,
by (2.5),

(3.5)

=or E f a.s.
k=0

2

for all => d. We may denote this quantity by 3"2, by virtue of its time-invariant nature.
For convenience in the scalar case under consideration we have replaced (2 in (3.5)

2by 3".
Now, just as (3.2) and (3.3) were equivalent, so (3.5) may be replaced by the

equivalent expression

(3.6)
C(q-1)(E{y(t + d)l,})- C(q-a)(y(t + d)- v(t + d))

a(q-1)y(t)+ fl(q-1)u(t),

plus the initial condition Xo, where ce(q -1) G(q -1) and fl(q-1) F(q-a)B(q-). From
this compact form it is apparent that if u(t) is permitted to be o%t measurable and to be a
function of the system parameters then it can be chosen to make E{y(t + d)l-t} take on
any preassigned value. This is the basis of the minimum variance control algorithm of
]kstr6m-which inspires our adaptive control strategy--and it justifies our earlier
,tztement that a lower bound for (2.5) is 3’2.



DISCRETE TIME ADAPTIVE CONTROL 833

4. A single-input single-output algorithm. Here we shall consider a simple
algorithm for stochastic adaptive control. This algorithm uses a stochastic approxima-
tion iteration [5] to estimate a set of control law parameters, (t). The input, u(t) will
then be computed as a function of the current control law parameter estimates and a
current estimate of the system state, b(t). The algorithm for the case d 1 is:

UNIT DELAY ALOORITHM.

a
(4.1) O(t)=(t-1)+ qb(t-1)[y(t)-b(t-l)T(t-1)], i>0, t->k+l,

r(t- 1)

(4.2) r(t--1)=r(t--2)+c/)(t--1)rb(t--1), r(k-1)=l,

(4.3) 6(t)Tff(t)= y*(t + 1),

where k max (n, m + 1), l) and where b(t) is given by

6(t- 1) 7‘ [y(t- 1), , y(t-n), u(t- 1), , u(t-m),
(4.4)

-y*(t-1),. , y*(t-/)].

Equations (4.1) and (4.2) constitute the recursive parameter estimator. The choice
of the scalar gain will be discussed presently. Equation (4.3) defines a feedback
control law. Here and in the sequel we assume that the initial inputs {u(1), , u(k)}
and the initial parameter estimates are arbitrarily chosen. The feedback law (4.3) is
explicitly given by

-1
u(t)=On+l(t

(4.5)

[l(t)y(t)+’’’ + n(t)y(t-n + 1)

+ n+2(t)u(t- 1)+... + n+,(t)u(t- m + 1)

y*(t + 1)- ,+,+l(t)y*(t) .+m+l(t)y*(t--I + 1)], t>=k+l,

Employing our assumptions on the distribution of the initial conditions and the
noise process {w(n)} it may be verified inductively that division by zero is a zero
probability event. Since all the results in this paper are almost sure (a.s.) results no
data-dependent strategy involving the value of a is required to avoid this occurrence.
This is in contrast to the deterministic case [3].

Alternatively one may make a random choice of , independent of past obser-
vations at each instant t, by use of an absolutely continuous distribution with respect to
Lebesgue measure on [e, i] 0 < e < i < c. This also clearly guarantees the probability
of a zero division is zero and, further, the analysis in this paper covers this modified
version of the algorithm with only minor modifications.

It is perhaps worth remarking that the choice of b(t) can be motivated by the
following observations"

As shown in 3,

C(q-1)[y(t + d)-v(t + d)] O(q-’)y(t)+ F(q-’)B(q-’)u(t), t>=l,

with the initial condition x0. Then, subtracting C(q-a)y*(t + d) from both sides of this

equation, we have

C(q-1)[y(t + d)- y*(t + d)-v(t + d)]

O(q-1)y(t) + F(q-’)B(q-1)u(t)- C(q-1)y*(t + d),



834 GRAHAM C. GOODWIN, PETER J. RAMADGE AND PETER E. CAINES

which can be written in the form

(4.6) C(q-1)[e(t + d)- v(t + d)] &(t)r00- y*(t + d), => 1,

again with x0, where e(t + d) y(t + d)- y*(t + d) is the tracking error and 00 is a vector
of system parameters. It is evident that if 00 was known, e(t + d) would achieve its
optimal value v(t + d) if the feedback law is given via 4(t) r00 y*(t + d). Equation (4.3)
is the adaptive analogue of this relation for d 1.

To avoid confusion, we stress that equation (4.5) is not anticipative since the
desired output y*(t + d) is known or is computable at time t.

For the general delay case, there are a number of possible modifications of the
previous algorithm. For the case d> 1 but with C(q-1) 1, we shall analyze the
following algorithm"

MULTIPLE RECURSION ALGORITHM.

a(t)= (t- d) +
(t_ d) cb(t- d)[y(t) cb(t- d)r(t- d) ],

(4.7)

(4.8)

(4.9)

where

(4.10)

f(t- d) f(t-2d)+qb(t-d)rcb(t-d),

t>-d+k,

b(t)r(/)= y*(t + d)

(r) 1,

ti>0, t>=k+d,

r=k-d,. ,k-l,

oh(t-d)r =[y(t-d),..., y(t-d-n +1), u(t-d),
u(t-m-d+ 1), -y*(t-1),..., -y*(t-/+ 1)].

We note that (4.7) to (4.10) actually represent d-interlaced recursions each of
which is similar to the unit delay algorithm. The method of interlaced algorithms Was
first introduced in [3].

We have also recently shown [14] that the following algorithm is globally con-
vergent for the general delay (d -> 1), colored noise case:

(t)=(t-d)+ 4(t-d)[y(t)-cb(t-d)r(t-d)], a>0, t>=k+d,
r(t-d)

r(t-d)=r(t-d-1)+qb(t-d)rcb(t-d), r(k- 1) 1,

ok(t) r(t) y*(t + d),

qb(t-d)r [y(t-d), , y(t-d-n + 1), u(t-d),...,

u(t-d-m +1), -y*(t- 1),..., -y*(t-/+ 1)].

The analysis of the above algorithm is similar to the unit delay and multiple recursion
algorithms and thus we will not present the proof here. Details are given in [14].

In the next section we will analyze the unit delay and multiple recursion stochastic
adaptive control algorithms introduced above.

$. Analysis of SlSO algorithms. The convergence properties of the algorithms
introduced in the previous section will be analyzed using a variant of the martingale
convergence theorem (see Appendix A). Other results in Appendix A will also be used
in the analysis which follows.
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THEOREM 5.1. Let assumptions 3A, 3B and 3C hold for the system (2.1), and
assume r s 1 and d 1. Further assume that,

is strictly positive real and that the unit delay algorithm (4.1)-(4.4) is used. Then, with
probability one for any initial parameter estimate (k),

N

(5.2) (1) lim sup 77.1 y(t)2 < oo,
Noo

(5.3) (2) lim sup
1 t u(t)

(5.4) (3) lim
1 2-.oo- y" E{(y(t)- y*(t))2IY;’-}=

t=l

2where 3’ is the minimum possible mean square control error achievable with any causal
feedback. (This includes feedback designed using the true system parameters.)

Proof. Part 1. In this first section we will establish an important property of the
algorithm. In the analysis to follow we take => k + 1, and note that all the required
initial conditions have been specified. Define

(5.5) e(t) y(t)- y*(t)= y(t)-ch(t- 1)T(t 1)

using (4.3). Let t(t) (t) o where o was defined in equation (4.6). Then (4.1) can be
written as

(t) (t- 1) +
r(t_ l)

(t--1)Te(t)

Let V(t) (t)T(t). Then
2a 2ci

v(t)= v(t- 1)+ g(t-1)r&(t-1)(e(t)-v(t))+
r(t- 1) r(t- 1)

0(t- 1)r&(t- 1)v (t)

-2a

+r(t- 1)
(t- 1)r& (t 1)[(e(t)-v(t))2+ 2v(t)(e(t)-v(t))+ v(t)2]

where v(t) was defined in equation (3.3). Now let

(5.6) b(t- 1)= -(t- 1)%(t- 1)

and

(5.7) z(t-1)=e(t)-v(t).

Note from (4.6) that e(t)-v(t) is t-1 measurable. Then

r(t- 1)
b(t-1)z(t-1)

-2a

r(t- 1)2
&(t- 1)r&(t 1)z(t- 1)2

-2a

r(t- 1)2
&(t- 1)r(t 1)y2 a.s.
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So, noting

cb(t-1)rck(t-1)
r(t- 1)

=<1,

we have

(5.8)

E[V(t)lt_x]<= V(t-1)-
2a { (a+,) }r(t- l)

b(t- ll--- z(t- 1t z(t-11

_z(t- 1)2
-pa

r(t- 1)

-2a
+r(t- 1)

(t- 1)4(t 1)T2 a.s.

where p is a small positive constant chosen so that

[C(z)- 2+P]
is positive real. The existence of such a p is assured by the strict positive real condition
(5.1).

Now let

(a+p)
(5.9) h(t- 1)= b(t-1)-z(t- 1)

2

and recalling equations (4.6) and (4.3) we have

C(q-x)[z(t i)]= b(t- 1)r00 y*(t)

=--&(t--1)T6(t--1)
b(t- 1).

Hence

h(t_l)=[C(q_l) ci+p]2
z(t- 1).

Equation (5.8) can now be written as

(5.11)

EEV(t)It_I] <- V(t-1)-
2

h(t- 1)z(t- 1) -paz(t- 1)2

r(t- 1) r(t- 1)
-2a

+r(t- 1)--&(t- 1)r&(t 1)T2 a.s.

Since we intend to use Lemma A.3 from Appendix A we now define

(5.12) S(t)=2a L h(j-1)z(j-1)+K, 0<K<oo,
/’=1

and note that condition (5.1) of the theorem statement together with Lemma A.4 of
Appendix A ensure S(t)>= 0 for some K, 0 < K <.

Now define the nonnegative random variable

(5.13) Z(t) V(t)+
S(t)

r(t- 1)"
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So

[z(t)lr,_x] [w(t)[_]+
s(t)

r(t- 1)

_-< V(t-1)+
S(t-1) pz(t-1)2

r(t- 1) r(t- 1)
-2

r(t- 1)
2&(t- 1)T&(t-- 1)3’2

where we have used (5.11).
Next, since r(t-2)<=r(t 1), we obtain

E[Z(t)lt_l]<= V(t-1)+
S(t- 1)
r(t-2)

_pz(t_l)2 2 2

r(t-1) +r(t-1)(t-1)T&(t-1)T

=Z(t_l)_Paz(t-1)2

r(t- 1)

-2a 2

+r(t- 1)--&(t- 1)T& (/- 1)y a.s.

By Lemma A.2 of Appendix A

&(j--1)T(]--I)
’=+ r(j--1

So applying Lemma A.3 of Appendix A yields

and
Z(t) --> Z a.s. with E{Z} < o,

y. paz(t- 1)2

t=k+l r(t- 1)
< a.s.

Now since pi 0 we conclude

z(t)2

’ r(t)
< o

t=l
aoSo

Thus using Kronecker’s Lemma [9, p. 117] we have

lim
N 1 -1N-, r(N) N

z(t)2 0(5.14) aoSo

This characterizes an important property of the recursive parameter identifier (4.1),
(4.2) and control law (4.3). It now remains to be shown that this property ensures the
theorem conclusions (5.2), (5.3) and (5.4).

Part 2. Here we show that the condition (5.14) is a sufficient condition to ensure the
conclusions of the theorem statement. Firstly using assumption 3C and Lemma A.5 of
Appendix A and (2.4), it follows that there exists an N’ such that

1 N K1 N

(5.15) -t=+xU(t)2<=-tkY(t+l)+K2__ forN>N’ a.s.

and hence, using the definition of r(N) and &(t), that

r(N) K3 N

(5.16) <= y(t+l)+K4 forN>N’ a.s.
N N t=k
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Now by definition e(i)& y(i)-y*(i) so

z(i 1) & e(i) v(i) y(i) y*(i)- v(i),

where v(i) is defined via (3.3), and

y(i) z(i- 1) + y*(i) + v(i)

with [y*(t)[ <M < oo; hence

1, )2 3, 3 N

N
Y(i +1 <_- z(i)2+M+- E v(i+l).

But now since

limsup
1 ,

N-
w(i)2 <

it follows that

1 N

lim sup , v(i)2 <
N-oo

aoSo

Hence there exists an N" such that

(5.17)
1 N -3 Z
N

y(i + 1)2 < (i)2 + M3
i=1

for N >= N" a.s.

Hence using (5.16) and (5.17) we have

r(N)
<_ C1 t )2(5.18)

N -.= z(i +C2 forN>N a.s.

with 0 < C1 < o, 0 < C2 < c and N max (N’, N").
Having established the above bounds we are now in a position to prove the

required result. We proceed using a sample path analysis on the set of paths of measure
one that satisfy (5.18).

First let us assume that the sequence

1 N

N
y(i + 1)2

is not bounded. Then it follows by the definition of r(N) that

r(N)
(5.19) lim sup

-Nr N

and using (5.18)

(5.20) lim sup
1

N-oo -’ i=

z(i)2 oo.

Let

(5.21) (N)= z(i)2.
i=1
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Then from (5.18)

r -1 1
E z(i 5(N) >i=1 N /

5(N)
C15(N) + Ce

But since

lim sup (N)
N

there exists a subsequence {Nc} such that

Then

lim 5(N:) .

:- Nc J - z z >-
C

which contradicts (5.14). Thus our assumption that

1 N

N
y(i + 1)2

for N > N.

was not bounded in N was false.
Thus

is bounded in N. So from (5.16)

and hence

Then from (5.14)we have that

1
E y(i+l

Ni=l

r(N)
lim sup <,
/Vo N

N 1
lim inf >-> 0.
N-, r(N)

(5.22)

but

1 N

lim Y z(t)z=O
No t=l

aoS.

z(i-1)=e(i)-v(i)

=y(i)-y*(i)-v(i).
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Now z(i-1) is -1 measurable since y*(i) and y(i)-v(i)=E{y(i)li-1} are i-1
measurable.. Thus

2E{(y(i)- y* (i))21o/_1} z(i- 1) + 3’ a.s.

and so from (5.22) we obtain

1 N

lim ,E E{(y(i + 1)-y*(i + 1))1} 3,
N"

as

which completes the proof.
The positive real condition of Theorem 5.1 is to be expected Similar conditions

have been noted previously for recursive parameter estimation schemes [5], [6]. It is
interesting that in the case presented here, the positive real condition is a function of the
algorithm gain constant, 7. The weakest condition is obtained for c7 small, though this
may affect other properties such as the convergence rate.

The next theorem examines the multiple recursion algorithm (4.7) to (4.9) for the
case d >= 1, C(q-) 1.

THFOREM 5.2. Let assumptions 3A, 3B, 3C hold for the system (2.1), and
assume r s 1, d >- 1 and C(q-) 1. When the multiple recursion algorithm, (4.7) to

(4.9), is used with 0 < < 2 then with probability one

(5.23) (1) limsup
1 N

N--, t= y(t)2 <

1 N

(5 24) (2) lira sup
No t=

(5.25) (3) lim
1 N

2

u-, - E E{(y(t)- y*(t))al;t_d} 3/
t=d

2where 3/ is the minimum possible mean square control error achievable with any causal
feedback.

Proof. We first establish the property corresponding to (5.14). Throughout the
following analysis we take t-> k + d, and again note that all required initial conditions
have been specified. As before define

e(t)=y(t)-y*(t)

-(t- d)rff(t- d) + v(t)

and

V(t) (t)(t).

We shall analyze each of the interlaced algorithms separately. Therefore consider

26 2
V(t) V(t- d) +

?(t- ti (t- d)Td(t- d)e(t) +
?(t- d)----- II(t- d)[IZe(t)z.
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Let

b(t d) -qb(t- d)7‘(t- d).

Then

27
V(t) V(t- d)-

?(t- d)
b(t- d)[b(t- d) + v(t)]

-2a

(t- d)2 II (t- d)[12[b(t d)2 + 2b(t- d)v(t) + v (t)2],

E[ V(t)lt-a] <= V(t- d)-
?(t d)

-2a
[2- a]b(t- d)2 +

f(t- d) 11 (t- d)l12 2,

The sequences

{V(i + nd)}, {b(i +nd) 114’(i
f(i + nd) i { f(i + nd)2

are adapted to the increasing sequence of o--algebras i+na for 1 -< <- d. Hence we can
use Lemmas A.2 and A.3 of Appendix A to conclude

b(i +nd)2

(5.26) 7(2-a) nYo= )’i" + nd)
< oe a.s. for 1,..., d.

Since 0 < 7 < 2, summing (5.26) over 1 -< -< d we have

b(t)2
(5.27) t=lY’ ?(t)

< c a.s.

Now, as before define

(5.28) r(t) r(t- 1)+ qb(t) rqS(t), r(O) 1.

It follows from (5.28) and (4.8) that

(5.29)
[t/d]

r(t) 1 + (/)T(]1 __> 1 + Y’. (t-id)7‘(t-id)= f(t).
1=1 i=0

Hence from (5.27)

(5.30) b(t)2
= r(t)

< a.s.

Now we have

b(t) -(t)7‘(t) (t)7"00- (t)7‘(t)
y(t + d)- v(t + d) y*(t + d)

which corresponds to z(t) in the proof of Theorem 5.1.
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Thus applying Kronecker’s lemma to (5.27) gives

(5.31) lim
N 1 tN-, r(N) N

z(t)2 0 aoS,

The remainder of the proof then follows that of Part 2 of Theorem 5.1.

6. An alternative algorithm. As discussed in [3], there are alternative adaptive
control algorithms to the one discussed in the previous section. One possibility is to
factor the modulus of the leading coefficient of u(t) from (3.2). Thus for d 1, -> k + 1,
and using the initial condition x0, we have

(6.1) C(q-1)[y(t+ 1)-v(t+ 1)]=l/3ol[a’(q-X)y(t)+(Sgn o)U(t)+3’(q-a)u(t)].

Subtracting C(q-1)y*(t + 1) from both sides gives

C(q-1)[e(t + 1)- v(t + 1)]

(6.2)

--Iol[’(q-" ly(t) + (Sgn o)U(t)+3’(q-’)u(t)]-C(q-1)y*(t + 1)

=1/3ol c’(q-)y(t)+(Sgno)U(t)+’(q )u(t)+ol C(q-)y*(t+ 1)

I/3ol[b (t)tOo + (Sgn/3o)U (t)]

where

b(t)r [y(t), y(t-n + 1), u(t-1),..., u(t-m), y*(t+ 1), , y*(t-/)].

The above considerations motivate the following algorithm"

1
(6.3) (t) (t-1)+ &(t-1) r.(t , i) [Y(t)- y*(t)]

(6.4) r(t)=r(t-1)+c(t-1)da(t-a), r(0)= 1,

(6.5) u(t) -(Sgn/3o)b (t) r(t).
As before, equations (6.3), (6.4) consist of a recursive parameter estimator and

(6.5) defines a feedback control law.
We then have the following theorem.
THEOREM 6.1. Subject to assumptions 3A, 3B and 3C if the algorithm (6.3) to (6.5)

is applied to the system (2.1), with r s 1, d 1 then, provided
(i) the sign ofo is known and

(6.6) (ii) [C(z)-1/2ci[/3ol] is strictly positive real,

it follows that with probability one that

1 N

(6.7) (1) limN_,sup t=a y(t)2 < O,
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(6.8) (2) lim sup
1 N

(6.9) (3) lim
1 u

2

N-o
E{[y(t)-y*(t)]Elsrt-d} 3/

td

where y2 is the minimum possible mean square control error achievable with any causal
feedback.

Proof. The proof follows that of Theorem 5.1 with the following correspondences:

(6.10) e(t) y(t)- y*(t),

(6.11) b(t) -c(t)T(t),

(6.12)

(6.13)

z(t) e(t + 1)-v(t+ 1),

h(t)= b(t)-(a + p)2
z(t),

(6.14) C(q-1)z(t) Iflo[b(t). [-]

It will be noted that to employ the above algorithm it is necessary to know the sign
of flo and the positive real condition is weakest when dlflo[ is small. The approach of
factoring ]/9ol from (6.1) is related to the procedure used by fkstr6m and Wittenmark in
[8] where a fixed estimate of flo was used.

7. Multiple-input multiple-output systems. In the multiple-input multiple-output
case the system output is described by

(7.1) A(q-a)y(t) q-d[B(q-a)]u(t) +[C(q-1)]w(t)

where [M(q-1)] denotes a matrix whose ij-th entry is the scalar polynomial Mj(q-a). In
(7.1), { y(t)}, {u (t)}, {w(t)} denote the s, r and s component vectors of output, input and
disturbance sequences, respectively, d denotes a pure time delay. As in the previous
sections, we take t-> k +d and note that all required initial conditions have been
specified.

The following assumptions will be made about the system"
(7A) The number of inputs r, equals the number of outputs s;
(7B) d is known;
(7C) Upper bounds for the orders of all scalar polynomials appearing in {A (q-a),

[B(q-1)] and [C(q-a)]} are known;

(7D) det [B(z)] 0, Izl-<- 1,

det [C(z)] 0, Izl-<_ 1.

It is shown in Appendix C, that (7.1) can be manipulated into the following
prediction form:

(7.2) e(q-){ y (t + d)- v(t + d)} [a (q-a)]y (t)+ [fl(q-a)]u(t)

where, as in Appendix C,

(7.3) v(t)=[F(q-1)]w(t)
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and ?(q-l) is the scalar polynomial given by det [C(q-1)]. Let

(7.4) E[v(t + d)v(t + d)rl.t] F.

The control objective is to achieve with probability one

1 N

(7.5) lim sup E Ily(t)ll2 <,
Ncx3

1 N

(7.6) liNmup t1= Ilu(t)ll2 < ,
1 N

(7.7) lim E E{[yi(t)- y/* (t)]2 t-a} [ii, 1,..., s,
Ncx: t=d

where {y*(t)} is a bounded reference vector sequence and Fii is the minimum mean
square tracking error for causal linear feedback.

THE MIMO ALGORITHM. We shall begin with a closer analysis of equation (7.2).
Define [ai.(q-a)] to be the ith row of [a (q-a)] and similarly for [/3i.(q-a)]. Then we

have

(7.8) e(q-X)(y,(t + d)-vi(t + d))= [ai.(q-1)]y(t) + [,.(q-a)]u(t).

Now subtracting ?(q-)y*i (t + d) from both sides of the above equation yields

f(q-)( yi(t + d)- y mi (t + d)- vi(t + d)) [ai.(q-a)]y(t) + [fl.(q-)]u(t)- ?(q-a)y * (t + d)

or

(7.9) ?.(q-)(ei(t + d)- vi(t + d)) i(t)To Y*i (t + d)

where e(t + d) yi(t + d)- y* (t + d),

ck,(t) w (y(t) T, y(t- 1)W, u(t) T, u(t-- 1)T, y* (t + d- 1),’" ")

and 0 is a vector of system parameters.
The above considerations motivate the following algorithm:

(7.10) Oi(t)= (t- l)+
ri(t- ii ck,(t- l)(y,(t)- b,(t- l)T(t I)),

(7.11) ri(t- 1)= ri(t-2)+ qbi(t- 1)Td),(t 1),

(7.12) Ci(t)Ti(t) Y*i (t + 1)

for 1,..., r, and where we have taken d to be 1.
Now, as in the scalar case, (7.12) is an implicit definition of a feedback control law.

Assumption 7D ensures that the set of simultaneous equations (7.12), 1, , r can
be uniquely solved for the vector u(t).
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Analogously to the single-input single-output case we have the following theorem"
THEOREM 7.1. Subfect to assumptions 7A through 7D; if the algorithm (7.10)-

(7.12) is applied to the system (2.1), with r s > 1, d 1 and if

is strictly positive real,

then with probability one

(7.14) (1) lim sup
1 ily(t)ll2 < oo,

Noo

(7.15) (2) limsup
1 N

,,_ ,E= Ilu(t)ll2 <

N1
E E{(y(t)- y* (t))al,_a} F,, 1,..., s,(7.16) (3) uli+mo

where Fii is the ii-th element of F.
Proof. Part 1. The proof proceeds as for Theorem 5.1, Part 1 with the following

correspondences for 1,..., s"

e(t)--- ei(t) yi(t)- y/* (t)

y,(t)- 4,(t- 1)Tff(t 1);

b(t) bi(t) -4)i(t) Tdi(t);
z(t)---- zi(t) ei(t + 1)- v(t + 1);

h(t) =- hi(t)= hi(t)_(d + p)2
zi(t);

e(q-)z(t 1)-= ?(q-a)z(t- 1) 4(t- 1)r0 y* (t)

=--cbi(t--1)Tdi(t--1)
bi(t- 1).

This leads to the following important set of properties of the algorithm (7.10) to
(7.12)

N 1 N

(’7.17) lim z(t)2--0 a.s., i=l,.’’,s.
Noo ri(N) N

Part 2. As before we proceed to show that the above condition is a sufficient
condition to ensure the conclusions of the theorem.

In the following we use a sample path analysis. Firstly, using assumption 7C and
Lemma A.5 and (2.4) it follows that there exists an N’ such that

1 N K1 N

12,2= Ilu(t)ll2--<- ,2= [}y(t / 1)1 / g=, N>N’,
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and hence that

(7.18) ri(N) <_K3
N -- t=

]]y (t + 1)112 + K4, N > N’.

Also, there exists an N" such that

N

)2 3 k )2 N".
1 y. yi(k+l <(7.19)

k=l = zi(k +M3, N >

Hence, using (7.18) and (7.19)

(7.20) ri(N)
< C1 N

= max Y zi(k)2+C2, forN>
N N l<_i<=m k=l

and 0< C1 <, 0< C2<o0, i= 1,. , s.
We next assume that

1 N

,2= Ily(k + 1)11e

is not bounded in N. Hence, there exists at least one/’, 1 -< ] =< s such that

1 N

z(k)
Nk=l

is unbounded by (7.19). Thus from (7.20), there exists a subsequence {Nk} and an
integer l, 1 =< =< s such that

rl(Nk)
< zt(t)z + C2 forN >N

N
and

Defining

’l(Nk) --’-kk Zl(l)2’

then along the subsequence {Nk}:

rl(Nk)-1 1 =Nk ) -k Zl(t)2>=
, Nk

Cl,l(Nk "]- C2
for N > N.

But, since limk-,oSl(Nk)--00, it follows that
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which contradicts (7.17). Thus our assumption that

1 N

was not bounded in N was false.
The remainder of the proof is straightforward and follows the proof of Theorem

5.1. 1/2

$. Conclusions. The paper has analyzed several discrete time stochastic adaptive
control algorithms and has shown that, under suitable conditions, they will be globally
convergent. The algorithms have a simple structure and are applicable to both single-
input single-output systems and multi-input multi-output systems. These results are
believed to constitute the first complete and rigorous analysis of any stochastic adaptive
control algorithm of this type.

Appendix A. The following technical results will be called upon in our analysis of
adaptive stochastic control algorithms.

LEMMA A.1. Consider the asymptotically stable n-th order time invariant linear
system"

x(t+ 1)=Ax(t)+Bz(t),

h(t) Cx(t)+Dz(t)

with h(t), z(t) the s 1 output and r 1 input vectors, respectively and x(t) the n 1 state
vector.

There exist constants C1 and C2 which are independent ofN such that
N N

E Ilh(t)ll=<=c E Ilz(t)ll=/c2 forallgN,
t=l t=0

O< CI<O 0_<C2<oo.
Proof. Consider

Then

So

x(t+ 1)=Ax(t)+Bz(t),

h(t) Cx(t) + Dz(t).

x (0) x0,

h(t)=cAtxo+Dz(t)+ cAiBz(t-j).
j=l

where we have used the fact that if A is asymptotically stable then ]]FI] -< KA i, 0 =< A < 1
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and 0-<_K <oo [11, p. 174]. Thus

itIlh(t)ll= KIA 2, + g=llz(t)ll + K3 = A /=A

gxA2’+gzllz(t)ll2+g3 Allz(t-f)ll.
i=l i=i

So
N

12
N N

12E IIh(t)l -K+K2 E IIz(/)ll2+K5 E Allz(t-f)l
t=l t=l t=l /=1

Introducing " j

N N N-1 N

E Ilh(t)ll2<=g4+gz E Ilz(t)ll=+g5 E E ’-l[z()ll2

t=l t=l "r=0 t="

N N-1

< K4 +g2 E IIz(/)ll=/g6 E Ilz()ll=
t=l -r=0

N

c + c2 E Ilz (t)[[2,
t=0

LEMMA A.2. Let {o’(t)} be a real n-vector sequence. Define r(t)=r(t-1)+
r(t)cr(t), with ro 1. Then

Hence

o’(t) o’(t)
<

o’(t) o’(t)
r(t)2 =r(t)r(t-1)

r(t)-r(t-1)
r(t)r(t- 1)

1 1
r(t-1) r(t)"

o.(t) o.(t) 1

r(t)2 r(t- 1)
1 1

r(t)--ro

LEMMA A.3. (martingale convergence theorem). Let {T,}, {a,}, {/3} be sequences
ofnonnegative random variables adapted to an increasing sequence olaf-algebras such
that

ff t, < oo, a.s., then T, converges almost surely to a finite random variable T and

E7 . <oo a.s.
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Proof. See also Neveu [8], Solo [5].

E[Tnl,.,n-] Tn-l + n-,

Then following [8, p. 33], we conclude Tn - T a.s. with T a nonnegative finite random
variable.

Now define

n-1

Z.= T.+ Z a.
/=1

So
n-1

EEZ,,,I,-I]<-- T,,-1-,-I + E cei+t3-x
i=1

Zn-l -J- in-1.

Thus again using [8, p. 33] we have Zn - Z a.s. where Z is a nonnegative a.s. finite
random variable.

Thus

Y. a. < oo a.s. V]

LEMMA A.4 (positive real lemma). Consider the following minimal state space
model

x(t + 1) Ax(t) + Bz(t), x(O) Xo,

h(t) Cx(t)+Dz(t).

Then if the complex ]unction

Z(z)=C[zI-A]-XB+D

is positive real"
(a) there exist matrices P, L, W,

such that

P>0

ATpA P -LLT,

(b)

A TpB CT ,. L W,

wTw D +Dr -BTpB

t-1

2 Y z(i)Th(i)+xoPxo>=O.
i=1

Proof. (a) See Hitz and Anderson [12].
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(b) The results of part (a) will be used. Consider

x(n)TPx(n)= (Ax(n 1)+ Bz(n 1))TP(Ax(n 1)+ Bz(n- 1))

x(n 1)APAx(n 1)+ 2x(n 1)rAPBz(n 1)

+ z(n 1)TBrPBz(n 1)

x(n 1)7"ex(n 1)- x(n 1)rLLTx(n 1)+ 2x(n 1)7"[CT"-LW]z(n 1)

-z(n-1)7"[D+D- WrW]z(n-1)
x(n 1)7"Px(n 1)- [LVx(n 1)+ Wz(n 1)]T[LTx(n 1)+ Wz(n 1)]

+ 2[h(n 1)-Dz(n 1)]Vz (n 1)+ z(n 1)7"[D +Dr]z(n 1)

x(n --1)7"Px(n -1)-[LTx(n--1)+ Wz(n -1)]T[LVx(n -1) + Wz(n-1)]
+ 2h(n -1)Vz(n -1).

Thus summing from 1 to N we have

N-1

0 <- x (N)Tpx (N) <- 2 , h (t) Tz (t) + x (0)Tpx (0).
t=l

LEMMA A.5. Consider the system (2.1), (2.2), Subject to assumption 3C or 7C

1 N <gl N

12 K2 IIw(t/ 1)11 +g3

Proof. In view of assumption 3C or 7C u(t) can be considered as the output of an
asymptotically stable linear system with inputs {y(t)}.and {w(t)}. Hence

x(t+ 1)=Ax(t)+Bv(t)+B2v2(t),

u(t)= Cx(t)+DlV(t)+D2v.(t)

where

and

v(t)=y(t+d)

v(t) w(t + d).

Now using superposition, Lemma A.1 and the Schwarz inequality, the result
follows. [---]

Appendix B. State space and ARMA representations. Consider a time-invariant
stochastic state space system for which there exists the following representation:

(B.1) x(t + 1) Ax(t) + Bu(t) + Kw(t),

(B.2) y(t) Cx(t)+ w(t)

where x(t) is an n 1 state vector sequence and {y(t)} is the s component output
sequence and {u(t)} is the r component input sequence respectively. The s component
sequence {w(t)} is a stochastic process defined on an underlying probability space
(, , P).

Let the matrix A have the following characteristic polynomial

(B.3) p(A) A + alA n-1 +... +
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It is evident from (B.1) that

(B.4)
K

x(t+k)=Akx(t)+ Ai-l(Bu(t+k-i)+Kw(t+k-i)}.
i=1

Then using the Cayly-Hamilton theorem gives

x(t + n) (- aIA"-1- a2A-2 aI)x(t)
(S.S)

+ Ai-{Bu(t + n i) + Kw(t + n i)}.
i=1

Using (B.4)

x(t+n)=[-alx(t+n-1) ax(t)]+ Ai-{Bu(t+n-i)+Kw(t+n-i)}
i=1

(B.6)
n--1

+ a_]. E A’-{Bu(t+j-i)+Kw(t+f-i)}.
/=1 i=1

Hence (A.2)

(B.7)

y(t+n)= a].y(t+n-])+ CAi-Bu(t+n-i)
j=l i=1

n-1

+ a,_]. CAi-lBu(t+]-i)+w(t+n)+ a].w(t+n-j)
].=1 i=1 ]’=1

n--1

+ CAi-lKw(t+n-i)+ a._]. CAi-lKw(t+]-i).
i=1 /=1 i=1

Equation (B.7) is of the form

q-dllBl(q-1

A(q-1)y(t)
q-d’B.(q-X)

(B.8)

q-drBlr(q-1)

I u(t)
q-dsr]3sr(q-)A

+ CIcsl!q-1) Cls(q-1)1" w(t)
l(q -1) Css(-l)J

where A(q-1), Bii(q-), Cik(q-) (i 1,. , s; j 1,. , r; k 1,. , s) denote sclar
polynomials in the unit delay operator q-1. If we let

d min
l<=i<=s

(B.8) is then of the form of equation (2.1).
We remark that the model (B. 1), (B.2) might be viewed as the result of constructing

a state estimation filter for a state space system with respect to past data. If such a filter
achieves stationary ergodic behavior, it takes the form of (B.1), (B.2) with the
conditions (2.2)-(2.4) on the innovation process {w(t)} automatically satisfied.

Appendix C. D-step ahead prediction form. We use the notation C(q-)w(t) to
denote the linear operation C(q-1) 1 +Cq-+ "Clq -I on the sequence {w(t)}
where

c].q-].{w(t)} {c].w(t-])}.
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A. Single-input single-output systems. Consider the following system descrip-
tion"

(C.1) A(q-1)y(t)=q-aB(q-1)u(t)+C(q-1)w(t).
From the division algorithm [10, p. 200], C(q-) may be written as F(q-)A(q-)+
q-dG(q-) where F(q-)=fo+fq-+’’’+fd-lq-d+ and G(q-)=go+gq-+

--n+l+ gn-q
Hence operating on (C.1) by F(q-) yields

F(q-)A(q-)y(t q-dF(q-)B(q-)u(t + F(q-)C(q-1)w(t)
or

(C(q-) q-dG(q-))y(t q-dF(q-1)B(q-)u(t) + F(q-)C(q-1)w(t).
Rearranging this gives

C(q-)(y(t)-F(q-)w(t)) q-dG(q-)y(t + q-dF(q-1)B(q-X)u(t)
or

(C.2) C(q-)( y(t + d)-F(q-)w(t + d))= O(q-)y(t)+ F(q-)B(q-)u(t).

B. Multiple-input multiple-output systems. Consider the system of equations
(B.8). Let

and define

d min dij
l<=j<=r

q-dllB(q- q-dlrBr(q-)l(C.3) q-d[B(q-)]
q-dIBs(q-) q-drBsr(q-) 3

Then (B.8) can be written as

(C.4) A(q-)y(t)=q-d[B(q-)]u(t)+[C(q-)]w(t)
where the notation [M(q-)] denotes the matrix whose ij-th entry is the scalar
polynomial Mii(q-1).

From the division algorithm [10, p. 200], Cij(q -) is operationally equivalent to
A(q-)Fi(q-)+q-dGii(q-); i,j= 1,..., s. Let [(q-)]=Adj[C(q-1)]. Then
operating on (C.4) by [F(q-)][C(q-)] yields

A(q-)[F(q-)][c(q-)]y (t)
-d -1 -1)q [F(q-X)][C(q )][B(q ]u(t)+[F(q-)][C(q-X)][C(q-)]w(t)

or

[[C(q-)] q-a[G(q-)]][c(q-1)]y (t)

q-d[F(q-)][c(q-)][B (q-)]u (t) + [F(q-)][c(q-)][C(q-)]w(t)
or

(c.5)
e(q-)y (t)- q-d[G(q-)][C(q-’)]y(t

-d=q [F(q-)][C(q-)][B(q )]u(t)+e(q-)[F(q )]w(t)
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where

with

[C(q-)][C(q-)] [(q-)][C(q-)] e(q-)I

?(q-a)=det[C(q-X)].
Rearranging (C.5) gives

g(q-1)( y(t)-[f(q-1)]w(t)) q-d[G(q-)][(q-)]y(t)
(C.6)

+ q-d[F(q-1)][(q-)][B(q-)]u(t).
This is of the form:

(C.7) ((q-1)( y(t + d)-v(t + d))= [a(q-X)]y(t)+[(q-)]u(t)
where ((q-a) is a scalar polynomial and [a(q-X)] and [/3(q-X)] are matrices of scalar
polynomials.
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